Dr. A. (Alvaro) del Pino Gomez

Hans Freudenthalgebouw
Budapestlaan 6
Kamer 816
3584 CD Utrecht

Dr. A. (Alvaro) del Pino Gomez

Universitair docent
Fundamental Mathematics
a.delpinogomez@uu.nl

Publicaties

2021

Wetenschappelijke publicaties

del Pino Gomez, A., & Toussaint, L. (2021). Wrinkling h-principles for integral submanifolds of jet spaces. https://arxiv.org/abs/2112.14720
del Pino Gomez, A., & Martínez Aguinaga, F. J. (2021). Convex integration with avoidance and hyperbolic (4,6) distributions. https://arxiv.org/abs/2112.14632

2020

Wetenschappelijke publicaties

del Pino Gomez, A., & Dahinden, L. (2020). Introducing sub-Riemannian and sub-Finsler Billiards. Discrete and Continuous Dynamical Systems. https://arxiv.org/abs/2011.12136
del Pino Gomez, A., & Shin, T. (2020). Microflexiblity and local integrability of horizontal curves. arXiv.
del Pino Gomez, A., Casals, R., & Presas, F. (2020). Loose Engel structures. Compositio Mathematica, 156(2). https://doi.org/10.1112/S0010437X19007759
https://dspace.library.uu.nl/bitstream/handle/1874/395200/CPP_LooseEngelCompositio.pdf?sequence=2
del Pino Gomez, A., & Vogel, T. (2020). The Engel-Lutz twist and overtwisted Engel structures. Geometry and Topology, 24(5), 2471-2546. https://doi.org/10.2140/gt.2020.24.2471
https://dspace.library.uu.nl/bitstream/handle/1874/407521/del_Pino_Vogel_Engel_Lutz_Twist.pdf?sequence=1

2019

Wetenschappelijke publicaties

del Pino, Á., & Presas, F. (2019). Flexibility for tangent and transverse immersions in Engel manifolds. Revista Matematica Complutense, 32, 215–238. https://doi.org/10.1007/s13163-018-0277-2
https://dspace.library.uu.nl/bitstream/handle/1874/413168/Final_Manuscript_Horizontal_immersions_Engel.pdf?sequence=1
del Pino Gomez, A. (2019). Topological aspects in the study of tangent distributions. (Textos de Matemática. Série B; Vol. 48). Universidade de Coimbra, Departamento de Matemática.

2018

Wetenschappelijke publicaties

Martínez Torres, D., Del Pino, Á., & Presas, F. (2018). THE FOLIATED LEFSCHETZ HYPERPLANE THEOREM. Nagoya Mathematical Journal, 231, 115 - 127. https://doi.org/10.1017/nmj.2017.14
https://dspace.library.uu.nl/bitstream/handle/1874/413174/Final_Manuscript_Nagoya.pdf?sequence=1
del Pino, Á. (2018). On the classification of prolongations up to engel homotopy. Proceedings of the American Mathematical Society, 146, 891-907. https://doi.org/10.1090/proc/13751
https://dspace.library.uu.nl/bitstream/handle/1874/413172/Final_Manuscript_On_the_classification_of_prolongations.pdf?sequence=1
Del Pino, Á., & Presas, F. (2018). The Foliated Weinstein Conjecture. International Mathematics Research Notices, 2018(16), 5148–5177. https://doi.org/10.1093/imrn/rnx059
https://dspace.library.uu.nl/bitstream/handle/1874/413169/Final_Manuscript_The_foliated_Weinstein_conjecture.pdf?sequence=1
del Pino Gomez, A. (2018). Tight contact foliations that can be approximated by overtwisted ones. Archiv der Mathematik, 110(4), 413–419. https://doi.org/10.1007/s00013-017-1139-8
Casals, R., & del Pino Gomez, A. (2018). Classification of Engel knots. Mathematische Annalen, 371(1-2), 391–404. https://doi.org/10.1007/s00208-017-1625-0
https://dspace.library.uu.nl/bitstream/handle/1874/375964/EngelKnots.pdf?sequence=2

2017

Wetenschappelijke publicaties

Casals, R., Pérez, J. L., del Pino, Á., & Presas, F. (2017). Existence h-principle for Engel structures. Inventiones Mathematicae, 210, 417–451. https://doi.org/10.1007/s00222-017-0732-6
https://dspace.library.uu.nl/bitstream/handle/1874/413170/Final_Manuscript_h_Principle_for_Engel_structures.pdf?sequence=1

2016

Wetenschappelijke publicaties

Peralta-Salas, D., del Pino, Á., & Presas, F. (2016). Foliated vector fields without periodic orbits. Israel Journal of Mathematics, 214, 443–462. https://doi.org/10.1007/s11856-016-1336-3
https://dspace.library.uu.nl/bitstream/handle/1874/413173/Final_Manuscript_Foliated_Seifert.pdf?sequence=1

2015

Wetenschappelijke publicaties

Casals, R., Del Pino, Á., & Presas, F. (2015). H-principle for contact foliations. International Mathematics Research Notices, 2015(20), 10176–10207. https://doi.org/10.1093/imrn/rnu275
https://dspace.library.uu.nl/bitstream/handle/1874/413171/Final_Manuscript_h_Principle_for_contact_foliations.pdf?sequence=1