S. Dirksen, P. Finke, M. Genzel, Memorization with neural nets: going beyond the worst case, arXiv:2310.00327
S. Dirksen, J. Maly, Tuning-free one-bit covariance estimation using data-driven dithering, arXiv:2307.12613
Journal publications
S. Dirksen, S. Mendelson, A. Stollenwerk, Fast metric embedding into the Hamming cube, SIAM Journal on Computing, vol. 53.2 (2024), pp. 315-345
T. Yang, J. Maly, S. Dirksen, G. Caire, Plug-in channel estimation with dithered quantized signals in spatially non-stationary massive MIMO systems, IEEE Transactions on Communications, vol. 72.1 (2024), pp. 387-402
S. Dirksen, M. Genzel, L. Jacques, A. Stollenwerk, The separation capacity of random neural networks, Journal of Machine Learning Research, vol 23.309 (2022), pp. 1–47
S. Dirksen, J. Maly, H. Rauhut, Covariance estimation under one-bit quantization, Annals of Statistics, vol. 50.6 (2022), pp. 3538–3562
S. Dirksen, S. Mendelson, A. Stollenwerk, Sharp estimates on random hyperplane tessellations, SIAM Journal on Mathematics of Data Science, vol. 4.4 (2022), pp. 1396-1419
S. Dirksen, S. Mendelson, Robust one-bit compressed sensing with partial circulant matrices, Annals of Applied Probability, vol. 33.3 (2023), pp. 1874-1903
S. Veldkamp, K. Whan, S. Dirksen, M. Schmeits, Statistical post-processing of wind speed forecasts using convolutional neural networks, Monthly Weather Review, vol. 149.4 (2021), pp. 1141–1152
S. Brugiapaglia, S. Dirksen, H. Jung, H. Rauhut, Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs, Applied and Computational Harmonic Analysis, vol. 53 (2021), pp. 231-269
S. Dirksen, S. Mendelson, Non-Gaussian hyperplane tessellations and robust one-bit compressed sensing, Journal of the European Mathematical Society, vol. 23.9 (2021), pp. 2913–2947
S. Dirksen, H. Jung, H. Rauhut, One-bit compressed sensing with partial Gaussian circulant matrices, Information and Inference, vol. 9.3 (2020), pp. 601–626
S. Dirksen, I. Yaroslavtsev, Lq-valued Burkholder-Rosenthal inequalities and sharp estimates for stochastic integrals, Proceedings of the London Mathematical Society, vol. 119.6 (2019), pp. 1633-1693
S. Dirksen, T. Ullrich, Gelfand numbers related to structured sparsity and Besov space embeddings with small mixed smoothness, Journal of Complexity, vol. 48 (2018), pp. 69-102
S. Dirksen, A. Stollenwerk, Fast binary embeddings with Gaussian circulant matrices: improved bounds, Discrete and Computational Geometry, vol. 60.3 (2018), pp. 599-626
S. Dirksen, G. Lecué, H. Rauhut, On the gap between RIP properties and sparse recovery conditions, IEEE Transactions on Information Theory, vol 64.8 (2018), pp. 5478 - 5487
U. Ayaz, S. Dirksen, H. Rauhut, Uniform recovery of fusion frame structured sparse signals, Applied and Computational Harmonic Analysis, vol. 41.2 (2016), pp. 341-361
S. Dirksen, Dimensionality reduction with subgaussian matrices: a unified theory, Foundations of Computational Mathematics, vol. 16.5 (2016), pp. 1367-1396
J. Bourgain, S. Dirksen, J. Nelson, Toward a unified theory of sparse dimensionality reduction in Euclidean space, Geometric and Functional Analysis, vol. 25.4 (2015), pp. 1009-1088
S. Dirksen, Tail bounds via generic chaining, Electronic Journal of Probability, vol. 20.53 (2015), pp. 1-29
S. Dirksen, Weak-type interpolation for noncommutative maximal operators, Journal of Operator Theory, vol. 73.2 (2015), pp. 515-532
S. Dirksen, Noncommutative Boyd interpolation theorems, Transactions of the American Mathematical Society, vol. 367 (2015), pp. 4079-4110
S. Dirksen, Itô isomorphisms for Lp-valued Poisson stochastic integrals, Annals of Probability, vol. 42 (2014), pp. 2595-2643
S. Dirksen, J. Maas, J. van Neerven, Poisson stochastic integration in Banach spaces, Electronic Journal of Probability, vol. 18 (2013), pp. 1-28
S. Dirksen, É. Ricard, Some remarks on noncommutative Khintchine inequalities, Bulletin of the London Mathematical Society, vol. 54.3 (2013), pp. 618-624
S. Dirksen, B. de Pagter, D. Potapov, F. Sukochev, Rosenthal inequalities in noncommutative symmetric spaces, Journal of Functional Analysis, vol. 261 (2011), pp. 2890-2925
S. Dirksen, Noncommutative stochastic integration through decoupling, Journal of Mathematical Analysis and Applications, vol. 370 (2010), pp. 200-223
S. Dirksen, M. de Jeu, M. Wortel, Crossed products of Banach algebras I, to appear in Dissertationes Mathematicae, Arxiv:1104.5151
S. Dirksen, M. de Jeu, M. Wortel, Extending representations of normed algebras in Banach spaces, Contemporary Mathematics, vol. 503 (2009), pp. 53-72
A. Dirksen, S. Dirksen, T.M. Hackeng, P.E. Dawson: Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry, Journal of the American Chemical Society, vol. 128 (2006), iss. 49, pp. 15602-3
Book contributions
J. Maly, T. Yang, S. Dirksen, H. Rauhut, G. Caire, New challenges in covariance estimation: multiple structures and coarse quantization, book chapter in Compressed Sensing in Information Processing, Kutyniok, G., Rauhut, H., Kunsch, R.J. (eds). Applied and Numerical Harmonic Analysis. Birkhäuser, Cham, 2022
S. Dirksen, Quantized Compressed Sensing: A Survey. Invited book chapter in Compressed Sensing and Its Applications, Boche H., Caire G., Calderbank R., Kutyniok G., Mathar R., Petersen P. (eds). Applied and Numerical Harmonic Analysis. Birkhäuser, Cham, 2019.
Conference contributions
S. Dirksen, J. Maly, H. Rauhut, Covariance estimation under one-bit quantization, Proceedings in Applied Mathematics and Mechanics (PAMM) 2021, pp. 1-2
S. Dirksen, M. Iwen, S. Krause-Solberg, J. Maly, Robust one-bit compressed sensing with manifold data, Sampling Theory and Applications (SampTA) 2019, to appear
S. Dirksen, T. Ullrich, Gelfand numbers, structured sparsity and Besov space embeddings with small mixed smoothness, Sampling Theory and Applications (SampTA) 2017, pp. 400-403
S. Dirksen, A. Stollenwerk, Fast binary embeddings with Gaussian circulant matrices, Sampling Theory and Applications (SampTA) 2017, pp. 231-235
J. Bourgain, S. Dirksen, J. Nelson, Toward a unified theory of sparse dimensionality reduction in Euclidean space, Proceedings of the forty-seventh annual ACM symposium on Theory of computing (STOC ’15), pp. 499-508
J. Bourgain, S. Dirksen, J. Nelson, Toward a unified theory of sparse dimensionality reduction in Euclidean space, Signal Processing with Adaptive Sparse Structured Representations (SPARS) 2015
Theses
S. Dirksen, Noncommutative and vector-valued Rosenthal inequalities, PhD. Thesis, Delft University of Technology, 2011
S. Dirksen, Beyond the stars: crossed products of Banach algebras, MSc. Thesis, Utrecht University, 2007