Prof. dr. A. (Albert) Gatt

Professor
Natural Language Processing
Programme Director
AI & Data Science
a.gatt@uu.nl

For an up-to-date list of publications, see my homepage or my Google Scholar profile.

Publications

2023

Scholarly publications

Cafagna, M., Rojas-Barahona, LM., van Deemter, K., & Gatt, A. (2023). Interpreting Vision and Language Generative Models with Semantic Visual Priors. Frontiers Media. https://doi.org/10.3389/frai.2023.1220476
Gatt, A., Gardent, C., Cripwell, L., Belz, A., Borg, C., Erdem, A., & Erdem, E. (Eds.) (2023). Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023). Association for Computational Linguistics. https://aclanthology.org/volumes/2023.mmnlg-1/
Cripwell, L., Belz, A., Gardent, C., Gatt, A., Borg, C., Borg, M., Judge, J., Lorandi, M., Nikiforovskaya, A., & Soto Martinez, W. (2023). The 2023 WebNLG Shared Task on Low Resource Languages. Overview and Evaluation Results (WebNLG 2023). In Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023) (pp. 55-66). Association for Computational Linguistics. https://aclanthology.org/2023.mmnlg-1.6
Zonneveld, A., Gatt, A., & Calixto, I. (2023). Video-and-Language (VidL) models and their cognitive relevance. In What is next in Multimodal Foundational Models? Proceedings of the ICCV Workshop. https://openaccess.thecvf.com/content/ICCV2023W/MMFM/papers/Zonneveld_Video-and-Language_VidL_models_and_their_cognitive_relevance_ICCVW_2023_paper.pdf
Tagliaferri, C., Axioti, S., Gatt, A., & Paperno, D. (2023). The Scenario Refiner: Grounding subjects in images at the morphological level. Paper presented at LIMO workshop (Linguistic Insights from and for Multimodal Language Processing @KONVENS 2023), Inglostadt, Germany. https://doi.org/10.48550/arXiv.2309.11252
Ito, T., Fang, Q., Mosteiro Romero, P., Gatt, A., & van Deemter, K. (2023). Challenges in Reproducing Human Evaluation Results for Role-Oriented Dialogue Summarization. In The 3rd Workshop on Human Evaluation of NLP Systems (HumEval’23) ACL Anthology. https://aclanthology.org/2023.humeval-1.9
Savary, A., Ben Khelil, C., Ramisch, C., Giouli, V., Barbu Mititelu, V., Hadj Mohamed, N., Krstev, C., Liebeskind, C., Xu, H., Stymne, S., Güngör, T., Pickard, T., Guillaume, B., Bejček, E., Bhatia, A., Candito, M., Gantar, P., Iñurrieta, U., Gatt, A., ... Walsh, A. (2023). PARSEME corpus release 1.3. In A. Bhatia, K. Evang, M. Garcia, V. Giouli, L. Han, & S. Taslimipoor (Eds.), 19th Workshop on Multiword Expressions, MWE 2023 - Proceedings (pp. 24-35). (19th Workshop on Multiword Expressions, MWE 2023 - Proceedings). Association for Computational Linguistics. https://aclanthology.org/2023.mwe-1.6
https://dspace.library.uu.nl/bitstream/handle/1874/430372/2023.mwe-1.6.pdf?sequence=1
Faille, J., Gatt, A., & Gardent, C. (Accepted/In press). Probing Omissions in Transformer-based RDF-to-Text Models. Transactions of the Association for Computational Linguistics.
Kilic, B., Bex, F., & Gatt, A. (2023). Contrast is all you need. In Proceedings of the Sixth Workshop on Automated Semantic Analysis of Information in Legal Text (ASAIL 2023) (Vol. 3441, pp. 72-82). (CEUR Workshop Proceedings). CEUR Workshop Proceedings. https://ceur-ws.org/Vol-3441/paper8.pdf
Mariotti, E., Alonso, J. M., & Gatt, A. (2023). Exploring the Balance between Interpretability and Performance with carefully designed Constrainable Neural Additive Models. Information Fusion, 99, 1-14. Article 101882. https://doi.org/10.1016/j.inffus.2023.101882
Van Zwol, BE., Langezaal, MA., Arts, LPA., Gatt, A., & Van den Broek, EL. (2023). Speech Emotion Recognition using Deep Convolutional Neural Networks improved by the fast Continuous Wavelet Transform. In G. Bekaroo, S. Ben Allouch, & M. Mecella (Eds.), Workshop Proceedings of the 19th International Conference on Intelligent Environments (IE2023) (pp. 63-72). (Ambient Intelligence and Smart Environments; Vol. 32). IOS Press. https://doi.org/10.3233/AISE230012
Schüz, S., Gatt, A., & Zarrieß, S. (2023). Rethinking symbolic and visual context in referring expression generation. Frontiers in Artificial Intelligence, 6, Article 1067125. https://doi.org/10.3389/frai.2023.1067125
Cafagna, M., van Deemter, K., & Gatt, A. (2023). HL Dataset: Grounding High-Level Linguistic Concepts in Vision. In Proceedings of the 16th International Natural Language Generation Conference (INLG'23) Association for Computational Linguistics. https://doi.org/10.48550/arXiv.2302.12189
Calò, E., Levy, J., Gatt, A., & Van Deemter, K. (2023). Is Shortest Always Best? The Role of Brevity in Logic-to-Text Generation. In A. Palmer, & J. Camacho-collados (Eds.), StarSEM 2023 - 12th Joint Conference on Lexical and Computational Semantics, Proceedings of the Conference (pp. 180-192). (Proceedings of the Annual Meeting of the Association for Computational Linguistics). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.starsem-1.17
Belz, A., Thomson, C., Reiter, E., Abercrombie, G., Alonso-Moral, J. M., Arvan, M., Cheung, J., Cieliebak, M., Clark, E., Deemter, K. V., Dinkar, T., Dušek, O., Eger, S., Fang, Q., Gatt, A., Gkatzia, D., González-Corbelle, J., Hovy, D., Hürlimann, M., ... Yang, D. (2023). Missing Information, Unresponsive Authors, Experimental Flaws: The Impossibility of Assessing the Reproducibility of Previous Human Evaluations in NLP. In The Fourth Workshop on Insights from Negative Results in NLP (pp. 1-10). Association for Computational Linguistics. https://aclanthology.org/2023.insights-1.1

2022

Scholarly publications

Lang, I., van der Plas, L., Nissim, M., & Gatt, A. (2022). Visually grounded interpretation of noun-noun compounds in English. In Proceedings of the Workshop on Cognitive Modelling and Computational Linguistics (CMCL'22) (pp. 23–35). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.cmcl-1.3
Parcalabescu, L., Cafagna, M., Muradjan, L., Frank, A., Calixto, I., & Gatt, A. (2022). VALSE: A Task-independent benchmark for Vision and Language models centered on linguistic phenomena. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL'22) (pp. 8253–8280). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.acl-long.567
Cafagna, M., van Deemter, K., & Gatt, A. (2022). Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions. In Proceedings of the First Unimodal and Multimodal Induction of Linguistic Structures Workshop @ EMNLP (UM-IoS'22)
Micallef, K., Gatt, A., Tanti, M., van der Plas, L., & Borg, C. (2022). Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese. In Proceedings of the Third Workshop on Deep Learning for Low Resource NLP (DeepLo'22) (pp. 90-101). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.deeplo-1.10
Paggio, P., Gatt, A., & Tanti, M. (Eds.) (2022). P-VLAM 2022: Proceedings of the 2nd Workshop Workshop on People in Vision, Language And the Mind. European Language Resources Association (ELRA).
https://dspace.library.uu.nl/bitstream/handle/1874/425576/2022.pvlam_1.pdf?sequence=1
Erdem, E., Kuyu, M., Yagcioglu, S., Frank, A., Pârcălăbescu, L., Plank, B., Babii, A., Turuta, O., Erdem, A., Calixto, I., Lloret, E., Elena-Apostol, S., Ciprian-Truică, O., Š, rih, B., Martinčić-Ipšic, S., Berend, G., Gatt, A., & Korvel, G. (2022). Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning. Journal of Artificial Intelligence Research, 73, 1131-1207. https://doi.org/10.1613/jair.1.12918
Mariotti, E., ALonso-Moral, JM., & Gatt, A. (2022). Measuring Model Understandability by means of Shapley Additive Explanations. In Proceedings of the 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) IEEE. https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882773
Tanti, M., Abdilla, S., Muscat, A., Borg, C., Farrugia, RA., & Gatt, A. (2022). Face2Text revisited: Improved data set and baseline results. In Proceedings of the Second Workshop on People in Vision, Language and Mind @ LREC2022 (pp. 41-47). European Language Resources Association (ELRA). https://aclanthology.org/2022.pvlam-1.6
https://dspace.library.uu.nl/bitstream/handle/1874/425950/2022.pvlam_1.6.pdf?sequence=1
Caló, E., van der Werf, E., Gatt, A., & van Deemter, K. (2022). Enhancing and Evaluating the Grammatical Framework Approach to Logic-to-Text Generation. In Proceedings of the 2nd Generation, Evaluation and Metrics Workshop (GEM'22) (pp. 148–171). ACL Anthology. https://doi.org/10.18653/v1/2022.gem-1.13
Vella Critien, J., Gatt, A., & Ellul, J. (2022). Bitcoin price change and trend prediction through Twitter sentiment and data volume. Financial Innovation, 8(45), 1-20. https://doi.org/10.1186/s40854-022-00352-7
van Hofslot, M., Akdag Salah, A., Gatt, A., & Santos, S. (2022). Automatic classification of legal violations in cookie banner texts. In Proceedings of the Natural Legal Language Processing Workshop (NLLP'22)

2021

Scholarly publications

Mariotti, E., Alonso-Moral, JM., & Gatt, A. (2021). Prometheus: Harnessing fuzzy logic and natural language for human-centric artificial intelligence. In XIX Conferencia de la Asociacion Espanola para la Inteligencia Artificial (CAEPIA)
Cafagna, M., van Deemter, K., & Gatt, A. (2021). What Vision-Language Models `See' when they See Scenes. (pp. 1-12). arXiv. https://doi.org/10.48550/arXiv.2109.07301
Faille, J., Gatt, A., & Gardent, C. (2021). Entity-based semantic adequacy for data-to-text generation. In M.-F. Moens, X. Huang, L. Specia, & S. Wen-tau Yih (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2021 (pp. 1530-1540). Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-emnlp.132
Tanti, M., van der Plas, L., Borg, C., & Gatt, A. (2021). On the Language-specificity of Multilingual BERT and the Impact of Fine-tuning. In J. Bastings, Y. Belinkov, E. Dupoux, M. Giulianelli, D. Hupkes, Y. Pinter, & H. Sajjad (Eds.), Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP (pp. 214-227). Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.blackboxnlp-1.15

2020

Scholarly publications

Alonso, J. M., Barro, S., Bugarin, A., van Deemter, K., Gardent, C., Gatt, A., Reiter, E., Sierra, C., Theune, M., & Tintarev, N. (2020). Interactive natural language technology for explainable artificial intelligence. In International Workshop on the Foundations of Trustworthy AI Integrating Learning, Optimization and Reasoning (pp. 63-70)
Assimakopoulos, S., Vella Muskat, R., van der Plas, L., & Gatt, A. (2020). Annotating for Hate Speech: The MaNeCo Corpus and Some Input from Critical Discourse Analysis. In Proceedings of the 12th edition of the Language Resources and Evaluation Conference (LREC'20) European Language Resources Association (ELRA).
de Mattei, L., Cafagna, M., Lai, H., Nissim, M., Dell'Orletta, F., & Gatt, A. (2020). On the interaction of automatic evaluation and task framing in headline style transfer. In Proceedings of the 1st Workshop on Evaluating NLG Evaluation (EvalNLGEval'20)
Bartl, M., Nissim, M., & Gatt, A. (2020). Unmasking Contextual Stereotypes: Measuring and Mitigating BERT's Gender Bias. In Proceedings of the 2nd Workshop on Gender Bias in Natural Language Processing (GeBNLP 2020)
Ruggiero, G., Gatt, A., & Nissim, M. (2020). Datasets and Models for Authorship Attribution on Italian Personal Writings. In Proceedings of the 7th Italian Conference on Computational Linguistics (CLIC-it 2020)
van der Lee, C., Gatt, A., van Miltenburg, E., & Krahmer, E. (2020). Human evaluation of automatically generated text: Current trends and best practice guidelines. Computer Speech and Language. https://doi.org/10.1016/j.csl.2020.101151
van Miltenburg, E., Lu, W.-T., Krahmer, E., Gatt, A., Chen, G., & van Deemter, K. (2020). Gradations of error severity in automatic image description. In Proceedings of the 13th International Conference on Natural Language Genration (INLG'20)

2019

Scholarly publications

Basile, A., Gatt, A., & Nissim, M. (2019). You Write Like You Eat: Stylistic variation as a predictor of social stratification. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL'19)
Jafaritazehjani, S., Gatt, A., & Tanti, M. (2019). Visually Grounded Generation of Entailments from Premises. In Proceedings of the 12th International Conference on Natural Language Generation (INLG'19)
van Gompel, R. P. G., van Deemter, K., Gatt, A., Snoeren, R., & Krahmer, E. (2019). Conceptualisation in reference production: Probabilistic modelling and experimental testing: Probabilistic modeling and experimental testing. Psychological Review, 126(3), 345-373. https://doi.org/10.1037/rev0000138

2018

Scholarly publications

Tanti, M., Gatt, A., & Camilleri, K. (2018). Where to put the image in an image caption generator. Natural Language Engineering. https://doi.org/10.1017/S1351324918000098
Gatt, A., & Krahmer, E. (2018). Survey of the state of the art in Natural Language Generation: Core tasks, applications and evaluation. Journal of Artificial Intelligence Research.

2017

Scholarly publications

Gatt, A., Krahmer, E., van Deemter, K., & van Gompel, R. P. G. (2017). Reference Production as Search: The Impact of Domain Size on the Production of Distinguishing Descriptions. Cognitive Science. https://doi.org/10.1111/cogs.12375
Ravishankar, V., Tyers, F., & Gatt, A. (2017). A Morphological analyser for Maltese. In Proceedings of the 3rd International Conference on Arabic Computational Linguistics (ACLing'17)