Dr. Merel Scholman

Assistant Professor
Language and Communication
Language and communication

Publications

2025

Scholarly publications

Mughal, M. H., Dabral, R., Scholman, M., Demberg, V., & Theobalt, C. (2025). Retrieving Semantics from the Deep: an RAG Solution for Gesture Synthesis. (pp. 16578-16588). [Portal]
Scholman, M. C. J., Marchal, M., Brown, A., & Demberg, V. (2025). DiscoNaija: a discourse-annotated parallel Nigerian Pidgin-English corpus. Language Resources and Evaluation. Advance online publication. [DOI]
Scholman, M., & Laparle, S. (2025). Can gestures speak louder than words? The effect of gestural discourse markers on discourse expectations. Discourse Processes, 62(6-7). [DOI] [Portal]
Scholman, M. C. J., Rohde, H., & Demberg, V. (2025). On the Persistence of Discourse Predictions: The Facilitative Effect of Discourse Markers Diminishes in the Presence of Intervening Material. Open Mind, 9, 576-605. [DOI] [Portal]

2024

Scholarly publications

Scholman, M., Rohde, H., & Demberg, V. (2024). Facilitation of lexical form or discourse relation: Evidence from contrastive pairs of discourse markers. Glossa Psycholinguistics, 3(1), Article 25. [DOI] [Portal]
Laparle, S., Ferré, G., & Scholman, M. C. J. (2024). More Than One Gesture but Less Than Two? Inter-stroke Dependencies in Form and Meaning. In V. G. Duffy (Ed.), Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management - 15th International Conference, DHM 2024, Held as Part of the 26th HCI International Conference, HCII 2024, Proceedings (pp. 245-264). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 14711 LNCS). Springer. [DOI] [Portal]
Scholman, M., Saeed, M., & Demberg, V. (2024). Modeling Orthographic Variation Improves NLP Performance for Nigerian Pidgin. In N. Calzolari, M. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 11510–11522). Association for Computational Linguistics. https://aclanthology.org/2024.lrec-main.1006/ [Portal]
Scholman, M., Zikánová, Š., & Demberg, V. (2024). DiscoGeM 2.0: A Parallel Corpus of English, German, French and Czech Implicit Discourse Relations. In N. Calzolari, M. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 4940–4956). Association for Computational Linguistics. https://aclanthology.org/2024.lrec-main.443/ [Portal]
Yung, F., Ahmad, M., Scholman, M., & Demberg, V. (2024). Prompting Implicit Discourse Relation Annotation. In S. Henning, & M. Stede (Eds.), Proceedings of The 18th Linguistic Annotation Workshop (LAW-XVIII) (pp. 150-165). Association for Computational Linguistics. https://aclanthology.org/2024.law-1.15/ [Repository]
Scholman, M., Marchal, M., & Demberg, V. (2024). Connective Comprehension in Adults: The Influence of Lexical Transparency, Frequency, and Individual Differences. Discourse Processes, 61(8), 381-403. [DOI] [Portal]

2023

Scholarly publications

Backus, A., Cohen, M., Cohn, N., Faber, M., Krahmer, E., Laparle, S., Maier, E., van Miltenburg, E., Roelofsen, F., Sciubba, E., Scholman, M., Shterionov, D., Sie, M., Tomas, F., Vanmassenhove, E., Venhuizen, N., & De Vos, C. (2023). Minds Big questions for linguistics in the age of AI. Linguistics in the Netherlands , 40(1), 301-308. [DOI] [Portal]
Yung, F., Scholman, M., Lapshinova-Koltunski, E., Pollkläsener, C., & Demberg, V. (2023). Investigating Explicitation of Discourse Connectives in Translation using Automatic Annotations. In Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue (pp. 21-30). Association for Computational Linguistics. [DOI] [Repository]
Sanders, T., Hoek, J., & Scholman, M. (2023). Experimental studies in discourse. In S. Zufferey, & P. Gygax (Eds.), The Routledge Handbook of Experimental Linguistics (pp. 120-138). Routledge. [DOI] [Portal]
Pyatkin, V., Yung, F., Scholman, M. C. J., Tsarfaty, R., Dagan, I., & Demberg, V. (2023). Design Choices for Crowdsourcing Implicit Discourse Relations: Revealing the Biases Introduced by Task Design. Transactions of the Association for Computational Linguistics, 11, 1014-1032. [DOI] [Repository]
Marchal, M., Scholman, M. C. J., & Demberg, V. (2023). How statistical correlations influence discourse-level processing: Clause type as a cue for discourse relations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1-12. [DOI]
Lin, P.-J., Saeed, M., Chang, E., & Scholman, M. (2023). Low-Resource Cross-Lingual Adaptive Training for Nigerian Pidgin. In Proceedings of the 24th INTERSPEECH conference (Vol. 2023-August, pp. 3954-3958). (Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH). [DOI] [Repository]
Hoek, J., & Scholman, M. (2023). Expressing non-volitional causality in English. In Micro- and Marcro-variation of Causal Clauses: Synchronic and Diachronic Insights (pp. 167–183). John Benjamins. [DOI]

2022

Scholarly publications

Yung, F., Anuranjana, K., Scholman, M., & Demberg, V. (2022). Label distributions help implicit discourse relation classification. In Proceedings of the 3rd Workshop on Computational Approaches to Discourse (pp. 48–53). Association for Computational Linguistics. https://aclanthology.org/2022.codi-1.7/
Scholman, M., Pyatkin, V., Yung, F., Dagan, I., Tsarfaty, R., & Demberg, V. (2022). Design Choices in Crowdsourcing Discourse Relation Annotations: The Effect of Worker Selection and Training. In Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 2148–2156). European Language Resources Association (ELRA). https://aclanthology.org/2022.lrec-1.231/
Scholman, M., Dong, T., Yung, F., & Demberg, V. (2022). DiscoGeM: A Crowdsourced Corpus of Genre-Mixed Implicit Discourse Relations. In Proceedings of the Thirteenth Language Resources and Evaluation Conference (pp. 3281–3290). European Language Resources Association (ELRA). https://aclanthology.org/2022.lrec-1.351/
Marchal, M., Scholman, M., Yung, F., & Demberg, V. (2022). Establishing annotation quality in multi-label annotations. In Proceedings of the 29th International Conference on Computational Linguistic (COLING) (pp. 3659–3668)
Scholman, M., Demberg, V., & Sanders, T. J. M. (2022). Descriptively adequate and cognitively plausible? Validating distinctions between types of coherence relations. Discours, 30, 1-33. [DOI] [Repository]
Scholman, M. C. J., Blything, L., Cain, K., Hoek, J., & Evers-Vermeul, J. (2022). Discourse rules: The effects of clause order principles on the reading process. Language, Cognition and Neuroscience, 37(10), 1277-1291. [DOI] [Repository]
Marchal, M., Scholman, M. C. J., & Demberg, V. (2022). The effect of domain knowledge on discourse relation inferences: Relation marking and interpretation strategies. Dialogue and Discourse, 13(2), 49-78. [DOI] [Repository]

2021

Scholarly publications

Hoek, J., Scholman, M., & Sanders, T. (2021). Is there less agreement when the discourse is underspecified? Annotation of coherence relations in TED talks. In K. De Kuthy, & D. Meurers (Eds.), Proceedings of the First Workshop on Integrating Perspectives on Discourse Annotation (pp. 1–6). Association for Computational Linguistics. https://aclanthology.org/2021.discann-1.1 [Repository]
Marchal, M., Scholman, M., & Demberg, V. (2021). Semi-automatic discourse annotation in a low-resource language: Developing a connective lexicon for Nigerian Pidgin. In 2nd Workshop on Computational Approaches to Discourse, CODI 2021 - Proceedings of the Workshop (pp. 84-94). Association for Computational Linguistics. [DOI]
Scholman, M. C. J., Dong, T., Yung, F., & Demberg, V. (2021). Comparison of methods for explicit discourse connective identification across various domains. In 2nd Workshop on Computational Approaches to Discourse, CODI 2021 - Proceedings of the Workshop (pp. 95-106). Association for Computational Linguistics. [DOI]
Yung, F., Scholman, M. C. J., & Demberg, V. (2021). A practical perspective on connective generation. In 2nd Workshop on Computational Approaches to Discourse, CODI 2021 - Proceedings of the Workshop (pp. 72-83). Association for Computational Linguistics. [DOI]
Sanders, T. J. M., Demberg, V., Hoek, J., Scholman, M. C. J., Scholman, M., Asr, F. T., Zufferey, S., & Evers-Vermeul, J. (2021). Unifying dimensions in coherence relations: How various annotation frameworks are related. Corpus linguistics and Linguistic theory, 17(1), 1-71. [DOI] [Repository]

2020

Scholarly publications

Scholman, M., Demberg, V., & Sanders, T. J. M. (2020). Individual differences in expecting coherence relations: Exploring the variability in sensitivity to contextual signals in discourse. Discourse Processes, 57(10), 844-861. [DOI] [Repository]

2019

Scholarly publications

Scholman, M. (2019). Coherence relations in discourse and cognition: Mapping approaches, annotations, and interpretations. [Doctoral thesis 4 (Research NOT UU / Graduation NOT UU), Saarland University]. Universität des Saarlandes. https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27370
Demberg, V., Scholman, M. C. J., & Asr, F. T. (2019). How compatible are our discourse annotation frameworks? Insights from mapping RST-DT and PDTB annotations. Dialogue and Discourse, 10(1), 87-135. [DOI]
Yung, F., Scholman, M. C. J., & Demberg, V. (2019). Crowdsourcing discourse relation annotations by a two-step connective insertion task. In LAW 2019 - 13th Linguistic Annotation Workshop, Proceedings of the Workshop (pp. 16-25). (LAW 2019 - 13th Linguistic Annotation Workshop, Proceedings of the Workshop). Association for Computational Linguistics. [DOI]

2017

Scholarly publications

Scholman, M. C. J., & Demberg, V. (2017). Crowdsourcing discourse interpretations: On the influence of context and the reliability of a connective insertion task. In LAW 2017 - 11th Linguistic Annotation Workshop, Proceedings of the Workshop (pp. 24-33). (LAW 2017 - 11th Linguistic Annotation Workshop, Proceedings of the Workshop). Association for Computational Linguistics. [DOI]
Scholman, M. C. J., & Demberg, V. (2017). Examples and specifications that prove a point: Identifying elaborative and argumentative discourse relations. Dialogue and Discourse, 8(2), 56-83. [DOI]
Scholman, M. C. J., Rohde, H., & Demberg, V. (2017). “On the one hand” as a cue to anticipate upcoming discourse structure. Journal of Memory and Language, 97, 47-60. [DOI]
Hoek, J., & Scholman, M. (2017). Evaluating discourse annotation: Some recent insights and new approaches. In Proceedings 13th Joint ISO - ACL Workshop on Interoperable Semantic Annotation (isa-13) (pp. 1-13) [Repository]
Evers-Vermeul, J., Hoek, J., & Scholman, M. (2017). On temporality in discourse annotation: Theoretical and practical considerations. Dialogue & DIscourse, 8(2), 1-20. [DOI] [Repository]

2016

Scholarly publications

Rehbein, I., Scholman, M., & Demberg, V. (2016). Annotating discourse relations in spoken language: A comparison of the PDTB and CCR frameworks. In Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016 (pp. 1039-1046). (Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016). European Language Resources Association (ELRA). https://aclanthology.org/L16-1165
Scholman, M., Evers-Vermeul, J., & Sanders, T. J. M. (2016). A step-wise approach to discourse annotation: Towards a reliable categorization of coherence relations. Dialogue & DIscourse, 7(2), 1-28. [DOI] [Repository]