Publications
2022
Scholarly publications
de Koning, M-S. L., van Dorp, P., Assa, S., Hartman, M. H., Voskuil, M., Anthonio, R. L.
, Veen, D., Pundziute-Do Prado, G., Leiner, T., van Goor, H., van der Meer, P., van Veldhuisen, D. J., Nijveldt, R., Lipsic, E., & van der Harst, P. (2022).
Rationale and Design of the Groningen Intervention Study for the Preservation of Cardiac Function with Sodium Thiosulfate after St-segment Elevation Myocardial Infarction (GIPS-IV) trial.
American Heart Journal,
243, 167-176.
https://doi.org/10.1016/j.ahj.2021.08.012Mitratza, M., Goodale, B. M., Shagadatova, A., Kovacevic, V., van de Wijgert, J., Brakenhoff, T. B., Dobson, R., Franks, B.
, Veen, D., Folarin, A. A.
, Stolk, P., Grobbee, J., Cronin, M.
, & Downward, G. S. (2022).
The performance of wearable sensors in the detection of SARS-CoV-2 infection: a systematic review.
The Lancet Digital Health,
4(5), e370-e383.
https://doi.org/10.1016/S2589-7500(22)00019-X2021
Scholarly publications
van de Schoot, R., Winter, S. D., Griffioen, E.
, Grimmelikhuijsen, S., Arts, I., Veen, D., Grandfield, E., & Tummers, L. G. (2021).
The Use of Questionable Research Practices to Survive in Academia Examined With Expert Elicitation, Prior-Data Conflicts, Bayes Factors for Replication Effects, and the Bayes Truth Serum.
Frontiers in Psychology,
12, 1-14. [621547].
https://doi.org/10.3389/fpsyg.2021.621547 de Klerk, M., de Bree, E., Veen, D., & Wijnen, F. (2021).
Speech discrimination in infants at family risk of dyslexia: Group and individual-based analyses.
Journal of Experimental Child Psychology,
206, 1-26. [105066].
https://doi.org/10.1016/j.jecp.2020.105066 2020
Scholarly publications
Schat, E., van de Schoot, R., Kouw, W. M.
, Veen, D., & Mendrik, A. M. (2020).
The data representativeness criterion: Predicting the performance of supervised classification based on data set similarity.
PLoS One,
15(8 August), [e0237009].
https://doi.org/10.1371/journal.pone.0237009 van de Schoot, R., Veen, D., Smeets, L., Winter, S. D., & Depaoli, S. (2020).
A Tutorial on Using The Wambs Checklist to Avoid The Misuse of Bayesian Statistics. In R. van de Schoot, & M. Miočevic (Eds.),
Small sample size solutions: A Guide for Applied Researchers and Practitioners (1 ed., pp. 30-49). Routledge.
https://doi.org/10.4324/9780429273872-4 Veen, D., Egberts, M. R., Van Loey, N. E. E., & van de Schoot, R. (2020).
Expert Elicitation for Latent Growth Curve Models: The Case of Posttraumatic Stress Symptoms Development in Children With Burn Injuries.
Frontiers in Psychology,
11(1197), [1197].
https://doi.org/10.3389/fpsyg.2020.01197 2019
Scholarly publications
NEON study group (2019).
Meta-analysis of the outcomes of treatment of internal carotid artery near occlusion.
British Journal of Surgery,
106(6), 665-671.
https://doi.org/10.1002/bjs.111592018
Scholarly publications
Veen, D., Stoel, D., Schalken, N.
, Mulder, K., & van de Schoot, R. (2018).
Using the Data Agreement Criterion to rank Experts' beliefs.
Entropy,
20(8), [592].
https://doi.org/10.3390/e20080592 Other output
Veen, D. (Author). (2018). Correlational Statistics. Software
Veen, D. (Author). (2018). Sampling Correlations. Software
Veen, D. (Author). (2018). Effects-Coding simulation tool. Software
2017
Scholarly publications
Veen, D., Stoel, D.
, Zondervan - Zwijnenburg, M., & van de Schoot, R. (2017).
Proposal for a five-step method to elicit expert judgment.
Frontiers in Psychology,
8(DEC), [2110].
https://doi.org/10.3389/fpsyg.2017.02110 Other output
Veen, D. (Author). (2017). DAC. Software
2016
Other output
Fox, J. P. (Author), Klotzke, K. (Author), & Veen, D. (Author). (2016). GLMMRR: Generalized Linear Mixed Model (GLMM) for Binary Randomized Response Data: R package. Software
Veen, D., Van Loey, N. E. E., van Baar, A. L., Wijnen, F. N. K., & van de Schoot, A. G. J. (2016). Eliciting and Using Expert Information in Latent Growth Curve Models: Research Plan. Poster session presented at VNOP ISED CAS Research Days, Leiden.
2015
Professional publications