Support vector machines

2019-05-09
Daniel Oberski
Dept. of Methodology \& Statistics
Focus Area Applied Data Science
d.l.oberski@uu.nl

BY SA

Cortes \& Vapnik, 1995, Machine Learning

The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures [sic] high generalization ability of the learning machine.

Building blocks (statistical terminology):

Cortes \& Vapnik, 1995, Machine Learning

The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures [sic] high generalization ability of the learning machine.

Building blocks (statistical terminology):

1. The "kernel trick"

Cortes \& Vapnik, 1995, Machine Learning

The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures [sic] high generalization ability of the learning machine.

Building blocks (statistical terminology):

1. The "kernel trick"
2. Linear classifier / Linear predictor

Cortes \& Vapnik, 1995, Machine Learning

The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures [sic] high generalization ability of the learning machine.

Building blocks (statistical terminology):

1. The "kernel trick"
2. Linear classifier / Linear predictor
3. Maximum-margin / Hinge loss with ridge penalty

Why (not) study SVMs?

\boldsymbol{X} The absolute overall best
X Unique in using kernels to be nonlinear
X Unique in using maximum-margin principle
\checkmark Often used
\checkmark Sometimes useful
\checkmark Interesting history connecting ML and stats

Software

The spam dataset

Support vector machine in R with e1071

```
library(e1071)
data(spam)
idx_train <- sample(1:nrow(spam), size = 4000)
spam_train <- spam[idx_train, ]
spam_test <- spam[-idx_train, ]
fit_spam <- svm(type ~., data = spam_train,
    cost = 63, gamma = 0.005, kernel = "radial")
```

Support vector machine in R with kernlab
library(kernlab)

```
fit_spam <- ksvm(type ~., data = spam_train,
    cost = 63, sigma = 1/(2*0.005), kernel = "rbfdot")
```

Support vector machine in python with sklearn

```
>>> from sklearn import svm
>> \(\mathrm{X}=[[0,0],[1,1]]\)
>>> \(y=[0,1]\)
>>> clf = svm.SVC(gamma='scale')
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale',
    kernel='rbf', max_iter=-1, probability=False,
    random_state=None, shrinking=True, tol=0.001,
    verbose=False)
```


Practical SVM

- A black-box classification method
- Input: features, target to classify
- Output: predicted label (Optionally: estimated probability output)
- Tuning parameters:
- kernel type $\in\{$ linear, radial, poly, ...\} (default radial)
- cost $\in(0, \infty)$ (default 1) or nu $\in(0,1)$ (defaults $0.2,0.5$)
- kernel parameters, e.g. for radial kernel: gamma $\in(0, \infty)$ (default 0.2 or heuristic) or sigma, $\sigma=\frac{1}{2 \gamma}>0$.

Practical SVM: tunability

Figure 2: Boxplots of the tunabilities (AUC) of the different algorithms with respect to optimal defaults. The upper and lower whiskers (upper and lower line of the boxplot rectangle) are in our case defined as the 0.1 and 0.9 quantiles of the tunability scores. The 0.9 quantile indicates how much performance improvement can be expected on at least 10% of datasets. One outlier of glmnet (value 0.5) is not shown.
[Probst et al. 2019, JMLR]

Practical SVM: tunability

| Parameter | Def.P | Def.O | Tun.P | Tun.O | $q_{0.05}$ | $q_{0.95}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| svm | | | 0.056 | 0.042 | | |
| kernel | radial | radial | 0.030 | 0.024 | | |
| cost | 1 | 682.478 | 0.016 | 0.006 | 0.002 | 920.582 |
| gamma | $1 / p$ | 0.005 | 0.030 | 0.022 | 0.003 | 18.195 |
| degree | 3 | 3 | 0.008 | 0.014 | 2 | 4 |

[Probst et al. 2019, JMLR]

Practical SVM: tunability

[Probst et al. 2019, JMLR]

Kernels

Input Space
Feature Space

I kissed a kernel and I liked it

A kernel is a function of two arguments $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathbb{R}$, with both $\mathbf{x}, \mathbf{x}^{\prime} \in \chi$ We'll use kernels that are "similarities":

- $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$
- $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \geq 0$

For example:

Name	$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$	Parameter		
Linear	$\mathbf{x}^{T} \mathbf{x}^{\prime}$	-		
Polynomial	$\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{d}$	degree, d		
Radial basis function (RBF)	$\exp \left(-\left\\|\mathbf{x}-\mathbf{x}^{\prime}\right\\|^{2} \gamma\right)$	concentration, γ		

[Murphy 2012]

Bonus kernels for your enjoyment

E.g. comparing DNA sequences

- Fisher kernel: $\mathbf{g}(\mathbf{x})^{T} \mathbf{I}^{-1} \mathbf{g}\left(\mathbf{x}^{\prime}\right)$ with \mathbf{g} the score function and \mathbf{I} the Fisher information of any likelihood.
e.g. size \& shape of atomic structures/objects, ...[Le et al. 2018, NIPS]
- Matérn kernel:
$K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sigma^{2} \frac{2^{1-v}}{\Gamma(v)}\left(\sqrt{2 v} \frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}{\rho}\right)^{v} K_{v}\left(\sqrt{2 \nu} \frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}{\rho}\right)$,
Bessel function K_{ν}, "degrees of freedom" $v>0$, dispersion $\rho>0$. (important in gaussian processes and geostats "kriging")

Mercer kernels and the kernel trick

Now we now how to compute a "distance" $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ for any pair of observations, we can construct a matrix of pairwise distances, like this:

$$
\text { "Gram matrix" }=\mathbf{K}=\left[\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
& \vdots & \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right]
$$

A Mercer kernel is any kernel that gives a symmetric positive definite Gram matrix. This allows the famous kernel trick:

$$
\mathbf{K}=\mathbf{U}^{T} \mathbf{L} \mathbf{U},
$$

where \mathbf{L} diagonal matrix of positive eigenvalues. So any element of \mathbf{K} is:

$$
\mathbf{K}_{i, j}=\left(\mathbf{L}^{\frac{1}{2}} \mathbf{U}_{:, i}\right)^{T}\left(\mathbf{L}^{\frac{1}{2}} \mathbf{u}_{i, j}\right):=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)
$$

Note that $\phi(\mathbf{x})$ can be as crazy and nonlinear as we like. For RBF it's even infinite-dimensional!

$$
\mathbf{K}_{i, j}=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)
$$

Kernel trick

The \mathbf{K} matrix (which is easy to compute) turns out to be the pairwise inner product (similarity) among observations of a high-dimensional nonlinear transformation $\phi(\mathbf{x})$ of the original data (which is difficult or impossible to compute).

Famous transformation functions $\phi(\mathbf{x})$:

Name	$k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$	Implicit transformation		
Linear	$\mathbf{x}^{T} \mathbf{x}^{\prime}$	Nothing!		
Polynomial	$\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{d}$	Polynomial of order d		
RBF	$\exp \left(-\left\\|\mathbf{x}-\mathbf{x}^{\prime}\right\\|^{2} \gamma\right)$	Weighted average over n Gaussian densities		

[Murphy 2012]

Why is the kernel trick important?

- Whenever you see the data \mathbf{x} enter into the algorithm only through their inner products, you can replace these super-easily with inner products of complex functions, without having to compute those functions (just K).
- Examples:
- SVM (obviously)
- k-NN \rightarrow kernel nearest neighbors
- Linear regression \rightarrow kernel regression
- Logistic regression; Any GLM \rightarrow kernel logistic regression
- PCA \rightarrow kernel PCA
- k-medioids clustering \rightarrow kernel k-medioids
- ...
- Conclusion: many models can be rewritten as a function of similarities among observations ("dual" formulation).
- All these models can be kernelized.

Artificial data example

We'll create a highly nonlinear decision surface and see how we do.

$$
\begin{gathered}
f(\mathbf{x})=w \sin \left(x_{1} x_{2}\right) \\
y \sim \operatorname{Bernoulli}\left(\frac{1}{1+\exp (f(\mathbf{x}))}\right)
\end{gathered}
$$

First 10 observations in our data

	x_{1}	x_{2}	y
1	0.856	0.885	1
2	-0.313	-0.435	0
3	-0.878	-0.105	0
4	0.344	-0.777	0
5	0.382	0.874	1
6	0.494	0.599	1
7	0.854	0.777	1
8	0.764	-1.085	0
9	-1.276	-1.502	1
10	-2.218	-0.173	1
\ldots	\ldots	\ldots	\ldots
500			

Gram matrix K, radial basis function kernel (RBF)

	1	2	3	4	5	6	7	8	9	$1(1)$
1	1.000									
2	0.537	1.000								
3	0.451	0.918	1.000							
4	0.546	0.896	0.678	1.000						
5	0.956	0.644	0.601	0.580	1.000					
6	0.958	0.709	0.621	0.682	0.983	1.000				
7	0.998	0.568	0.470	0.586	0.955	0.968	1.000			
8	0.459	0.729	0.481	0.947	0.451	0.559	0.499	1.000		
9	0.129	0.662	0.656	0.533	0.187	0.221	0.143	0.420	1.000	
10	0.121	0.478	0.698	0.250	0.208	0.204	0.127	0.143	0.588	1.00
\ldots	\cdots	\ldots								

Original data

Best possible linear decision rule after transformation (unknown truth)

Bayes accuracy: 0.774

Projection using radial kernel

SVM radial basis kernel accuracy: 0.754 (train $n=1000$)

Projection using radial kernel

- "Features" are scaled eigenvectors of Gram (similarity) matrix $\mathbf{K}_{n \times n}$
- With n observations, there are n "features" after applying the kernel trick \rightarrow potentially infinite-dimensional feature space...
- But their eigenvalues drop off faster than n increases \rightarrow reduced effective number of dimensions

Projection using radial kernel

- In example, ϕ_{5} correlates 0.8 with true linear predictor, $\sin \left(x_{1} x_{2}\right)$.
- Just the decision rule "sign $\left(\phi_{5}\right)$ " gives accuracy 0.73.
\rightarrow implicit projection of radial kernel closely approximates true nonlinear decision function!

Linear classifiers

[Hastie et al. 2017]

Classification

Predict $y \in\{$ spam, not spam $\} \rightarrow\{-1,+1\}$ from p-vector of features \mathbf{x}. Both are observed from unknown data-generating process $D(\mathbf{x}, y)$.
Let's choose some "hypothesis set" \mathcal{F} of possible prediction functions and a loss indicating how badly members of this set deviate from y.

Under this loss, the best possible choice from the hypothesis set is

$$
\hat{f}^{*}(\mathbf{x})=\min _{f \in \digamma} E_{(\mathbf{x}, y) \sim D}[\operatorname{loss}(y, f(\mathbf{x}))]
$$

For regression, the loss is a function of the residual $y-f(\mathbf{x})$. For classification, we can measure the incorrectness of the prediction as $y f(\mathbf{x})$.

Classification, continued

In practice we can't observe the true "risk", $Q:=E_{(\mathbf{x}, y) \sim D}[\operatorname{loss}(y, f(\mathbf{x}))]$. We only observe a sample, $S=D^{n}$. We then work with the empirical risk,

$$
Q_{\text {train }}:=\sum_{i \in S} \operatorname{loss}\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)
$$

A key problem of ML is that $E_{\mathcal{D}}\left(Q_{\text {train }}\right) \leq Q$, i.e. the training loss is optimistic. This means minimizing $Q_{\text {train }}$ to estimate f would lead to overfitting. A common solution is to regularize the objective:

$$
\hat{f}_{S}(\mathbf{x})=\min _{f \in \digamma}\left[Q_{\text {train }}+\lambda\|f\|_{\sigma}\right]
$$

where the second term penalizes the "capacity" of the function f. Support vector machines also take this "loss + penalty" form.

Linear decision boundary

$$
f(\mathbf{x})=\mathbf{x}^{T} \beta+\beta_{0}
$$

Remember: $y f(\mathbf{x})$ is the "residual" incorrectness of classifcations

SVCs, loss + penalty formulation

$$
\hat{f}_{S}(\mathbf{x})=\hat{\beta}_{0}+\mathbf{x}^{\top} \hat{\beta}
$$

with

$$
\hat{\beta_{0}}, \hat{\beta}=\min _{\beta_{0}, \beta}\left[\sum_{i \in S}\left(1-y_{i} f\left(\mathbf{x}_{i}\right)\right)_{+}+\frac{\lambda}{2}\|\beta\|^{2}\right],
$$

where $(.)_{+}$gives positive part of input ("relu"). Loss $(1-y f)$ is "hinge loss":

SVC and logistic regression are similar

$$
\hat{f}_{S}(\mathbf{x})=\hat{\beta}_{0}+\mathbf{x}^{\top} \hat{\beta}
$$

with

$$
\hat{\beta_{0}}, \hat{\beta}=\min _{\beta_{0}, \beta}\left[\sum_{i \in S}\left(1+\exp \left[-y_{i} f\left(\mathbf{x}_{i}\right)\right]\right)+\frac{\lambda}{2}\|\beta\|^{2}\right],
$$

Loss $(1+\exp (y f))$ is "logistic deviance" loss:

SVC vs. logistic regression

- Hinge loss gives exact zeroes for all training observations that are correctly classified by the model;
\rightarrow only need to remember observations on or beyond margin, the "support vectors".

Some robustness to "inliers"

- Logistic loss is optimized when f gives the log-odds ratio, which can be converted easily into a probability \rightarrow "self-calibrating"
$\hat{f}_{S}(\mathbf{x}) \xrightarrow{P} \ln [P(y=+1 \mid \mathbf{x}) / P(y=-1 \mid \mathbf{x})]$
("proper scoring rule")
- All observations play a role, less computationally efficient prediction, less sensitive to shifts in wrong classifications than SVM

Kernelized SVC = SVM

$$
f\left(\mathbf{x}_{i}\right)=\beta_{0}+\mathbf{K}_{i,:}(\alpha \odot \mathbf{y})
$$

where \odot is the elementwise ("Hadamard") product. Objective is then

$$
\hat{\beta_{0}}, \hat{\alpha}=\min _{\beta_{0}, \alpha}\left[\sum_{i \in S}\left(1-y_{i} f\left(\mathbf{x}_{i}\right)\right)_{+}+\frac{\lambda}{2} \alpha^{T} \boldsymbol{K} \alpha\right],
$$

where α is an n-vector of weights. Notice we only need the Gram matrix \mathbf{K} and the training outcomes \mathbf{y}.

Due to the hard break in the hinge loss, most elements of $\hat{\alpha}$ will equal zero. Nonzero elt's of $\hat{\alpha}$ correspond to training observations that are support vectors.

Kernel logistic regression: why not

$$
\begin{gathered}
f\left(\mathbf{x}_{i}\right)=\beta_{0}+\mathbf{K}_{i ;:}(\alpha \odot \mathbf{y}), \\
\hat{\beta_{0}}, \hat{\alpha}=\min _{\beta_{0}, \alpha}\left[\sum_{i \in S}\left(1+\exp \left[-y_{i} f\left(\mathbf{x}_{i}\right)\right]\right)+\frac{\lambda}{2} \alpha^{T} \mathbf{K} \alpha\right],
\end{gathered}
$$

Support vector machines, classical formulation (SVC)

$$
\min _{\beta, \beta_{0}}\|\beta\|
$$

subject to $y_{i} f(\mathbf{x})=y_{i}\left(\mathbf{x}_{i}^{T} \beta+\beta_{0}\right) \geq 1, i \in S$.
This is the same as maximizing the "dual":

$$
\max _{\alpha}\left[\sum_{i \in S} \alpha_{i}-\frac{1}{2} \sum_{i \in S} \sum_{i^{\prime} \in S} \alpha_{i} \alpha_{i^{\prime}} y_{i} y_{i^{\prime}} \mathbf{x}_{i}^{T} \mathbf{x}_{i^{\prime}}\right]
$$

subject to $0<\alpha_{1}<1$ and $\sum_{i} \alpha_{i} y_{i}=0$, where the α_{i} are n Lagrange multipliers. This problem can be solved with standard quadratic programming software. We'll then get

$$
\beta=\mathbf{x} \sum_{i \in S} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

The important thing to note is that x enters the algorithm only through the casewise inner product, $\mathbf{x}_{i}^{T} \mathbf{x}$.

- SVM is still alive and kicking
- SVM needs careful tuning
- Kernels are interesting, especially with structure
- Lots of things besides the hinge loss linear classifier can be kernelized

