Dr. Pablo Mosteiro Romero

Sjoerd Groenmangebouw
Padualaan 14
Kamer C122
3584 CH Utrecht

Dr. Pablo Mosteiro Romero

Assistant Professor
Methodology and Statistics
p.j.mosteiroromero@uu.nl

Full list of publications here

 

 

Publications

2025

Scholarly publications

Mosteiro Romero, P., & Blasi, D. (2025). Word boundaries and the morphology-syntax trade-off. In S. Yagi, S. Yagi, M. Sawalha, B. A. Shawar, A. T. AlShdaifat, N. Abbas, & Organizers (Eds.), Proceedings of the New Horizons in Computational Linguistics for Religious Texts (pp. 86-93). Association for Computational Linguistics (ACL). https://aclanthology.org/2025.clrel-1.9/
https://research-portal.uu.nl/ws/files/255693888/2025.clrel-1.9.pdf
Rijcken, E., Zervanou, K., Mosteiro, P., Scheepers, F., Spruit, M., & Kaymak, U. (2025). Machine learning vs. rule-based methods for document classification of electronic health records within mental health care: A systematic literature review. Natural Language Processing, 10, Article 100129. https://doi.org/10.1016/j.nlp.2025.100129
https://research-portal.uu.nl/ws/files/252554600/1-s2.0-S2949719125000056-main.pdf

2024

Scholarly publications

Sogancioglu, G., Mosteiro Romero, P., Salah, A., Scheepers, F. E., & Kaya, H. (2024). Fairness in AI-Based Mental Health: Clinician Perspectives and Bias Mitigation. Proceedings of the Seventh AAAI/ACM Conference on AI, Ethics, and Society, 7, 1390-1400. https://ojs.aaai.org/index.php/AIES/article/view/31732
Quantmeyer, V., Mosteiro Romero, P., & Gatt, A. (2024). How and where does CLIP process negation? In ALVR 2024 (pp. 59-72). Association for Computational Linguistics. https://aclanthology.org/2024.alvr-1.5
https://research-portal.uu.nl/ws/files/237165271/2024.alvr-1.5.pdf
Sarhan, I., Toth, B., Mosteiro, P., & Wang, S. (2024). TaxoCritic: Exploring Credit Assignment in Taxonomy Induction with Multi-Critic Reinforcement Learning. In G. Serasset, H. G. Oliveira, & G. V. Oleskeviciene (Eds.), Proceedings of the Workshop on DLnLD 2024: Deep Learning and Linked Data at LREC-COLING 2024 - Workshop Proceedings (pp. 14-30). (Proceedings of the Workshop on DLnLD 2024: Deep Learning and Linked Data at LREC-COLING 2024 - Workshop Proceedings). European Language Resources Association (ELRA). https://aclanthology.org/2024.dlnld-1.2
https://research-portal.uu.nl/ws/files/227691204/2024.dlnld-1.2.pdf
Rijcken, E., Zervanou, K., Mosteiro Romero, P., Scheepers, F. E., Spruit, M., & Kaymak, U. (2024). Topic Specificity: a Descriptive Metric for Algorithm Selection and Finding the Right Number of Topics. Natural Language Processing, 8, Article 100082. https://doi.org/10.1016/j.nlp.2024.100082
https://research-portal.uu.nl/ws/files/228389412/1-s2.0-S294971912400030X-main.pdf
Grotenhuis, Z., Mosteiro Romero, P., & Leeuwenberg, A. J. M. (2024). Modest performance of text mining to extract health outcomes may be almost sufficient for high-quality prognostic model development. Computers in Biology and Medicine, 170, Article 108014. https://doi.org/10.1016/j.compbiomed.2024.108014
https://dspace.library.uu.nl/bitstream/handle/1874/435643/1-s2.0-S0010482524000982-main.pdf?sequence=1

2023

Scholarly publications

Bagheri, A., Giachanou, A., Mosteiro Romero, P., & Verberne, S. (2023). Natural Language Processing and Text Mining (Turning Unstructured Data into Structured). In F. Asselbergs, S. Denaxas, D. Oberski, & J. Moore (Eds.), Clinical Applications of Artificial Intelligence in Real-World Data (1 ed., pp. 69-93). Springer. https://doi.org/10.1007/978-3-031-36678-9_5
https://dspace.library.uu.nl/bitstream/handle/1874/436378/978-3-031-36678-9_5.pdf?sequence=1
Ito, T., Fang, Q., Mosteiro Romero, P., Gatt, A., & van Deemter, K. (2023). Challenges in Reproducing Human Evaluation Results for Role-Oriented Dialogue Summarization. In The 3rd Workshop on Human Evaluation of NLP Systems (HumEval’23) Association for Computational Linguistics. https://aclanthology.org/2023.humeval-1.9
https://dspace.library.uu.nl/bitstream/handle/1874/436320/2023.humeval-1.9.pdf?sequence=1
Belz, A., Thomson, C., Reiter, E., Abercrombie, G., Alonso-Moral, J. M., Arvan, M., Cheung, J., Cieliebak, M., Clark, E., Deemter, K. V., Dinkar, T., Dušek, O., Eger, S., Fang, Q., Gatt, A., Gkatzia, D., González-Corbelle, J., Hovy, D., Hürlimann, M., ... Yang, D. (2023). Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP. In The Fourth Workshop on Insights from Negative Results in NLP (pp. 1-10). Association for Computational Linguistics. https://aclanthology.org/2023.insights-1.1
https://dspace.library.uu.nl/bitstream/handle/1874/429997/2023.insights-1.1.pdf?sequence=1
Rijcken, E., Scheepers, F., Zervanou, K., Spruit, M., Mosteiro Romero, P., & Kaymak, U. (2023). Towards Interpreting Topic Models with ChatGPT. In The 20th World Congress of the International Fuzzy Systems Association (IFSA 2023) (pp. 269-275). International Fuzzy Systems Association.
https://dspace.library.uu.nl/bitstream/handle/1874/452617/5862c343-2137-4110-8cde-ed67e9f9a756.pdf?sequence=1
van Buchem, M. M., 't Hart, H., Mosteiro Romero, P., Kant, I. M. J., & Bauer, M. P. (2023). Diagnosis Classification in the Emergency Room Using Natural Language Processing. In Caring is Sharing – Exploiting the Value in Data for Health and Innovation (pp. 815 - 816). (Studies in Health Technology and Informatics; Vol. 302). IOS Press. https://doi.org/10.3233/SHTI230273
https://dspace.library.uu.nl/bitstream/handle/1874/428676/SHTI_302_SHTI230273.pdf?sequence=1

2022

Scholarly publications

Rijcken, E., Zervanou, K., Spruit, M., Mosteiro Romero, P., Scheepers, F. E., & Kaymak, U. (2022). Exploring Embedding Spaces for more Coherent Topic Modeling in Electronic Health Records. In IEEE International Conference on Systems, Man, and Cybernetics (pp. 2669-2674). (Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics; Vol. 2022-October). IEEE. https://doi.org/10.1109/SMC53654.2022.9945594
https://dspace.library.uu.nl/bitstream/handle/1874/431740/Exploring_Embedding_Spaces_for_more_Coherent_Topic_Modeling_in_Electronic_Health_Records.pdf?sequence=1
Sarhan, I., Mosteiro Romero, P., & Spruit, M. (2022). UU-Tax at SemEval-2022 Task 3: Improving the generalizability of language models for taxonomy classification through data augmentation. In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022) (pp. 271-281). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.semeval-1.35
https://dspace.library.uu.nl/bitstream/handle/1874/423204/2022.semeval_1.35.pdf?sequence=1
Mosteiro Romero, P., Kuiper, J., Masthoff, J., Scheepers, F. E., & Spruit, M. (2022). Bias Discovery in Machine Learning Models for Mental Health. Information, 13(5), 1-15. Article 237. https://doi.org/10.3390/info13050237
https://dspace.library.uu.nl/bitstream/handle/1874/420513/information_13_00237_v2.pdf?sequence=1
Rijcken, E., Kaymak, U., Scheepers, F. E., Mosteiro Romero, P., Zervanou, K., & Spruit, M. (2022). Topic Modeling for Interpretable Text Classification From EHRs. Frontiers in Big Data, 5, 1-11. Article 846930. https://doi.org/10.3389/fdata.2022.846930
https://dspace.library.uu.nl/bitstream/handle/1874/420583/fdata_05_846930.pdf?sequence=1
Borger, T., Mosteiro Romero, P., Kaya, H., Rijcken, E., Salah, A., Scheepers, F., & Spruit, M. (2022). Federated learning for violence incident prediction in a simulated cross-institutional psychiatric setting. Expert Systems with Applications, 199, 1-9. Article 116720. https://doi.org/10.1016/j.eswa.2022.116720
https://dspace.library.uu.nl/bitstream/handle/1874/420387/1_s2.0_S0957417422001944_main.pdf?sequence=1

2021

Scholarly publications

Rijcken, E., Scheepers, F. E., Mosteiro Romero, P., Zervanou, K., Spruit, M., & Kaymak, U. (2021). A Comparative Study of Fuzzy Topic Models and LDA in terms of Interpretability. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (SSCI 2021) (pp. 1-8). IEEE. https://doi.org/10.1109/SSCI50451.2021.9660139
https://research-portal.uu.nl/ws/files/233446214/A_Comparative_Study_of_Fuzzy_Topic_Models_and_LDA_in_terms_of_Interpretability.pdf
Mosteiro Romero, P., Rijcken, E., Zervanou, K., Kaymak, U., Scheepers, F. E., & Spruit, M. (2021). Machine Learning for Violence Risk Assessment Using Dutch Clinical Notes. Journal of Artificial Intelligence for Medical Sciences, 2( 1-2), 44-54. https://doi.org/10.2991/jaims.d.210225.001
https://dspace.library.uu.nl/bitstream/handle/1874/412240/125953465.pdf?sequence=1

2020

Scholarly publications

Mosteiro Romero, P. J., Rijcken, E., Zervanou, K., Kaymak, U., Scheepers, F., & Spruit, M. (2020). Making sense of violence risk predictions using clinical notes. In Z. Huang, S. Siuly, H. Wang, R. Zhou, & Y. Zhang (Eds.), Health Information Science: 9th International Conference, HIS 2020, Amsterdam, The Netherlands, October 20–23, 2020, Proceedings (pp. 3-14). (Lecture Notes in Computer Science; Vol. 12435). Springer. https://doi.org/10.1007/978-3-030-61951-0_1
https://dspace.library.uu.nl/bitstream/handle/1874/414646/Mosteiro2020_Chapter_MakingSenseOfViolenceRiskPredi.pdf?sequence=1