Prof. dr. F.G. (Friedrich) Förster

David de Wiedgebouw
Universiteitsweg 99
Kamer 2.70
3584 CG Utrecht

Prof. dr. F.G. (Friedrich) Förster

Hoogleraar
Structural Biochemistry
030 253 4318
f.g.forster@uu.nl

Complexen die geassocieerd zijn met lipidemembranen en tijdelijke macromoleculaire complexen voeren vele belangrijke cellulaire functies uit, maar hun structuren zijn grotendeels ongrijpbaar omdat dit soort macromoleculen buitengewoon moeilijk te beoordelen zijn vanwege reductionistische benaderingen. We bestuderen dergelijke complexen in situ met behulp van cryo-elektronenmicroscopietechnieken, eiwit-eiwitinteracties en computationele modellering. Met behulp van deze benadering lichten we de moleculaire machine toe die geassocieerd is met het endoplasmatisch reticulum (ER) en mitochondriale membranen. Specifiek zijn we geïnteresseerd in de structurele basis van ER- en mitochondria-geassocieerde eiwitbiogenese en -afbraak en in de ontwikkeling van de vereiste methodologie.

A detailed account of our research can be found on the group homepage:

Cryo-Electron Microscopy - Universiteit Utrecht

Afgesloten projecten
Project
Classification in Cryo-Electron Tomography of Bio-Molecular Complexes 01-10-2017 tot 30-09-2021
Rol
Uitvoerder
Financiering
1e geldstroom ICS
Project
NWO Vici: Molecular structure of mitochondria studied using cryoelectron tomography 01-09-2017 tot 31-08-2022
Algemene projectbeschrijving

De meeste directe manier om structuren van moleculen in onze cellen te bestuderen is door ze sterk vergroot te bekijken. In dit project zal zo met een elektronenmicroscoop
gekeken worden naar mitochondriën, de energiefabrieken van onze cellen. De onderzoeksresultaten kunnen ons meer leren over de moleculaire oorzaken van veroudering.

Rol
Uitvoerder
Financiering
2e geldstroom - NWO NWO Vici
Project
ERC CoG BENDER 01-05-2017 tot 30-04-2022
Algemene projectbeschrijving

The Endoplasmic Reticulum (ER) membrane in all eukaryotic cells has an intricate protein network that facilitates protein biogenesis and homeostasis. The molecular complexity and sophisticated regulation of this machinery favours studying it in its native microenvironment by novel approaches. Cryo-electron tomography (CET) allows 3D imaging of membrane-associated complexes in their native surrounding. Computational analysis of many subtomograms depicting the same type of macromolecule, a technology I pioneered, provides subnanometer resolution insights into different conformations of native complexes.
I propose to leverage CET of cellular and cell-free systems to reveal the molecular details of ER protein biogenesis and homeostasis. In detail, I will study: (a) The structure of the ER translocon, the dynamic gateway for import of nascent proteins into the ER and their maturation. The largest component is the oligosaccharyl transferase complex. (b) Cotranslational ER import, N-glycosylation, chaperone-mediated stabilization and folding as well as oligomerization of established model substrates such as major histocompatibility complex (MHC) class I and II complexes. (c) The degradation of misfolded ER-residing proteins by the cytosolic 26S
proteasome using cytomegalovirus-induced depletion of MHC class I as a model system. (d) The structural changes of the ER-bound translation machinery upon ER stress through IRE1-mediated degradation of mRNA that is specific for ER-targeted proteins. (e) The improved ‘in silico purification’ of different states of
native macromolecules by maximum likelihood subtomogram classification and its application to a-d.
This project will be the blueprint for a new approach to structural biology of membrane-associated processes. It will contribute to our mechanistic understanding of viral immune evasion and glycosylation disorders as well as numerous diseases involving chronic ER stress including diabetes and neurodegenerative diseases.

Rol
Onderzoeksleider
Financiering
3e geldstroom - EU ERC Consolidator Grant
Project
DFG: Computational tools for subtomogram analysis 01-05-2016 tot 30-04-2019
Algemene projectbeschrijving

The aim of this proposal is to develop new computational methodology to enable high-resolution insights into macromolecular complexes from cryo-electron tomographic data. In particular, the proposed algorithms will be key to molecular structural biology in situ, i.e. to study macromolecular complexes in their native settings. The specific aims are:
1. Determination and correction of local beam-induced motion for subtomogram analysis
2. A constrained, regularized Fourier-based iterative tomographic reconstruction algorithm
3. Integration of advanced tomographic reconstruction into subtomogram analysis
4. Documentation of algorithms and appropriate tutorials

Rol
Uitvoerder
Financiering
3e geldstroom - overig Deutsche Forschungsgemeinschaft