Dr. Peter van der Sluijs

Associate Professor
Cellular Protein Chemistry
p.vandersluijs1@uu.nl

 103. Im J, Hillenaar T, Yeoh HY, Sahasrabudhe P , Mijnders M, van Willigen M , de Mattos E, van der Sluijs P, Braakman I. (2023). ABC-transporter CFTR folds with high fidelity through a modular, stepwise pathway. Cell Mol. Life Sci. Jan 7;80(1):33. doi: 10.1007/s00018-022-04671-x.

 

102. Hillenaar T, Beekman J, van der Sluijs P, and Braakman I. (2022). Redefining hypo- and hyper-responding phenotypes of CFTR mutants for understanding and therapy. Int. J. Mol. Sci. Dec 2;23(23):15170. doi: 10.3390/ijms232315170.

 

101. Hwang TC, Braakman I, van der Sluijs P, Callebaut I. (2022). Structure basis of CFTR folding, function and pharmacology. J Cyst Fibros. Oct 7:S1569-1993(22)00688-9.

 

100. Kleizen B, van Willigen M, Mijnders M, Peters F, Grudniewska M, Hillenaar T, Thomas A, Kooijman L, Peters KW, Frizzell R, van der Sluijs P, and Braakman. I. 2021. Co-translational folding of the first transmembrane domain of ABC-transporter CFTR is supported by assembly with the first cytosolic domain. J. Mol. Biol. 433: 166955.
 
99. Haq I, Althaus M, Gardner A, Yeoh H, Joshi U, Saint-Criq V, Verdon B, Townshend J, O'Brien C, Ben-Hamida M, Thomas M, Bourke S, van der Sluijs P, Braakman I, Ward C, Gray M, and Brodlie M. 2020. Clinical and molecular characterisation of the R751L-CFTR mutation. Am. J. Physiol. 320: L288-L300.
 
98. Armengoud J, Delaunay-Moisan, Jean-Yves Thuret, Eelco van Anken...van der Sluijs P, Vicenza E. 2020. Importance of naturally attenuated SARS-CoV-2 in the fight against COVID-19.. Environ Microbiol. 2020 Apr 28. doi: 10.1111/1462-2920.15039.
 
97. Schildknegt D, Lodder N, Pandey A, Egmond M, Pena F, Braakman I, and van der Sluijs P. 2019. The role of the CNPY proteins in secretion. Protein Sci. 28: 1276-1289.
 
96. van Willigen M, Vonk A, Kruisselbrink E, Kleizen B, van der Ent C, Egmond M, de Jonge H, Braakman I, Beekman J, van der Sluijs P. (2019). Folding-function relationship of the most common Cystic-Fibrosis-causing conductance mutants. Life Sci Alliance, Jan 18;2(1). pii: e201800172. doi: 10.26508/lsa.201800172. Print 2019 Feb.
 
95. Nag S, Rani S, Bissig C, Arora P, Azevedo C, Saiardi A, van der Sluijs P, Delevoye C, van Niel G, Raposo G and Rao Gangi Setty S. 2018. Rab4A regulates the sub-domain organization of sorting endosomes and pathways to melanosomes. J. Cell Sci. doi: 10.1242/jcs.216226.
 
94. Joshi U, Joseline A. Houwman JA and van der Sluijs P. 2018. Lysosomes nor mice move forward without Borcs7. Trends in Cell Biol.28: 761-763.
 
93. Bin NR, Ke Ma, Tien CW, Wang S, Zhu D, Park S, Turlova E, Sugita K, Shirakawa R, van der Sluijs P, Horiuchi H, Sun HS, Monnier P, Gaisano H, and Sugita S. 2018. Munc13-4 is a major Ca2+ sensor for cytotoxic granule exocytosis in NK cells. J. Immunol. 201: 700-713.
 
92. Dhekne HS, Pylypenko O, Overeem AW, Ferreira RJ, Zibouche M, van der Velde KJ, Rings EHHM, Posovszky C, van der Sluijs P , Swertz MA,  Houdusse A, van IJzendoorn SCD. 2018. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum Mutat. 2018 Mar;39(3):333-344.
 
91. Jonker CTH, Galmes R, Veenendaal T, ten Brink C, van de Welle REN, Liv N, de Rooij J, Peden A, van der Sluijs P, Mardant C, and Klumperman J. 2018. Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions, Nature Comm. 9, doi:10.1038/s41467-018-03226-8
 
90. Chehab T, Criado Santos N, Holthenrich A, Koerdt SN, Disse J, Schuberth C, Reza Nazmi A., Neeft M, Koch H, Man KNM, Wojcik SM, Martin TFJ, van der Sluijs P, Brose N, Gerke V. 2017. A novel Munc13-4 / S100A10 / Annexin A2 complex promotes Weibel-Palade body exocytosis in endothelial cells. Mol. Biol. Cell. 28:1688-1700
 
89. Ivan V, van der Sluijs P. 2015. Methods for Analysis of AP-3/Rabip' in Regulation of Lysosome Distribution. Methods Mol Biol. 2015;1298:245-58
 
88. Heijnen H, and van der Sluijs P. 2015. Platelet secretory behavior: as diverse as the granules ……or not? J. Thromb. Hemost. 13: 2141-2151.
 
87. Galmes R, ten Brink C, Oorschot V, Veenendaal T, Jonker C, van der Sluijs P, Klumperman J.
2015. Vps33B is required for delivery of endocytosed cargo to lysosomes. Traffic. 16: 1288-1305
 
86. van der Sluijs P. 2015. Encyclopedia of Cell Biology, 1st Edition. Eds Bradshaw R, and Stahl P. Academic Press, ISBN : 9780123944474.
 
85. Hagemeijer MC, Monastyrska I, Griffith J, van der Sluijs P, Voortman J, van Bergen en Henegouwen PM, Vonk AM, Rottier PJ, Reggiori F, de Haan CA. 2014. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology. 458-459:125-135.
 
84. van der Sluijs P, Zibouche M and van Kerkhof P. 2013. Late steps in secretory lysosome exocytosis in cytotoxic lymphocytes, Frontiers Immunol. 18: 359.
 
83. Elstak ED, Neeft M, Nehme NT, Callebaut I, de Saint Basile G, and van der Sluijs P. 2012. Munc13-4*rab27 complex tethers secretory lysosomes at the plasma membrane. Commun. Integr. Biol. 5: 64-67.
 
82. Ivan V, Martinez Sanchez E, Sima L, Oorschot V, Klumperman J, Petrescu SM, and van der Sluijs P. 2012. AP-3 and rabip4’ coordinately regulate spatial distribution of lysosomes. PLoS One. 7: e48142.
 
81. Elstak ED, Neeft M, Nehme NT, Voortman J, Cheung M, Goodarzifard M, Gerritsen HC, van Bergen en Henegouwen PMP, Callebaut, I, de Saint Basile G, van der Sluijs P. 2011. Munc13-4 rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane. Blood. 118: 1570-1578.
 
80. Elstak ED, te Loo M, Tesselaar K,van Kerkhof P, Loeffen J, Grivas D, Hennekam E, Boelens JJ, Hoogerbrugge PM, van der Sluijs P, van Gijn ME, van de Corput L. 2011. A novel Dutch mutation in UNC13D reveals an essential role of the C2B domain in munc13-4 function. Ped. Blood Cancer 58: 598-605.
 
79. Grigoriev I*, Yu KL*, Martinez-Sanchez E*, Serra Marques AA, Keijzer N, Demmers J, Peränen J, Pasterkamp RJ, van der Sluijs P, Hoogenraad CC, and Akhmanova A. 2011. Rab6 and Rab8 cooperate in controlling docking and fusion of exocytotic carriers. Curr. Biol. 21: 967-974 (*equal contributions).
 
78. van der Sluijs P and Hoogenraad CC. 2011. New insights in endosomal dynamics and AMPA receptor trafficking, Semin. Cell Dev. Biol 22: 499-505.
 
77. Elstak EDR, de Jong A, and van der Sluijs P. 2011. A platform for complementation and characterization of familial haemophagocytic lymphohistiocytosis 3 mutations. J. Immunol. Meth. 365: 58-66.
 
76. Fraile-Ramos A, Cepeda V, Elstak EDR, and van der Sluijs P. 2010. Rab27a is required for human cytomegalovirus assembly. PLoS One 5: e15318.
 
75. Martinez Sanchez E, Popa I, Deneka M, van der Sluijs P. 2010.  Role of rab4 in transport through the endosomal system, in press. In: Rab GTPases and Membrane Trafficking", Eds.  Li G, and Segev N, Bentham Science Publishers.
 
74. Hoogenraad CC, and van der Sluijs P. 2010. GRASP-1 regulates endocytic receptor recycling and synaptic plasticity. Commun. Integr. Biol. 3:5, 1-3.
 
73. Ivan V, and van der Sluijs P. 2010. Sorting and transport of melanosomal enzymes between post Golgi compartments. Rom. J. Biochem. 47: 179-191.
 
72. Hoogenraad CC, Popa I, Futai K, Sanchez-Martinez E, Wulf PS, van Vlijmen T, Dortland BR, Oorschot V, Govers R, Monti M, Heck AJR, Sheng M, Klumperman J, Rehmann H, Jaarsma D, Kapitein LC, and van der Sluijs P. 2010. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes. PLoS Biol. 8: e1000283.
 
71. Kloer DP, Rojas R, Ivan V, Moriyama K, van Vlijmen T, Ghirlando R, van der Sluijs P, Hurley JH and Bonifacino JS. 2009. Assembly of the biogenesis of lysosome-related organelles complex-3 (BLOC-3) and its interaction with Rab9. J. Biol. Chem. 285: 7794-8004.
 
70. Savelkoul PJ, De Mattia F, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, Deen PM. 2009. R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat. 10: 681-693.
 
69. van Vlijmen* T, Rojas* R, Mardones G, Mohammed S, Heck AJR, Raposo G, van der Sluijs P and Bonifacino JS. 2008. Regulation of retromer recruitment to endosomes by sequential action of rab5 and rab7. (* denotes equal contributions). J. Cell Biol.183: 513-526.
 
68. van Balkom BWM, Boone M, Hendriks G, Kamsteeg EJ, van der Voorde A, van Herp F, van der Sluijs P, and Deen PMT. 2009. LIP5 is involved in Aquaporin-2 water channel degradation through a direct interaction with the proximal region of its C-terminal tail. J. Am. Soc. Nephrol. 20: 990-1001.
 
67. van Vlijmen T, Vleugel M, Evers N, Mohammed S, Wulf P, Heck AJR, Hoogenraad C, and van der Sluijs P. 2008. A previously uncharacterised residue in the rab3 switch I region is involved in the interaction with novel rab3 binding protein Zwint-I. FEBS lett. 582: 2838-2842.
 
66. Fila C, Metz C, and van der Sluijs P. 2008. Juglone inactivates cysteine-rich proteins required for progression through mitosis. J. Biol. Chem. 283: 21714-21724.
 
65. Ahmed BA, Jeffus BC, Bukhari SI, Harney JT, Unal R, Lupashin VV, van der Sluijs P, Kilic F. Serotonin transamidates rab4 and facilitates its binding to the C terminus of serotonin transporter. 2008. J Biol. Chem. 283: 9388-9398.
 
64. van der Sluijs P, Neeft M, van Vlijmen T, Elstak E, and Wieffer M. 2008. Methods for analysis of rab27a/munc13-4 in secretory lysosome release in haematopoietic cells. Meth Enzymol. 438: 185-201.
 
63. Kamsteeg EJ, Savelkoul PJ, Hendriks G, Konings IB, Nivillac NM, Lagendijk AK, van der Sluijs P, Deen PM. 2008. Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflugers Arch. 455: 1041-1054.
 
62. Linder MD, Uronen RL, Vuori MH, van der Sluijs P, Peränen J, and Ikonen E. 2006. Rab8-dependent recycling promotes endosomal cholesterol removal in normal and sphingolipidosis cells. Mol. Biol. Cell. 18, 47-56.
 
61. Kamsteeg EJ, Hendriks G, Konings IBM, Oorschot V, van der Sluijs P, Klumperman J, and Deen PMT. 2006. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc. Natl. Acad. Sci. USA. 103, 18344-18349.
 
60. de Mattia F, Savelkoul PJM, Kamsteeg, EJ, Konings IBM, van der Sluijs P, Mallmann R, Oksche A, and Deen PMT. 2005. Lack of arginine vasopressin-induced phosphorylation of Aquaporin-2 mutant AQP2-R254L explains dominant Nephrogenic Diabetes Insipidus. J. Am. Soc. Nephrol. 16, 2872-2880.
 
59. Popa I, Deneka M, and van der Sluijs P. 2005. Expression and properties of the Rab4, Rabaptin-5alpha, AP-1 complex in endosomal recycling. Methods Enzymol. 403, 526-540.
 
58. Romijn EP, Christis C, Wieffer M, Gouw JW, Fullaondo A, van der Sluijs P, Braakman I, and Heck AJR. 2005. Expression clustering reveals detailed co-expression patterns of  functionally related proteins during B cell differentiation  A proteomics study using a combination of 1D-LC-MS/MS and SILAC. Mol. Cell Proteom. 4, 1297-1310.
 
57. Neeft M, Wieffer M, de Jong AS, Negroiu G, Metz C, van Loon A, Krijgsveld J, Griffith J, Wulffraat N, Koch H, Heck A, Brose N, Kleijmeer M, and van der Sluijs P. 2004. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in haematopoietic cells. Mol. Biol. Cell 15, 731-741.
 
56. de Mattia F, Savelkoul PJM, Bichet, D, Kamsteeg, EJ, Konings IBM, Marr, N, Arthus MF, Lonergan MF, van Os, CH, van der Sluijs P, Robertson G, and Deen PMT. 2004. A novel mechanism in recessive Nephrogenic Diabetes Insipidus: wild-type Aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum. Mol. Genet. 13, 3045-3056.
 
55. de Graaf P, van Dijken RAJ, Zwart W.T. Deneka M, Schulz TKF, Geijsen N, Coffer PJ, Gadella BM, Verkleij AJ, van der Sluijs P, and van Bergen en Henegouwen PMP. 2004. Phosphatidylinositol-4-OHkinase? binds to and is critical for rab11-association with the Golgi complex. Mol. Biol. Cell 15, 2038-2047.
 
54. Roberts M, Woods AJ, van der Sluijs P, and Norman JC. 2004. PKB/Akt acts via GSK-3 to regulate recycling of avb3 and a5b1 integrins. Mol. Cell Biol. 24, 1505-1515.
 
53. Hendriks G, Koudijs M, van Balkom BWM, Oorschot V, Klumperman J, Deen PMT, and van der Sluijs P. 2004. Glycosylation is essential for cell surface expression of the water channel aquaporin-2, but not for its tetramerization in the endoplasmic reticulum. J. Biol. Chem. 279, 2975-2983.
 
52. Deneka M*, Fouraux MA*, Ivan V*, van der Heijden A, Raymackers J, van Suylekom D, van Venrooij WJ, van der Sluijs P, and Pruijn GJM. 2004 rabip4' is an effector of rab5 and rab4 and regulates transport through early endosomes. Mol. Biol. Cell 15, 611-624 (*Denotes equal contributions).
 
51. Deneka M, Neeft M, Popa I, van Oort M, Sprong H, Oorschot V, Klumperman J, Schu P, and van der Sluijs P. 2003. rabaptin-5?/rabaptin-4 serves as a linker between rab4 and g1-adaptin in membrane recycling from endosomes. EMBO J. 22, 2645-2657.
 
50. Sprong H, Degroote S, Nilsson T, Kawakita M, Ishida N, van der Sluijs P, and van Meer G. 2003. Association of the UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol. Biol. Cell 14, 3482-3493.
 
49. Deneka M, Neeft M. and van der Sluijs P. 2003. The rabGTPase switch in membrane dynamics. 2002. CRC Crit. Rev. Biochem. Mol. Biol. 38, 121-142.
 
48. van Balkom BWM, van Raak M, Breton S, Pastor-Soler N, Bouley R, van der Sluijs P, Brown D, and Deen PMT. 2003. Hypertonicity is involved in redirecting the aquaporin-2 water channel into the basolateral, instead of the apical, plasma membrane of renal epithelial cells. J. Biol. Chem. 278, 1101-1107.
 
47. van Balkom BWM, Savekoul PJM, Markovich D, Hofman E, Nielsen S, van der Sluijs P, and Deen PMT. 2002. The role of putative phosphorylation sites in the targeting of the aquaporin water channel. J. Biol. Chem. 277, 41473-41479.
 
46. Nellist M, Goedbloed MA, de Winter C, Verhaaf B, Jankie A, Reuser AJJ, van den Ouweland AMW, van der Sluijs P, and Halley DJJ. 2002. Identification and characterization of the interaction between 14-3-3? and the tuberin-hamartin complex. J. Biol. Chem. 277, 39417-39424.
 
45. Mohrmann K, Gerez L, Oorschot V, Klumperman J, and van der Sluijs P. 2002. A cytoplasm-membrane cycle is essential for the function of rab4. J. Biol. Chem. 277, 32029-32035.
 
44. Mohrmann K, Leijendekker R, Gerez L, and van der Sluijs P. 2002. Rab4 regulates transport to the apical plasma membrane in Madin-Darby Canine Kidney cells. J. Biol. Chem. 277: 10474-10481.
 
43. Govers R, van der Sluijs P, Donselaar E, Slot JW, and Rabelink TJ. 2002. Endothelial nitric oxide synthase and its negative regulator caveolin-1 localize to distinct perinulear organelles. J. Histochem. Cytochem. 50: 779-788.
 
42. Deneka M, and van der Sluijs P. 2002. Bifunctional rab effectors regulate communication between early endosomal membrane domains. Nature Cell Biol. 4, E32-E35.
 
41. Sprong H, Hirabayashi Y, Westerink B, Oorschot V, Klumperman J, van der Sluijs P*, and van Meer G*. 2001. Ceramide glucosyltransferase is required in sorting tyrosinase from the Golgi complex to melanosomes. J. Cell Biol. 155: 369-379. (*Denotes equal contributions)
 
40. Roberts M, Barry S, Woods A, van der Sluijs P, and Norman J. 2001. Rab4-dependent recycling of avb3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr. Biol.11: 1392-1402.
 
39. de Wit H, Lichtenstein Y, Kelly R, Geuze HJ, Klumperman J, and van der Sluijs P. 2001. Rab4 enhances synaptic vesicle formation from early endosomes in PC12 cells. Mol. Biol. Cell 12: 3703-3715.
 
38. Sprong H, van der Sluijs P, and van Meer G. 2001. How proteins move lipids and how lipids move proteins. Nature Revs. Mol. Cell Biol. 2: 504-514.
 
37. Deneka M, Negroiu G, and van der Sluijs P. 2001. Pigmentation defects uncover a new function for rabs in organelle transport: rab27a in organelle motility. ELSO Gazette #4, on line journal.
 
36. van der Sluijs P, Mohrmann K, Deneka M, and Jongeneelen M. 2000. Expression and properties of rab4 and its effector rabaptin-4 in endocytic recycling. Meth. Enzymol. 329: 111-119.
 
35. Gerez L, Mohrmann K, van Raak M, Lu KP, and van der Sluijs P. 2000. Rab4 is associated with the peptidyl prolyl isomerase Pin1 in the cytoplasm during mitosis. Mol. Biol. Cell 11: 2201-2211.
 
34. Nagelkerken B, van Anken E, Mohrmann K, Gerez L, van Raak M, van Uden N, Holthuizen J, Pelkmans L, and van der Sluijs P. 2000. Cloning and characterization of a specific effector of rab4. Biochem. J., 346: 593-601.
 
33. Scheper W, Zwart R, van der Sluijs P, Annaert W, van Gool WA, and Baas, F. 2000. Alzheimer's PS1 is a putative membrane receptor for rab GDP dissociation inhibitor. Hum. Mol. Gen. 9: 303-310.
 
32. Sprong H, van Meer G, and van der Sluijs P. 1999. Galactosylcerobroside synthase. Meth. Enzymol. 311: 59-73.
 
31. Nellist M, Slegtenhorst M, van den Ouweland A, Halley D, and van der Sluijs P. 1999. Hamartin, the TSC1 gene product, is restricted to large protein complexes containing tuberin, the product of the TSC2 gene. J. Biol. Chem. 274: 35647-35652.
 
30. de Wit H, Lichtenstein Y, Kelly R, van der Sluijs P, and Klumperman J. 1999. Synaptic vesicle recycling from endosomes in PC12 cells. Mol. Biol. Cell 10: 4163-4176.
 
29. van der Sluijs P, and Gerez, L. 1999. Rab GTPases as regulators of transport through endosomes. Protoplasma 210: 1-10.
 
28. Mohrmann K, and van der Sluijs P. 1999. Regulation of membrane transport through the endocytic pathway by rab GTPases. Mol. Membr. Biol. 16: 81-88.
 
27. Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J, Halley D, and van der Sluijs P. 1998. Interactions between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Gen. 7: 1053-1057.
 
26. Sprong H, Kruithof B, Leijendekker R, Slot JW, Van Meer G, and van der Sluijs P. 1998. UDP-Galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem. 273: 25880-25888.
 
25. Mulders SM, Bichet DG, Rijs JPL, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker RLL, van der Sluijs P, van Os CH, and Deen PMT.1998. An aquaporin-2 water channel mutant which causes autosomal nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest. 102: 57-66.
 
24. Chavrier P, van der Sluijs P, Nagelkerken B, and Gorvel JP. 1997. The small GTPases rab5 and rab4 regulate early endocytic dynamics. Cytometry 29: 41-49.
 
23. Nagelkerken B, Mohrmann K, Gerez L, Van Raak M, Leijendekker R, and van der Sluijs P. 1997. A novel epitope tag for the detection of rab GTPases. Electrophoresis 18: 2694-2698.
 
22. Bottger G, Nagelkerken B, and van der Sluijs P. 1996. Rab4 and rab7 define distinct, nonoverlapping endosomal compartments as revealed by a novel epitope tag antibody. J. Biol. Chem. 271: 29191-29197.
 
21. Elgersma Y, Vos A, van den Berg M, Roermund CWT, van der Sluijs P, Distel B, and Tabak HF. 1996. Analysis of the carboxyterminal peroxisomal targeting signal in a homologous context in Saccharomyces cerevisiae. J. Biol. Chem. 271: 26375-26382.
 
20. Daro E, van der Sluijs P, Galli T, and Mellman I. 1996. Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling. Proc. Natl. Acad. Sci. USA. 93: 9559-9564.
 
19. van der Sluijs P. 1994. The small GTPase rab4 and membrane transport. In: GTPase controlled molecular machines. Corda D, Hamm H, Luini R, eds. Ares Serono Symposia Publications, 271-283.
 
18. van der Sluijs P, Hull M, and Mellman I. 1993. The rab4 gene product is required for early endosome sorting. In: Molecular mechanisms of membrane transport. Morré DJ, Bergeron JJ, and Howell KM, eds. NATO-ASI series, Springer Verlag, 399-402.
 
17. van der Sluijs P, Hull M, Webster P, Male P, Goud B, and Mellman I. 1992. The small GTP binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70: 729-740.
 
16. van der Sluijs P, Hull M, Huber L, Male P, Goud B, and Mellman I. 1992. Reversible phosphorylation-dephosphorylation determines the localization of rab4 during the cell cycle. EMBO J. 11: 4379-4389.
 
15. van der Sluijs P, Hull M, Zahraoui A, Tavitian A, Goud B, and Mellman I. 1991. The small GTP-binding protein rab4 is associated with early endosomes. Proc. Natl. Acad. Sci. USA. 88: 6313-6317.
 
14. van der Sluijs P, Bennett MK, Anthony C, Simons K, and Kreis TE. 1990. Binding of exocytic vtransport vesicles from MDCK cells to microtubules in vitro. J. Cell Sci. 95: 545-553.
 
13. Meijer DKF, and van der Sluijs P. 1989. Binding of drugs to ?1-acid glycoprotein and its desialylated form. Influence on hepatic disposition an implications for drug targeting to the liver. Progr. Clin. Biol. Res. 300: 143-167.
 
12. van der Sluijs P, and Meijer DKF. 1991. Limitations on the specificity of targeting asialoglycoprotein conjugates to the liver. In: Targeted diagnosis of liver diseases: cell surface receptors and directed agents. Wu, GY and C H. Wu, eds, Marcel Dekker Inc, NY 1991, 235-264.
 
11. Meijer DKF, and van der Sluijs P. 1989. Covalent and noncovalent binding of drugs: implications for hepatic clearance, storage and cell-specific drug delivery. Pharm Res. 6: 105-118.
 
10. van der Sluijs P. 1988. De verwerking van covalent en non covalent aan glycoproteinen gebonden geneesmiddelen door de lever. Pharm. Weekbl. 123: 425-428.
 
9. van der Sluijs P. 1988. Hepatic disposition of glycoproteins and associated drugs. Pharm. Weekbl. Sci. Ed. 10: 134-136.
 
8. van der Sluijs P, Braakman I, Meijer DKF, and Groothuis GMM. 1988. Heterogeneous acinar localization of the asialoglycoprotein internalization system in rat hepatocytes. Hepatology 8: 1521-1529.
 
7. van der Sluijs P. 1987. Hepatic disposition of glycoproteins and associated drugs. PhD Thesis.
 
6. Meijer DKF, and van der Sluijs P. 1987. The influence of binding to albumin and ?1-acid glycoprotein on the clearance of drugs by the liver. Pharm Weekbl, Sci Ed. 9: 65-74.
 
5. van der Sluijs P, Spanjer HH, and Meijer DKF. 1987. Hepatic disposition of cationic drugs bound to asialoorosomucoid: lack of co-endocytosis and evidence for intrahepatic dissociation. J. Pharmacol. Exp. Ther. 240: 668-673.
 
4. van der Sluijs P, Postema B, and Meijer DKF. 1987. Lactosylation of albumin reduces the uptake rate of dibromosulphthalein in perfused liver, and dissociation rate from albumin in vitro. Hepatology 7: 688-695.
 
3. van der Sluijs P, Bootsma HP, Postema B, Moolenaar F, and Meijer DKF. 1986. Drug targeting to the liver with lactosylated albumins: does the glycoprotein target the drug or is the drug targeting the glycoprotein. Hepatology 6: 723-728.
 
2. van der Sluijs P, and Meijer DKF. 1985. Binding of drugs with a quaternary ammonium group to ?1-acid glycoprotein and asialo ?1-acid glycoprotein. J. Pharmacol. Exp. Ther. 234: 703-707.
 
1. van der Sluijs P, Oosting R, Weitering JG, Hardonk MJ, and Meijer DKF. 1985. Biliary excretion of FITC metabolites after administration of FITC labeled asialoorosomucoid as a measure of lysosomal proteolysis. Biochem. Pharmacol. 34: 1399-1405.