Chair
Logic, the foundations of Mathematics and epistemology
Date of appointment 01.10.1998
Inaugural lecture date 10.03.2000
Profile

Prof.dr. Albert Visser studied applied mathematics at the University of Twente and mathematics at the University of Utrecht. In 1981 he took his Ph.D. on a thesis on Aspects of Diagonalization and Provability (supervisor Prof.dr. D. van Dalen). He was assistant professor at Stanford University and Utrecht University and is now Professor of Logic, the Philosophy of Mathematics and Epistemology at Utrecht University. 

His research centers on arithmetical theories, interpretability, constructivism, foundations of mathematics and topics in the philosophy of language. 

Albert Visser is a member of the Royal Netherlands Academy of Arts and Sciences. He is member of the editorial board of the Notre Dame Journal of Formal Logic. He served in various committees of the Association of Symbolic Logic.


http://www.phil.uu.nl/onderzoek/theoretical.shtml

Gegenereerd op 2017-10-17 09:39:30
All publications
  2015 - Scholarly publications
Visser, A. (2015). Extension and Interpretability. Logic Group preprint series, 329 (38 p.).
Visser, A. & Enayat, A. (2015). New Constructions of Satisfaction Classes. In Theodora Achourioti, Henri Galinon, José Martínez Fernández & Kentaro Fujimoto (Eds.), Unifying the philosophy of truth (pp. 321-335) (15 p.). Dordrecht: Springer.
Visser, A. (2015). On Q. Logic Group preprint series, 330 (27 p.).
Visser, A. (2015). Oracle Bites Theory. In Sujata Gosh & Jakub Szymanik (Eds.), The facts matter - Essays in Logic and Cognition in Honour of Rineke Verbrugge (pp. 133-147). College Publications.
Visser, A. (2015). Sciëntisme, praat me er niet van. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 107 (3), (pp. 251-266) (16 p.).
Visser, A. (2015). The arithmetics of a theory. Notre Dame journal of formal logic, 56 (1), (pp. 81-119) (39 p.).
Visser, A. (2015). Transductions in Arithmetic. Annals of pure and applied logic, 167 (3), (pp. 211-234) (24 p.).
  2015 - Other output
A. Visser (28.05.2015) An explosion of notions
A. Visser (16.12.2015) Big Models
A. Visser (18.04.2015) Brothers, the same but different: Q and PA^-
  2014 - Scholarly publications
Visser, Albert (2014). Interpretability degrees of finitely axiomatized sequential theories. Archive for mathematical logic, 53 (1-2), (pp. 23-42) (20 p.).
Visser, Albert (2014). Jumping in Arithmetic. Logic Group preprint series, 319 (28 p.).
Visser, Albert (2014). Peano Corto and Peano Basso - A Study of local induction in the context of weak theories. Mathematical logic quarterly, 60 (1-2), (pp. 92-117) (26 p.).
Halbach, Volker & Visser, Albert (07.12.2014). Self-reference in Arithmetic I. Review of Symbolic Logic, 7 (4), (pp. 671-691) (20 p.).
Halbach, Volker & Visser, Albert (2014). Self-reference in Arithmetic II. Review of Symbolic Logic, 7 (4), (pp. 692-712) (20 p.).
Visser, Albert & Halbach, Volker (2014). The Henkin Sentence. In María Manzano, Ildikó Sain & Enrique Alonso (Eds.), The Life and Work of Leon Henkin - Essays on his Contributions (pp. 249-263) (14 p.). Birkhaüser.
Visser, Albert (2014). The Henkin Sentence. Logic Group preprint series, 317 (14 p.).
Visser, Albert (2014). The Interpretability of Inconsistency: Feferman's Theorem and Related Results. Logic Group preprint series, 318 (39 p.).
Shavrukov, V. Y. & Visser, Albert (01.01.2014). Uniform density in Lindenbaum Algebras. Notre Dame journal of formal logic, 55 (4), (pp. 569-582) (14 p.).
Visser, Albert & Friedman, Harvey M. (2014). When Bi-Interpretability Implies Synonymy. Logic Group preprint series, 320 (19 p.).
Visser, Albert (2014). Why the theory R is special. In Neil Tennant (Eds.), Foundational Adventures - Essays in honour of Harvey M. Friedman (pp. 7-24) (17 p.). College Publications.
  2014 - Other output
A. Visser (19.07.2014) A theory is restricted if there is a fixed bound on the complexity of its axioms. Kenneth McAloon proves that every restricted arithmetical theory that is consistent with Peano Arithmetic has a model in which the standard natural numbers are definable. In this talk we discuss the idea of generalizing McAloon's result to the class of consistent restricted sequential theories. We only obtain a weaker statement for the more general case. Whether the stronger statement holds remains open. In the talk, we briefly indicate how McAloon's proof works and discuss some immediate generalizations. Then, we will outline the basic ideas behind the proof of the result concerning consistent restricted sequential theories.
A. Visser (27.09.2014) Johan van Benthem and Löb's Logic
A. Visser (23.06.2014) Sequential Theories form a natural class of theories that include set theories and arithmetical theories. Examples of sequential theories are Gödel-Bernays Set Theory, Zermelo-Fraenkel Set Theory, Peano Arithmetic, I\Sigma_1, I\Delta_0, S^1_2, PA^-. Typical for sequential theories is the possibility to develop partial satisfaction predicates for the full language of the given theory. As a consequence, sequential theories are locally essentially reflexive: they prove restricted reflection principles at the cost of choosing deeper definable cuts for stronger reflection principles. In our talk we survey the state of the art concerning sequential theories. We discuss the behavior of these theories w.r.t. mutual interpretability. We explain the Friedman Characterization of interpretability among finitely axiomatized sequential theories and the analogue of the Orey-Hájek Characterization in the infinitely axiomatized case. We describe Friedman's Theorem that interpretations between restricted interpretations can always be replaced by faithful ones. We provide examples of interesting properties of the degrees of interpretability of sequential theories. Finally, we treat some model theory of sequential theories.
A. Visser (24.04.2014) This tutorial will be entirely devoted to the exposition of a single theorem: the Gödel-Hilbert-Bernays-Wang-Henkin-Feferman Theorem. This theorem is a miniaturization of the Model Existence Lemma. Where the Model Existence Lemma tells us that a consistent theory has a model, the GHBWHF Theorem tells us that if a theory U proves the consistency of another theory V, then U interprets V. So the GHBWHF Theorem is something like the Interpretation Existence Lemma. The course will be structured as follows: What is an interpretation? What is a consistency statement? How to get the effect of induction when you don’t have induction. An introduction to the method of definable cuts. Proof of the GHBWHF Theorem. Consequences of the GHBWHF Theorem.
  2013 - Scholarly publications
Visser, A. (2013). What is sequentiality?. In P. Cegielski, C. Charampolas & C. Dimitracopoulos (Eds.), New Studies in Weak Arithmetics (pp. 229-269) (40 p.). Stanford: CSLI Publications and Presses Universitaires du Pole de Recherche et d’Enseingement Sup\'erieur Paris-est, 31e journees sur les arithmetiques faibles.
  2012 - Scholarly publications
Visser, A. (2012). Interpretability degrees of ?nitely axiomatized sequential theories. Logic Group preprint series, 301 (19 p.).
Visser, A. (2012). The second incompleteness theorem and bounded interpretations. Studia logica, 100 (1-2), (pp. 399-418) (20 p.).
Visser, A. (2012). Vaught’s theorem on axiomatizability by a scheme. Bulletin of Symbolic Logic, 18 (3), (pp. 382-402) (21 p.).
Visser, A. (2012). Why the theory R is special. In N. Tennant (Eds.), Foundational Adventures. Essays in honour of Harvey Friedman http://foundationaladventures.com.
  2012 - Other output
A. Visser (25.07.2012) Degrees of Interpretability of Finitely Axiomatized Sequential Theories
A. Visser (01.06.2012) Interpretations and Sequential Theories
A. Visser (30.05.2012) Interpretations and Sequential Theories
A. Visser (27.03.2012) Is there a plausible development of Predicative Frege Arithmetic?
A. Visser (25.07.2012) Peano Downstairs
A. Visser (28.05.2012) Provability Logic and the Arithmetics of a Theory
A. Visser (12.06.2012) Provability Logic and the Arithmetics of a Theory
A. Visser (24.07.2012) Sequential Theories
A. Visser (02.11.2012) Sinn meets Fiction
A. Visser (05.04.2012) Syntax, Sequentiality & Satisfaction
  2011 - Scholarly publications
Visser, A. (2011). Hume's Principle, Beginnings. Review of Symbolic Logic, 4 (1), (pp. 114-129) (15 p.).
Visser, A., de Jongh, D.H.J. & Verbrugge, R. (2011). Intermediate logics and the de Jongh Property. Archive for mathematical logic, 50 (1-2), (pp. 197-213) (16 p.).
Visser, A., Enayat, A. & Schmerl, J. (2011). omega-models of finite set theory. In J. Kennedy & R. Kossak (Eds.), Set Theory, Arithmetic and Foundations of Mathematics: Theorems, Philosophies (pp. 43-65) (23 p.). Cambridge: Cambridge University Press and Association for Symbolic Logic.
Grabmayer, C.A., Leo, J, van Oostrom, V. & Visser, A. (2011). On the Termination of Russell's Description Elimination Algorithm. Review of Symbolic Logic, 4 (3), (pp. 367-393) (27 p.).
  2011 - Other output
A. Visser (20.12.2011) A Tractatus Universe
A. Visser (28.05.2011) Closed fragments of provability logics of constructive arithmetical theories
A. Visser (12.05.2011) Consistency statements and the Wilkie hierarchy
A. Visser (06.08.2011) Coordinate Free Ways of Characterizing Consistency Statements
A. Visser (23.03.2011) Full Satisfaction Classes and Sequential Theories
A. Visser (01.08.2011) Interpretations, a three lecture course (August 1,3,4)
A. Visser (24.01.2011) Sameness of Theories
A. Visser (11.11.2011) The Provability Logic of All Arithmetics of a Theory
  2010 - Scholarly publications
Visser, A., Cacic, V., Pudlak, P., Restall, G. & Urquhart, A. (2010). Decorated linear order types and the theory of concatenation. In F. Delon, U. Kohlenbach, P. Maddy & F. Stephan (Eds.), Logic Colloquium 2007 (pp. 1-13) (13 p.). Cambridge: Cambridge University Press and Association for Symbolic Logic, Logic Colloquium 2007.
  2010 - Popularising publications
Visser, A. (2010). Doortellen. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 102 (03), (pp. 199-201) (2 p.).
  2010 - Other output
A. Visser (26.01.2010) Coordinate Free Ways of Characterizing Consistency Statements
A. Visser (06.02.2010) Intermediate Logics and the de Jongh Property
A. Visser (25.03.2010) On Kreisel's `Solution' of a Problem of Henkin's
A. Visser (26.01.2010) Per Lindström's Metamathemagic
A. Visser (27.05.2010) Sameness of Theories
A. Visser (02.09.2010) The Rex Around the Corner,
  2009 - Scholarly publications
Visser, A. (2009). A Tractatus Universe. In J.W. Klop & V. van Oostrom (Eds.), Liber Amicorum for Roel de Vrijer (pp. 213-225) (13 p.). Amsterdam: xxx.
Visser, A. (2009). Can we make the Second Incompleteness Theorem coordinate free?. Journal of logic and computation
Visser, A. (2009). Cardinal Arithmetic in the Style of Baron von Münchhausen. Review of Symbolic Logic, 2 (3), (pp. 570-589) (20 p.).
van Eijck, J. & Visser, A. (2009). Dynamic Semantics. In E.N. Zalta (Eds.), Stanford Encyclopedia of Philosophy Stanford: Stanford University.
Visser, A. & Visser, A. (2009). Growing commas -a study of sequentiality and concatenation. The Notre Dame Journal of Formal Logic, 50 (1), (pp. 61-85) (25 p.).
Visser, A. (2009). The Predicative Frege Hierarchy. Annals of pure and applied logic, 160 (2), (pp. 129-153) (25 p.).
  2009 - Professional publications
Visser, A., Grabmayer, C.A., Leo, J & van Oostrom, V. (2009). On the termination of Russell's Description. Utrecht: LGPS.
Visser, A. (2009). Why the theory R is special. Utrecht: LGPS.
  2009 - Other output
A. Visser (15.04.2009) Look again: Syntax is no Syntax
A. Visser (08.01.2009) Can we make the Second Incompleteness Theorem Coordinate Free?
A. Visser (16.05.2009) Logic and Admissible Rules of Theories
A. Visser (05.06.2009) Look again: Syntax is no Syntax
A. Visser (08.09.2009) Look again: Syntax is no Syntax
A. Visser (26.06.2009) Sameness of Theories
A. Visser (30.10.2009) The Most General Notion of Interpretation
A. Visser (18.02.2009) Why is 2+3=3+2 and 2 x 3 = 3 x 2?
  2008 - Scholarly publications
Visser, A. (2008). Closed Fragments of Provability Logics of Constructive Theories. Journal of symbolic logic, 73 (3), (pp. 1081-1096) (16 p.).
Visser, A. (2008). Pairs, Sets and Sequences in First Order Theories. Archive of Mathematical Logic, 47 (4), (pp. 299-326) (28 p.).
  2008 - Other output
A. Visser (05.05.2008) Consistency without coding
A. Visser (17.11.2008) Double degree structures of interpretability
A. Visser (15.09.2008) Foundations in the style of Baron von Münchhausen
A. Visser (27.03.2008) Löb's Logic meets the mu-calculus
A. Visser (09.10.2008) Q & R
A. Visser (09.11.2008) The Miraculous Theory Q
  2007 - Scholarly publications
Visser, A. (2007). Closed Fragments of Provability Logics of Constructive Theories. Utrecht: Logic Group Preprint Series 259.
Visser, A., Cacik, V., Pudlak, P., Restall, G. & Urquhart, A. (2007). Decorated Linear Order Types and the Theory of Concatenation. Utrecht: Logic Group Preprint Series 258.
Visser, A. (2007). Growing commas -a study of sequentiality and concatenation. Utrecht: Logic Group Preprint Series 257, submitted to NDJFL.
Visser, A. (2007). Pairs, Sets and Sequences in First Order Theories. Utrecht: Logic Group Preprint Series 251, Accepted for the Archive of Mathematical Logic.
  2007 - Other output
A. Visser (11.06.2007) De Occurrent
A. Visser (16.07.2007) Interpretations in Philosophical Logic
A. Visser (31.03.2007) Kan denken echte dingen maken?
A. Visser (08.11.2007) Provability Logics of Constructive Theories
A. Visser (14.11.2007) Provability Logics of Constructive Theories
A. Visser (14.12.2007) Truth in Metamathematics
  2006 - Scholarly publications
Visser, A. (2006). Categories of Theories and Interpretations. In a. enayat & i. kalantari (Eds.), Logic in Tehran, Proceedings of the workshop and conference on Logic, Algebra and Arithmetic, held October 18--22, 2003 (pp. 77-136) (60 p.). Wellesley, Mass.: ASL, A.K. Peters.
Visser, A. & de Jonge, M. (2006). No Escape from Vardanyan's Theorem. Archive for mathematical logic, 45 (5), (pp. 539-554) (16 p.).
Visser, A. (2006). Predicate logics of constructive arithmetical theories. Journal of symbolic logic, 71 (4), (pp. 1311-1326) (16 p.).
Visser, A. (2006). Problems in the Logic of Provability. In D.M. Gabbay & S.S. Congarov (Eds.), Mathematical Problems from Applied Logic I, Logics for the XXIst Century (pp. 77-136) (60 p.). New York: Springer.
Visser, A. (2006). Prolegomena to the categorical study of interpretations. Utrecht: LGPS, dept. wijsbegeerte UU.
Visser, A. (2006). Propositional logics of closed and open substitutions over Heyting Arithmetic. Notre Dame journal of formal logic, 47 (6), (pp. 299-309) (11 p.).
Visser, A, Stuurman, R & Bierkens, MFP (2006). Real-time forecasting of water table depth and soil moisture profiles. Advances in Water Resources, 29 (5), (pp. 692-706).
Visser, A. (2006). The Predicative Frege Hierarchy. utrecht: LGPS, dept. wijsbegeerte UU.
  2006 - Other output
A. Visser (17.11.2006) Bijdrage aan "Reflectie op Reflectie"
A. Visser (01.01.2006) On comparing the degrees of local and global interpretability
A. Visser (10.02.2006) On comparing the degrees of local and global interpretability
A. Visser (26.05.2006) The Incompleteness Theorems: What They Say and What They do not Say
A. Visser (24.03.2006) Turing Test and Chinese Room
  2005 - Scholarly publications
Visser, A. (2005). Löb's Logic Meets the Mu-Calculus. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk & R. de Vrijer (Eds.), Processes, Terms and Cycles, Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop on the Occasion of His 60th Birthday (pp. 14-25) (12 p.). Berlin: Springer.
Beklemishev, L.D. & Visser, A. (2005). On the limit existence principles in elementary arithmetic and Sigma^0_n-consequences of theories. Annals of pure and applied logic, 136, (pp. 56-74) (19 p.).
Beklemishev, L.D. & Visser, A. (2005). Problems in the Logic of Provability. Utrecht: Logic Group Preprint Series.
Visser, A. (2005). Propositional Logics of Closed and Open Substitutions over Heyting Arithmetic. Utrecht: Logic Group.
Visser, A. (2005). Relative Interpretations in Constructive Arithmetic. Utrecht: Logic Group.
  2005 - Professional publications
van Eijck, J. & Visser, A. (2005). Inzien en Bewijzen. Amsterdam: Amsterdam University Press.
van Eijck, J. & Visser, A. (2005). Inzien en Bewijzen --- Docentenhandleiding. Amsterdam: Amsterdam University Press.
Visser, A. (2005). Kunnen wij elke machine verslaan? Beschouwingen rond Lucas' Argument. Algemeen Nederlands Tijdschrift voor Wijsbegeerte, 97 (1), (pp. 31-59) (29 p.).
  2005 - Other output
A. Visser (13.12.2005) Comparing Theories
A. Visser (16.04.2005) Gödel's Incompleteness Theorems and their Philosophical Implications
A. Visser (16.04.2005) Hilbert's Programma & Gödel's stelling
A. Visser (16.04.2005) Hilbert's Programma & Gödel's stelling
A. Visser (04.02.2005) Inzien en bewijzen
  2004 - Scholarly publications
Joosten, J.J. & Visser, A. (2004). How to derive principles of interpretability logic. A toolkit. In L. Afanasiev & M. Marx (Eds.), Liber Anicorum ter gelegenheid van Dick de Jongh Amsterdam: ILLC.
  2003 - Other output
A. Visser (20.10.2003) Formele Talen
A. Visser (18.10.2003) trustworthy Theories and Faithful Interpretations I
A. Visser (20.10.2003) Trustworthy Theories and Faithful Interpretations II
  2002 - Scholarly publications
Visser, A. & D'Agostino,, G. (2002). Finality regained: a coalgebraic study of Scott-sets and multisets. Archive for mathematical logic, 41 (3), (pp. 267-298) (32 p.).
Visser, A. (2002). Substitutions of E-sentences : explorations between intuitionistic propositional logic and intuitionistic arithmetic. Annals of pure and applied logic, 114 (1-3), (pp. 227-271) (45 p.). special issue for the commemorative symposium, dedicated to Anne Troelstra, guesteditors Jaap van Oosten & Harold Schellinx.
Visser, A. (2002). The Donkey and the Monoid. Dynamic semantics with control elements. Journal of logic, language and information, 11(1), (pp. 107-131) (25 p.).
  2002 - Professional publications
Visser, A. (2002). Faith & Falsity: a study of Faithful Intepretations and false E-sentences. Logic Group preprint series (216) (35 p.).
  2002 - Other output
A. Visser (05.02.2002) Idioms and compositionality
A. Visser (15.03.2002) Interpretability Logic
A. Visser (01.03.2002) Logics for Provability and Interpretability
A. Visser (15.10.2002) On Non-Well-founded Multisets: Scott Collapse in the Multiworld
  2001 - Scholarly publications
Visser, A. (2001). 'Submodels of Kripke Models'. Archive for mathematical logic, 40, (pp. 277-295) (19 p.).
  2001 - Professional publications
Visser, A. (2001). 'On the Ambiguation of Polish Notation, juli 2001'. Artificial intelligence preprint series, 026, (pp. 1-19) (19 p.).
  2001 - Other output
A. Visser (04.09.2001) `Het Deel en het Geheel
A. Visser (25.05.2001) Lewis Carroll en de Taalfilosofie
A. Visser (06.10.2001) 'Modelleren en Verbeteren' Logica in Wijsbegeerte, Wiskunde, Informa\-tica, Linguistiek en Artificiële Intelligentie
A. Visser (27.04.2001) Moet Dat Nou?
A. Visser (26.10.2001) On the Ambiguation of Polish Notation
A. Visser (02.02.2001) The Future of Logic
A. Visser (03.06.2001) 'The' in Context
  2000 - Scholarly publications
Visser, A. (2000). Rules and Arithmetic. Notre Dame journal of formal logic, 40 (1), (pp. 116-140) (24 p.).
Visser, A. & Joosten, J.J. (2000). The interpretability logic of all reasonable arithmetical theories. Erkenntnis, 53 (1-2), (pp. 3-26) (23 p.). guest editor Godehard Link.
  2000 - Other output
A. Visser (02.10.2000) Foundations for Dynamic Semantics?
A. Visser (01.10.2000) Intuitionistic Provability Logic & Leivant's Principle
A. Visser (24.10.2000) Logic in Linguistics 'Why, How & What Can Go Wrong?'
A. Visser (23.10.2000) Types & Tokes, some negative theses
  1999 - Scholarly publications
Joosten, J.J. & Visser, A. (1999). The Interpretability Logic of all Reasonable Arithmetical Theories. (25 p.). Utrecht: Universiteit Utrecht, preprint.
  0 - Other output
A. Visser () Gödel Prize Committee
A. Visser () Logics for Provability and Interpretability
A. Visser () Notre Dame journal of formal logic
A. Visser () Types, Tokens & Occurrences, Some Thoughts on the Nature of Syntactical and Semi-Syntactical Items
^ top
Gegenereerd op 2017-10-17 09:39:34
Additional functions and activities

No information available

Gegenereerd op 2017-10-17 09:39:34
Full name
prof. dr. A. Visser Contact details
Janskerkhof 13

Janskerkhof 13
Room -
3512 BL  UTRECHT
The Netherlands


Janskerkhof 13

Janskerkhof 13
Room 1.09
3512 BL  UTRECHT
The Netherlands


Phone number (department) +31 30 253 1831
Janskerkhof 2

Janskerkhof 2
Room 1.09
3512 BK  UTRECHT
The Netherlands


Phone number (direct) +31 30 253 2173
Phone number (department) +31 30 253 1831
Gegenereerd op 2017-10-17 09:39:34
Last updated 29.06.2016