Feng Q Y and Chai L H. The Function Law of Nature: The Research Progress of Maximum Flux Principle (In Chinese). Science & Technology Review, 2007, 25(24): 73-80.
Feng Q Y and Chai L H. Maximum Flux Principle: A New Method of Multivariate Statistical Analysis and Its Applications (In Chinese). Journal of Tianjin University of Technology, 2009, 25(1): 15-19.
Feng Q Y and Chai L H. A New Statistical Dynamic Analysis on Vegetation Patterns in Land Ecosystems. Physica A: Statistical Mechanics and its Applications, 2008, 387(14): 3583-3593. http://dx.doi.org/10.1016/j.physa.2008.01.118
Feng Q Y and Chai L H. Ecosystem Evolution Dynamics Based on Generalized Entropy Principle (In Chinese). Science & Technology Review, 2009, 27(4): 36-41.
Feng Q Y and Chai L H. Riddle of Growth: A Principle for Growth Basing on Non Equilibrium Statistical Mechanics (In Chinese). Science & Technology Review, 2008, 26(4): 80-86.
Wang Y J, Feng Q Y, and Chai L H. A New Model on Origin and Evolution of Biology (In English & Chinese). Agricultural Science & Technology, 2009,10(4):4-7.
Wang Y J, Feng Q Y, Wang H, and Chai L H. New Simulation Method of Ecosystem Evolution Based on Neural Network. In: 6th International Conference on Natural Computation (ICNC’10) Vol.4, Yantai, China: 2010.1749-1753.
Wang Y J, Feng Q Y, and Chai L H. Evolution of Stock Markets Driven by Generalized Entropy Principles (In Chinese). Journal of Tianjin University of Technology, 2009, 25(5): 8-11.
Wang Y J, Feng Q Y, and Chai L H. Structural Evolutions of Stock Markets Controlled by Generalized Entropy Principles of Complex Systems. International Journal of Modern Physics B, 2010, 30(24): 5949-5971.
Wang Y J, Feng Q Y, Chen S J, and Chai L H. Simulation of Transportation-Economic Complex System Based on SOM Network. In: 6th International Conference on Natural Computation (ICNC’10) Vol.4, Yantai, China: 2010.1842-1846.
Feng Q Y, Griffiths F, Parsons N, and Gunn J. An Exploratory Statistical Approach to Depression Pattern Identification. Physica A: Statistical Mechanics and its Applications, 2012, 392(4): 889–901. http://dx.doi.org/10.1016/j.physa.2012.10.025.
Van der Mheen M, Dijkstra H A, Gozolchiani A, Den Toom M, Feng Q, Kurths J, and Hernández-García E. Interaction network based early warning indicators for the Atlantic MOC collapse. Geophysical Research Letters, 2013, 40(11): 2714–2719. https://doi.org/10.1002/grl.50515.
Feng Q Y and Dijkstra H A. Are North Atlantic Multidecadal SST Anomalies Westward Propagating? Geophysical Research Letters, 2014, 41(2): 541–546. https://doi.org/10.1002/2013GL058687.
Feng Q Y, Viebahn J P, and Dijkstra H A. Deep Ocean Early Warning Signals of an Atlantic MOC Collapse. Geophysical Research Letters, 2014, 41(16): 6009–6015. https://doi.org/10.1002/2014GL061019.
Feng Q Y and Dijkstra H A. Climate network stability measures of El Niño variability. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(3): 035801. http://dx.doi.org/10.1063/1.4971784.
van Zalinge B C, Feng Q Y, Aengenheyster M, and Dijkstra H A. On determining the Point of no Return in Climate Change. Earth System Dynamics, 2017, 8: 707-717. https://doi.org/10.5194/esd-8-707-2017.
Feng Q Y and Dijkstra H A. What Have Complex Network Approaches Learned Us About El Niño? In: Tsonis A (eds). Advances in Nonlinear Geosciences, 2018, Springer, Cham. https://doi.org/10.1007/978-3-319-58895-7_7.
Nooteboom P D, Feng Q Y, López C, Hernández-García E, and Dijkstra H A. Using Network Theory and Machine Learning to predict El Niño. Earth System Dynamics, 2018, 9: 969-983. https://doi.org/10.5194/esd-9-969-2018.
Aengenheyster M, Feng Q Y, van der Ploeg F, and Dijkstra H A. Risk and the Point of No Return for Climate Action. Earth System Dynamics, 2018, 9, 1085-1095. https://www.earth-syst-dynam.net/9/1085/2018. Short report on this article is available via https://www.uu.nl/en/news/deadline-for-climate-action-act-decisively-before-2035.
Donges J F, Heitzig J, Beronov B, Wiedermann M, Runge J, Feng Q Y, Tupikina L, Stolbova V, Donner R V, Marwan N, Dijkstra H A, and Kurths J. Unified Functional Network and Nonlinear Time Series Analysis for Complex Systems Science: The pyunicorn Package. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(113101): http://dx.doi.org/10.1063/1.4934554.
Feng Q Y, Vasile R, Segond M, Gozolchiani A, Wang Y, Abel M, Havlin S, Bunde A, and Dijkstra H A. ClimateLearn: A machine-learning approach for climate prediction using network measures. Geoscientific Model Development, 2016: https://doi.org/10.5194/gmd-2015-273.
Rhoen M and Feng Q Y. Why the “Computer says no”: illustrating big data's discrimination risk through complex systems science. International Data Privacy Law, 2018, 8(2): 140–159. https://doi.org/10.1093/idpl/ipy005. Short report on this article is available via https://www.uu.nl/en/news/can-the-gdpr-prevent-that-the-computer-says-no