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Cortes & Vapnik, 1995,Machine Learning

The machine conceptually implements the following idea: input vec-
tors are non-linearly mapped to a very high-dimension feature space.
In this feature space a linear decision surface is constructed. Special
properties of the decision surface ensures [sic] high generalization
ability of the learning machine.

Building blocks (statistical terminology):

1. The ”kernel trick”
2. Linear classifier / Linear predictor
3. Maximum-margin / Hinge loss with ridge penalty
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Why (not) study SVMs?

7 The absolute overall best

7 Unique in using kernels to be nonlinear

7 Unique in using maximum-margin principle

4 O ten used

4 Sometimes useful

4 Interesting history connecting ML and stats
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[Cortes & Vapnik, 1998]
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So tware
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The spam dataset

𝑥1 𝑥1 𝑥3 … 𝑥58 y
make address all … capitalTotal type

1 0.00 0.64 0.64 … 278.00 spam
2 0.21 0.28 0.50 … 1028.00 spam
3 0.06 0.00 0.71 … 2259.00 spam
4 0.00 0.00 0.00 … 191.00 spam
5 0.00 0.00 0.00 … 191.00 nonspam
6 0.00 0.00 0.00 … 54.00 nonspam
… … … … … … …

4601

0

1000

2000

nonspam spam
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Support vector machine in R with e1071

library(e1071)
data(spam)

idx_train <- sample(1:nrow(spam), size = 4000)

spam_train <- spam[idx_train, ]
spam_test <- spam[-idx_train, ]

fit_spam <- svm(type ~., data = spam_train,
cost = 63, gamma = 0.005, kernel = ”radial”)
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Support vector machine in R with kernlab

library(kernlab)

fit_spam <- ksvm(type ~., data = spam_train,
cost = 63, sigma = 1/(2*0.005), kernel = ”rbfdot”)
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Support vector machine in python with sklearn

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC(gamma=’scale’)
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=’ovr’, degree=3, gamma=’scale’,
kernel=’rbf’, max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001,
verbose=False)
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Practical SVM

• A black-box classification method
• Input: features, target to classify
• Output: predicted label
(Optionally: estimated probability output)

• Tuning parameters:
• kernel type ∈ {linear, radial, poly, …} (default radial)
• cost ∈ (0, ∞) (default 1) or nu ∈ (0, 1) (defaults 0.2, 0.5)
• kernel parameters, e.g. for radial kernel:
gamma ∈ (0, ∞) (default 0.2 or heuristic) or sigma, 𝜎 = 1

2𝛾 > 0.
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Practical SVM: tunability

[Probst et al. 2019, JMLR]
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Practical SVM: tunability

[Probst et al. 2019, JMLR]
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Practical SVM: tunability

[Probst et al. 2019, JMLR]
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Kernels
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I kissed a kernel and I liked it

A kernel is a function of two arguments 𝜅(x, x′) ∈ ℝ, with both x, x′ ∈ 𝒳
We’ll use kernels that are ”similarities”:

• 𝜅(x, x′) = 𝜅(x′, x)
• 𝜅(x, x′) ≥ 0

For example:

Name 𝜅(x, x′) Parameter

Linear x𝑇x′ -
Polynomial (1 + x𝑇x′)𝑑 degree, 𝑑
Radial basis function (RBF) exp (−||x − x′||2𝛾) concentration, 𝛾
…

[Murphy 2012]
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Bonus kernels for your enjoyment

• String kernel:

E.g. comparing DNA sequences

• Fisher kernel: g(x)𝑇I−1g(x′) with g the score function and I the Fisher
information of any likelihood.

e.g. size & shape of atomic structures/objects, …[Le et al. 2018, NIPS]

• Matérn kernel:

𝜅(x, x′) = 𝜎2 21−𝜈

Γ(𝜈) (√2𝜈 ||x−x′||
𝜌 )

𝜈
𝐾𝜈(√2𝜈 ||x−x′||

𝜌 ),

Bessel function 𝐾𝜈 , ”degrees of freedom” 𝜈 > 0, dispersion𝜌 > 0 .

(important in gaussian processes and geostats ”kriging”)

[Murphy 2012]
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Mercer kernels and the kernel trick
Now we now how to compute a ”distance” 𝜅(x, x′) for any pair of observations,
we can construct a matrix of pairwise distances, like this:

”Gram matrix” = K =
⎡
⎢
⎣

𝜅(x1, x1) … 𝜅(x1, x𝑛)
⋮

𝜅(x𝑛, x1) … 𝜅(x𝑛, x𝑛)

⎤
⎥
⎦

A Mercer kernel is any kernel that gives a symmetric positive definite Gram
matrix. This allows the famous kernel trick:

K = U𝑇LU,

where L diagonal matrix of positive eigenvalues. So any element of K is:

K𝑖,𝑗 = (L
1
2U∶,𝑖)𝑇(L

1
2U∶,𝑗) ∶= 𝜙(x𝑖)𝑇𝜙(x𝑗)

Note that 𝜙(x) can be as crazy and nonlinear as we like. For RBF it’s even
infinite-dimensional!
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K𝑖,𝑗 = 𝜙(x𝑖)𝑇𝜙(x𝑗)

Kernel trick
The K matrix (which is easy to compute) turns out to be the pairwise inner
product (similarity) among observations of a high-dimensional nonlinear
transformation 𝜙(x) of the original data (which is difficult or impossible to
compute).

Famous transformation functions 𝜙(x):
Name 𝜅(x, x′) Implicit transformation

Linear x𝑇x′ Nothing!
Polynomial (1 + x𝑇x′)𝑑 Polynomial of order 𝑑
RBF exp (−||x − x′||2𝛾) Weighted average over 𝑛 Gaussian densities

[Murphy 2012]
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Why is the kernel trick important?
• Whenever you see the data x enter into the algorithm only through their
inner products, you can replace these super-easily with inner products of
complex functions, without having to compute those functions (just K).

• Examples:
• SVM (obviously)
• k-NN → kernel nearest neighbors
• Linear regression → kernel regression
• Logistic regression; Any GLM → kernel logistic regression
• PCA → kernel PCA
• k-medioids clustering → kernel k-medioids
• …

• Conclusion: many models can be rewritten as a function of similarities
among observations (”dual” formulation).

• All these models can be kernelized.

[Murphy 2012]
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Artificial data example

We’ll create a highly nonlinear decision surface and see how we do.

𝑓(x) = 𝑤 sin(𝑥1𝑥2)

𝑦 ∼ Bernoulli( 1
1 + exp (𝑓(x)))
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First 10 observations in our data

𝑥1 𝑥2 𝑦
1 0.856 0.885 1
2 -0.313 -0.435 0
3 -0.878 -0.105 0
4 0.344 -0.777 0
5 0.382 0.874 1
6 0.494 0.599 1
7 0.854 0.777 1
8 0.764 -1.085 0
9 -1.276 -1.502 1
10 -2.218 -0.173 1
… … … …

500
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GrammatrixK, radial basis function kernel (RBF)

1 2 3 4 5 6 7 8 9 10

1 1.000
2 0.537 1.000
3 0.451 0.918 1.000
4 0.546 0.896 0.678 1.000
5 0.956 0.644 0.601 0.580 1.000
6 0.958 0.709 0.621 0.682 0.983 1.000
7 0.998 0.568 0.470 0.586 0.955 0.968 1.000
8 0.459 0.729 0.481 0.947 0.451 0.559 0.499 1.000
9 0.129 0.662 0.656 0.533 0.187 0.221 0.143 0.420 1.000
10 0.121 0.478 0.698 0.250 0.208 0.204 0.127 0.143 0.588 1.000
… … … … … … … … … … …
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Original data
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Best possible linear decision rule after transformation
(unknown truth)

0.00

0.25

0.50

0.75

−1.0 −0.5 0.0 0.5 1.0
sin(x.1 * x.2)

de
ns

it
y

y

0

1

alpha

0.5

Bayes accuracy: 0.774
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Projection using radial kernel
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SVM radial basis kernel accuracy: 0.754 (train 𝑛 = 1000)
25 / 39



Projection using radial kernel
• ”Features” are scaled eigenvectors of Gram (similarity) matrix K𝑛×𝑛
• With 𝑛 observations, there are 𝑛 ”features” a ter applying the kernel trick

→ potentially infinite-dimensional feature space...
• But their eigenvalues drop off faster than 𝑛 increases → reduced
effective number of dimensions
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Projection using radial kernel
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• In example, 𝜙5 correlates 0.8 with true linear predictor, sin(𝑥1𝑥2).
• Just the decision rule ”sign(𝜙5)” gives accuracy 0.73.

→ implicit projection of radial kernel closely approximates true
nonlinear decision function!
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Linear classifiers
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[Hastie et al. 2017]
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Classification

Predict 𝑦 ∈ {spam, not spam} → {−1, +1} from 𝑝-vector of features x. Both
are observed from unknown data-generating process 𝐷(x, 𝑦).
Let’s choose some ”hypothesis set” ℱ of possible prediction functions and a
loss indicating how badly members of this set deviate from 𝑦.
Under this loss, the best possible choice from the hypothesis set is

𝑓∗(x) = min
𝑓∈ℱ

𝐸(x,𝑦)∼𝐷 [loss(𝑦, 𝑓(x))]

For regression, the loss is a function of the residual 𝑦 − 𝑓(x). For
classification, we can measure the incorrectness of the prediction as 𝑦𝑓(x).
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Classification, continued

In practice we can’t observe the true ”risk”, 𝑄 ∶= 𝐸(x,𝑦)∼𝐷 [loss(𝑦, 𝑓(x))].
We only observe a sample, 𝑆 = 𝒟𝑛.
We then work with the empirical risk,

𝑄train ∶= ∑
𝑖∈𝑆

loss(𝑦𝑖, 𝑓(x𝑖))

A key problem of ML is that 𝐸𝒟(𝑄train) ≤ 𝑄, i.e. the training loss is optimistic.
This means minimizing 𝑄train to estimate 𝑓 would lead to overfitting.
A common solution is to regularize the objective:

𝑓𝑆(x) = min
𝑓∈ℱ [𝑄train + 𝜆||𝑓||ℱ] ,

where the second term penalizes the ”capacity” of the function 𝑓.
Support vector machines also take this ”loss + penalty” form.

31 / 39



Linear decision boundary

𝑓(x) = x𝑇𝛽 + 𝛽0
Remember: 𝑦𝑓(x) is the ”residual” incorrectness of classifcations
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SVCs, loss + penalty formulation

𝑓𝑆(x) = 𝛽0 + x𝑇𝛽
with

𝛽0, 𝛽 = min
𝛽0,𝛽 [∑

𝑖∈𝑆
(1 − 𝑦𝑖𝑓(x𝑖))+ + 𝜆

2||𝛽||2] ,

where (.)+ gives positive part of input (”relu”). Loss (1 − 𝑦𝑓) is ”hinge loss”:

−4 −3 −2 −1 0 1 2 3 4

Hinge loss

33 / 39



SVC and logistic regression are similar

𝑓𝑆(x) = 𝛽0 + x𝑇𝛽
with

𝛽0, 𝛽 = min
𝛽0,𝛽 [∑

𝑖∈𝑆
(1 + exp[−𝑦𝑖𝑓(x𝑖)]) + 𝜆

2||𝛽||2] ,

Loss (1 + exp(𝑦𝑓)) is ”logistic deviance” loss:

−4 −3 −2 −1 0 1 2 3 4

Hinge loss

Logistic loss
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SVC vs. logistic regression

• Hinge loss gives exact zeroes for all training observations that are
correctly classified by the model;

→ only need to remember observations on or beyond margin, the
”support vectors”.
Some robustness to ”inliers”

• Logistic loss is optimized when 𝑓 gives the log-odds ratio, which can be
converted easily into a probability → ”self-calibrating”

𝑓𝑆(x) 𝑝→ ln [𝑃(𝑦 = +1|x)/𝑃(𝑦 = −1|x)]
(”proper scoring rule”)

• All observations play a role, less computationally efficient prediction, less
sensitive to shi ts in wrong classifications than SVM

[Hastie et al. 2017]
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Kernelized SVC = SVM

𝑓(x𝑖) = 𝛽0 + K𝑖,∶(𝛼 ⊙ y),
where ⊙ is the elementwise (”Hadamard”) product. Objective is then

𝛽0, �̂� = min
𝛽0,𝛼 [∑

𝑖∈𝑆
(1 − 𝑦𝑖𝑓(x𝑖))+ + 𝜆

2𝛼𝑇K𝛼] ,

where 𝛼 is an 𝑛-vector of weights. Notice we only need the Gram matrix K and
the training outcomes y.

Due to the hard break in the hinge loss, most elements of �̂� will equal zero.
Nonzero elt’s of �̂� correspond to training observations that are support vectors.
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Kernel logistic regression: why not

𝑓(x𝑖) = 𝛽0 + K𝑖,∶(𝛼 ⊙ y),

𝛽0, �̂� = min
𝛽0,𝛼 [∑

𝑖∈𝑆
(1 + exp[−𝑦𝑖𝑓(x𝑖)]) + 𝜆

2𝛼𝑇K𝛼] ,
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Support vector machines, classical formulation (SVC)

min
𝛽,𝛽0

||𝛽||

subject to 𝑦𝑖𝑓(x) = 𝑦𝑖(x𝑇𝑖 𝛽 + 𝛽0) ≥ 1, 𝑖 ∈ 𝑆 .
This is the same as maximizing the ”dual”:

max𝛼 [∑
𝑖∈𝑆

𝛼𝑖 − 1
2 ∑

𝑖∈𝑆
∑
𝑖′∈𝑆

𝛼𝑖𝛼𝑖′𝑦𝑖𝑦𝑖′x𝑇𝑖 x𝑖′] ,

subject to 0 < 𝛼1 < 1 and ∑𝑖 𝛼𝑖𝑦𝑖 = 0, where the 𝛼𝑖 are 𝑛 Lagrange
multipliers. This problem can be solved with standard quadratic programming
so tware. We’ll then get

𝛽 = x∑
𝑖∈𝑆

𝛼𝑖𝑦𝑖x𝑖

The important thing to note is that x enters the algorithm only through the
casewise inner product, x𝑇𝑖 x.
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Conclusion

• SVM is still alive and kicking

• SVM needs careful tuning

• Kernels are interesting, especially with structure

• Lots of things besides the hinge loss linear classifier can be kernelized
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