
Support vector machines
2019-05-09
Daniel Oberski
Dept. of Methodology & Statistics
Focus Area Applied Data Science
d.l.oberski@uu.nl

1 / 39

Cortes & Vapnik, 1995,Machine Learning

The machine conceptually implements the following idea: input vec-
tors are non-linearly mapped to a very high-dimension feature space.
In this feature space a linear decision surface is constructed. Special
properties of the decision surface ensures [sic] high generalization
ability of the learning machine.

Building blocks (statistical terminology):

1. The ”kernel trick”
2. Linear classifier / Linear predictor
3. Maximum-margin / Hinge loss with ridge penalty

2 / 39

Cortes & Vapnik, 1995,Machine Learning

The machine conceptually implements the following idea: input vec-
tors are non-linearly mapped to a very high-dimension feature space.
In this feature space a linear decision surface is constructed. Special
properties of the decision surface ensures [sic] high generalization
ability of the learning machine.

Building blocks (statistical terminology):

1. The ”kernel trick”

2. Linear classifier / Linear predictor
3. Maximum-margin / Hinge loss with ridge penalty

2 / 39

Cortes & Vapnik, 1995,Machine Learning

The machine conceptually implements the following idea: input vec-
tors are non-linearly mapped to a very high-dimension feature space.
In this feature space a linear decision surface is constructed. Special
properties of the decision surface ensures [sic] high generalization
ability of the learning machine.

Building blocks (statistical terminology):

1. The ”kernel trick”
2. Linear classifier / Linear predictor

3. Maximum-margin / Hinge loss with ridge penalty

2 / 39

Cortes & Vapnik, 1995,Machine Learning

The machine conceptually implements the following idea: input vec-
tors are non-linearly mapped to a very high-dimension feature space.
In this feature space a linear decision surface is constructed. Spe-
cial properties of the decision surface ensures [sic] high generaliza-
tion ability of the learning machine.

Building blocks (statistical terminology):

1. The ”kernel trick”
2. Linear classifier / Linear predictor
3. Maximum-margin / Hinge loss with ridge penalty

2 / 39

Why (not) study SVMs?

7 The absolute overall best

7 Unique in using kernels to be nonlinear

7 Unique in using maximum-margin principle

4 O ten used

4 Sometimes useful

4 Interesting history connecting ML and stats

3 / 39

[Cortes & Vapnik, 1998]
4 / 39

So tware

5 / 39

The spam dataset

𝑥1 𝑥1 𝑥3 … 𝑥58 y
make address all … capitalTotal type

1 0.00 0.64 0.64 … 278.00 spam
2 0.21 0.28 0.50 … 1028.00 spam
3 0.06 0.00 0.71 … 2259.00 spam
4 0.00 0.00 0.00 … 191.00 spam
5 0.00 0.00 0.00 … 191.00 nonspam
6 0.00 0.00 0.00 … 54.00 nonspam
… … … … … … …

4601

0

1000

2000

nonspam spam
type

co
un

t

6 / 39

Support vector machine in R with e1071

library(e1071)
data(spam)

idx_train <- sample(1:nrow(spam), size = 4000)

spam_train <- spam[idx_train,]
spam_test <- spam[-idx_train,]

fit_spam <- svm(type ~., data = spam_train,
cost = 63, gamma = 0.005, kernel = ”radial”)

7 / 39

Support vector machine in R with kernlab

library(kernlab)

fit_spam <- ksvm(type ~., data = spam_train,
cost = 63, sigma = 1/(2*0.005), kernel = ”rbfdot”)

8 / 39

Support vector machine in python with sklearn

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC(gamma=’scale’)
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

decision_function_shape=’ovr’, degree=3, gamma=’scale’,
kernel=’rbf’, max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001,
verbose=False)

9 / 39

Practical SVM

• A black-box classification method
• Input: features, target to classify
• Output: predicted label
(Optionally: estimated probability output)

• Tuning parameters:
• kernel type ∈ {linear, radial, poly, …} (default radial)
• cost ∈ (0, ∞) (default 1) or nu ∈ (0, 1) (defaults 0.2, 0.5)
• kernel parameters, e.g. for radial kernel:
gamma ∈ (0, ∞) (default 0.2 or heuristic) or sigma, 𝜎 = 1

2𝛾 > 0.

10 / 39

Practical SVM: tunability

[Probst et al. 2019, JMLR]

11 / 39

Practical SVM: tunability

[Probst et al. 2019, JMLR]

12 / 39

Practical SVM: tunability

[Probst et al. 2019, JMLR]
13 / 39

Kernels

14 / 39

I kissed a kernel and I liked it

A kernel is a function of two arguments 𝜅(x, x′) ∈ ℝ, with both x, x′ ∈ 𝒳
We’ll use kernels that are ”similarities”:

• 𝜅(x, x′) = 𝜅(x′, x)
• 𝜅(x, x′) ≥ 0

For example:

Name 𝜅(x, x′) Parameter

Linear x𝑇x′ -
Polynomial (1 + x𝑇x′)𝑑 degree, 𝑑
Radial basis function (RBF) exp (−||x − x′||2𝛾) concentration, 𝛾
…

[Murphy 2012]

15 / 39

Bonus kernels for your enjoyment

• String kernel:

E.g. comparing DNA sequences

• Fisher kernel: g(x)𝑇I−1g(x′) with g the score function and I the Fisher
information of any likelihood.

e.g. size & shape of atomic structures/objects, …[Le et al. 2018, NIPS]

• Matérn kernel:

𝜅(x, x′) = 𝜎2 21−𝜈

Γ(𝜈) (√2𝜈 ||x−x′||
𝜌)

𝜈
𝐾𝜈(√2𝜈 ||x−x′||

𝜌),

Bessel function 𝐾𝜈 , ”degrees of freedom” 𝜈 > 0, dispersion𝜌 > 0 .

(important in gaussian processes and geostats ”kriging”)

[Murphy 2012]

16 / 39

Mercer kernels and the kernel trick
Now we now how to compute a ”distance” 𝜅(x, x′) for any pair of observations,
we can construct a matrix of pairwise distances, like this:

”Gram matrix” = K =
⎡
⎢
⎣

𝜅(x1, x1) … 𝜅(x1, x𝑛)
⋮

𝜅(x𝑛, x1) … 𝜅(x𝑛, x𝑛)

⎤
⎥
⎦

A Mercer kernel is any kernel that gives a symmetric positive definite Gram
matrix. This allows the famous kernel trick:

K = U𝑇LU,

where L diagonal matrix of positive eigenvalues. So any element of K is:

K𝑖,𝑗 = (L
1
2U∶,𝑖)𝑇(L

1
2U∶,𝑗) ∶= 𝜙(x𝑖)𝑇𝜙(x𝑗)

Note that 𝜙(x) can be as crazy and nonlinear as we like. For RBF it’s even
infinite-dimensional!

17 / 39

K𝑖,𝑗 = 𝜙(x𝑖)𝑇𝜙(x𝑗)

Kernel trick
The K matrix (which is easy to compute) turns out to be the pairwise inner
product (similarity) among observations of a high-dimensional nonlinear
transformation 𝜙(x) of the original data (which is difficult or impossible to
compute).

Famous transformation functions 𝜙(x):
Name 𝜅(x, x′) Implicit transformation

Linear x𝑇x′ Nothing!
Polynomial (1 + x𝑇x′)𝑑 Polynomial of order 𝑑
RBF exp (−||x − x′||2𝛾) Weighted average over 𝑛 Gaussian densities

[Murphy 2012]

18 / 39

Why is the kernel trick important?
• Whenever you see the data x enter into the algorithm only through their
inner products, you can replace these super-easily with inner products of
complex functions, without having to compute those functions (just K).

• Examples:
• SVM (obviously)
• k-NN → kernel nearest neighbors
• Linear regression → kernel regression
• Logistic regression; Any GLM → kernel logistic regression
• PCA → kernel PCA
• k-medioids clustering → kernel k-medioids
• …

• Conclusion: many models can be rewritten as a function of similarities
among observations (”dual” formulation).

• All these models can be kernelized.

[Murphy 2012]
19 / 39

Artificial data example

We’ll create a highly nonlinear decision surface and see how we do.

𝑓(x) = 𝑤 sin(𝑥1𝑥2)

𝑦 ∼ Bernoulli(1
1 + exp (𝑓(x)))

20 / 39

First 10 observations in our data

𝑥1 𝑥2 𝑦
1 0.856 0.885 1
2 -0.313 -0.435 0
3 -0.878 -0.105 0
4 0.344 -0.777 0
5 0.382 0.874 1
6 0.494 0.599 1
7 0.854 0.777 1
8 0.764 -1.085 0
9 -1.276 -1.502 1
10 -2.218 -0.173 1
… … … …

500

21 / 39

GrammatrixK, radial basis function kernel (RBF)

1 2 3 4 5 6 7 8 9 10

1 1.000
2 0.537 1.000
3 0.451 0.918 1.000
4 0.546 0.896 0.678 1.000
5 0.956 0.644 0.601 0.580 1.000
6 0.958 0.709 0.621 0.682 0.983 1.000
7 0.998 0.568 0.470 0.586 0.955 0.968 1.000
8 0.459 0.729 0.481 0.947 0.451 0.559 0.499 1.000
9 0.129 0.662 0.656 0.533 0.187 0.221 0.143 0.420 1.000
10 0.121 0.478 0.698 0.250 0.208 0.204 0.127 0.143 0.588 1.000
… … … … … … … … … … …

22 / 39

Original data

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●
●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2

0

2

−2 0 2
x.1

x.
2

y
●

●

0

1

23 / 39

Best possible linear decision rule after transformation
(unknown truth)

0.00

0.25

0.50

0.75

−1.0 −0.5 0.0 0.5 1.0
sin(x.1 * x.2)

de
ns

it
y

y

0

1

alpha

0.5

Bayes accuracy: 0.774
24 / 39

Projection using radial kernel

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●
●

● ●●
●

● ●●●●

●

●●● ●●●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●

●
●

● ●

● ●●

●

●

●
●

●
●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

● ●●
●

●
●

●
●●●●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●●
●●

●
●

●
●

●● ●
●●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●●●
● ●

●

● ●
●●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●
●

●

●

●
●

●

●
●●

●

●

●

● ●

●●
●

●
● ●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●

● ●

●

●

● ●

●

●
●

●
●

●

●

●

●●
●

●●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

● ●●

●
●

●

●
●●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

● ●●●●

●
●●

●

●

●
●

● ●

●
●

● ●●●
●

●●●● ●●
●

● ●●

●

●

●
●●

●
●

●

●

●●●●
● ●

●

●
●●

●●
●

●
●

●

● ●●●
●

●

●
●

●

●

●

●

●● ●

●●
● ●

●
●
●●

●
●●

●●

●

●
●

●●

●

●●
●

●●●
●●

●

● ●● ●● ●●

●●

●●●
●

●

●

●
●

●●●
●

●
●

●
● ●
●

● ●●
●●

●
●

●

●

●

●

●

●

● ● ●
●●

●

●

● ●●

● ●

●●

●

●●
●●●

● ●
●

●●● ●●

●
●
●●● ●●●

●● ●● ●●

●

●
●

●

●

● ●
● ●

●
●●

●

● ●
●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●
●

●
●●●

●●●
●

●
●

●
●
●●

●●
●● ●●

●

●●

● ●

●
●

●
● ●

●
●● ●

●

● ●●
●

●

●

●

●●
●●

●

●

●

●

●

●●●

●

●●
●● ●● ●●

●
●

●
●

●

●
●

● ●●
●

● ●
● ●

●

●

●●●●
●

●
●

●
●●

●

●
● ●●

●

●
●

●●
● ●

●●
●

●
● ●

●

●
●

●
●●

●
●●

●

●

●
● ●

●
● ●

● ●●●
●

●

●

●

●
●

●
●

● ●
●

●●

●

●

●● ●●
●●

● ●
●

●
●

●
●●

●

● ●●●
●

●
●

●●

●

●

●●

●

● ●

●

●
●
●● ●●

●●
● ●

●
●

●
●●

●

●

●●

● ● ●
● ●

●

●

● ●●
●

●
●●●

●

●

●

●

●

●●

●
●

●
● ●● ●●

●
●

●

● ●●

●●

●

● ●

●

●

● ●
●

●●

●

●

●●

●

●

●●
●

●

●

●●
● ● ●● ●

●

●

●
●

●

●●
●

●
●

●●●
●

●●
●

●
●●●●

● ●●●●●●● ●●●
● ●●●

● ●●●● ●●●
●

●● ●

●
● ●●

●

●●
●

●●●●●
●

●

●●● ●●● ●●
●● ●●● ●

●

●●

●
●● ●

●●
●

●
●

●

●
● ●●● ●●●

●● ●●● ●
●

● ●

●

●

●
●●●

●

●

●
●● ●● ●●

●
● ●●

●●
●●●

● ●
●

●

●●
●● ●

●
●

●
●

●

●
● ●

●
● ●

● ●
● ●● ● ● ●

●
●

●
● ●

●

●
●●●
● ●● ●●● ● ●●
●●

● ●● ●●●●● ●●
●

●●
●● ●

●

●

●
●● ●● ●●

●● ●●
●

● ● ●●●● ●
●

●● ●●
●● ● ●●●●●

●

● ●● ●
● ●●

●●●●
●●● ●●

●

● ●●●●●
●● ●

●●
●● ● ●●

●

●

● ●● ●
●

● ●
●

●●
●

●
●

●
●

● ●● ●
●

●
● ● ●●● ●●●

●
● ●

●
●●

●
●

●● ●

●

●
●

●●
●●

●
●

● ● ●●●●
●

●● ● ●●● ●
●●

●●

●
● ● ●●

●
●

●
●● ●

● ●
●●●

● ●●
● ●●●

●

●

●

●
● ● ●●

●●● ●
●

●

●●●
●●● ●● ●

● ● ●
●● ●●●●

●
●● ● ●●

●●●
● ●●● ●● ●●●●

●
●● ●● ●

●

●
●●

●
●● ●●● ● ●●

●

●● ● ●
●●

● ● ●
● ●

●●
● ●●

●

●●●●
●

●

●

●

●
●● ●

● ●● ●

●

●● ●
●

●
●

●
● ●● ●

●
● ●

●
● ●●

●
● ●● ●●●

●
●● ● ●

●
●●

●

●
●● ●

●

●

●

●
●

●●●

●
●

●●

●
●

●

●

●

● ● ●●●

●
●●

●

●

●
●

●●

●
●

●●●●
●

● ●●●●●
●

● ●●

●

●

●
●●

●
●

●

●

●● ●●
● ●

●

●
●●● ●

●

●
●
●

● ● ●●
●

●

●
●

●

●

●

●

● ●●

● ●
● ●

●
●
●●

●
●●

● ●

●

●
●

● ●

●

● ●
●

● ●●
● ●

●

●●●● ●● ●

●●

● ●●
●

●

●

●
●

●●●
●

●
●

●
●●

●
● ●●

● ●
●

●
●

●

●

●

●

●

●● ●
● ●

●

●

● ● ●

● ●

●●

●

● ●
● ●●

●●
●
●●● ●●

●
●

● ●●● ●●

● ●●● ●●

●

●
●

●

●

● ●
●●

●
●●

●

● ●
●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●
●

●
●●●

●● ●
●

●
●

●
●

●●
●●

● ●● ●
●

● ●

●●

●
●

●
● ●

●
● ●●

●

●● ●
●

●

●

●

●●
●●
●

●

●

●

●

●●●

●

●●
●● ●●●●

●
●

●
●

●

●
●
●●●

●

● ●
●●

●

●

●●●●
●

●
●

●
●●

●

●
● ●●

●

●
●

● ●
● ●

● ●
●

●
●●

●

●
●

●
● ●

●
● ●

●

●

●
●●

●
● ●

● ●● ●
●

●

●

●

●
●

●
●

● ●
●

● ●

●

●

● ●●●
●●

● ●
●

●
●

●
●●

●

●●●●
●

●
●

●●

●

●

● ●

●

●●

●

●
●

● ●● ●
● ●

● ●
●
●

●
●●

●

●

● ●

●● ●
● ●

●

●

● ●●
●

●
●●●

●

●

●

●

●

●●

●
●

●
●●● ●●

●
●

●

● ● ●

●●

●

● ●

●

●

● ●
●

●●

●

●

● ●

●

●

●●
●

●

●

● ●
● ●●● ●

●

●

●
●

●

● ●
●

●
●

●● ●
●

● ●
●

●
● ●●●

● ●● ●●● ●●●●
●

●●●●
●● ●●●●●●

●
●●●

●
●●●

●

● ●
●

●● ●●●
●

●

● ●●● ● ●● ●
●● ● ●● ●

●

● ●

●
●● ●

● ●
●

●
●

●

●
●●●●● ●●

● ●●●●●
●

● ●

●

●

●
●●●

●

●

●
●●● ●● ●

●
●● ●

● ●
● ●●

●●
●

●

● ●
●●●

●
●

●
●

●

●
●●

●
● ●

● ●
●● ●● ●●
●
●

●
● ●

●

●
●●● ●● ●● ●●●● ●

●●
● ●●● ●● ●●● ●

●
● ●

●● ●
●

●

●
●● ●● ●●

● ●●●
●

● ● ●● ●●●
●

● ●● ●
●● ●●● ●●●

●

●●● ●
●● ●

●●●●
●● ●● ●

●

●● ●● ●●
● ●●

●●
● ● ●●●

●

●

● ●● ●
●

●●
●

● ●
●

●
●

●
●

●●● ●
●

●
●● ●●●● ●●

●
● ●

●
●●

●
●

● ●●

●

●
●

●●
● ●

●
●

● ●● ●●●
●

●● ●● ●●●
●● ●●

●
●●● ●

●
●

●
● ●●

●●
● ● ●

●● ●
●● ● ●

●

●

●

●
●● ●● ●● ●●

●

●

●● ●
● ●● ●●●

●●●
● ●●●●●

●
●●● ● ●

●●●
●●●● ●●● ●●●

●
● ●● ●●

●

●
●●

●
● ●● ●● ● ●●

●

●● ●●
● ●

●● ●
● ●

● ●
● ●●

●

●●●●
●

●

●

●

●
●●●

●●●●

●

●● ●
●

●
●

●
●●●●

●
●●

●
● ● ●

●
● ● ●● ●●

●
●●●●

●
● ●

●

●
●● ●

●

●

●

●
●

● ● ●
●

●
●●●

●
●●

●

●
●●●
●

●●●● ●● ●●● ●●
●●●●

●●●●●●● ●
●
●● ●

●
● ●●

●

●●
●

●●●● ●
●

●

●●●●●
● ●●

●●●●●●
●

● ●

●
●● ●

●●
●

●
●

●

●
●● ●● ●●●

●●● ●● ●
●

● ●

●

●

●
●●●

●

●

●
●●

●●●●
●
● ●●

●●
● ● ●

● ●
●

●

● ●
● ●●

●
●

●
●

●

●
●●

●
● ●

● ●
● ●●●● ●
●

●
●

●●
●

●
● ●●● ●●●●● ●●●
●●
●●● ●● ●●●●●●

●●
●●●
●

●

●
●● ●●●
●
●● ●●

●
●● ●● ●● ●
●

● ● ●●
●●● ●●●● ●

●

● ●● ●
● ● ●

● ●●●
●●● ●●

●

● ●●● ●●
●●●

● ●
●●

●●●
●

●

●● ●●
●

●●
●
●●

●

●
●

●
●

● ●●●
●

●
● ●●●● ●●●

●
●●
●
●●

●
●

●● ●

●

●
●

●●
●●

●
●

●● ●●●●
●

●●● ●●● ●
● ●

●●

●
●● ●●

●
●

●
●● ●

●●
●● ●

● ●●
● ●●●

●

●

●

●
● ●● ●

●●● ●
●

●

● ●●
● ●●● ● ●

●●●
●●●● ●●
●

●● ●●●
●●●

●●●● ●● ●●● ●
●

●●● ●●

●

●
● ●

●
●●●●●● ● ●

●

●● ●●
●●

●●●
●●

● ●
●●●

●

●●●● ●
●

●

●

●
●● ●

● ●●●

●

●● ●
●

●
●
●
●●● ●

●
●●

●
●●

●
●
●● ● ●●●
●

●● ●●
●

●●

●

●
●●●

●

●

●

●
●

●●●

ev.5 ev.4 ev.13 ev.12

ev.5
ev.4

ev.13
ev.12

−0.4 −0.2 0.0 0.2 −0.6 −0.4 −0.2 0.0 0.2 −0.3 −0.2 −0.1 0.0 −0.50 −0.25 0.00 0.25

0
1
2
3
4

−0.6
−0.4
−0.2
0.0
0.2

−0.3
−0.2
−0.1
0.0

−0.50

−0.25

0.00

0.25

SVM radial basis kernel accuracy: 0.754 (train 𝑛 = 1000)
25 / 39

Projection using radial kernel
• ”Features” are scaled eigenvectors of Gram (similarity) matrix K𝑛×𝑛
• With 𝑛 observations, there are 𝑛 ”features” a ter applying the kernel trick

→ potentially infinite-dimensional feature space...
• But their eigenvalues drop off faster than 𝑛 increases → reduced
effective number of dimensions

E
ig

en
va

lu
es

φ1 φ25 φ50

0

50

100

150

200

250

300

26 / 39

Projection using radial kernel

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1
φ5

de
ns

it
y

y

0

1

alpha

0.5

• In example, 𝜙5 correlates 0.8 with true linear predictor, sin(𝑥1𝑥2).
• Just the decision rule ”sign(𝜙5)” gives accuracy 0.73.

→ implicit projection of radial kernel closely approximates true
nonlinear decision function!

27 / 39

Linear classifiers

28 / 39

[Hastie et al. 2017]

29 / 39

Classification

Predict 𝑦 ∈ {spam, not spam} → {−1, +1} from 𝑝-vector of features x. Both
are observed from unknown data-generating process 𝐷(x, 𝑦).
Let’s choose some ”hypothesis set” ℱ of possible prediction functions and a
loss indicating how badly members of this set deviate from 𝑦.
Under this loss, the best possible choice from the hypothesis set is

𝑓∗(x) = min
𝑓∈ℱ

𝐸(x,𝑦)∼𝐷 [loss(𝑦, 𝑓(x))]

For regression, the loss is a function of the residual 𝑦 − 𝑓(x). For
classification, we can measure the incorrectness of the prediction as 𝑦𝑓(x).

30 / 39

Classification, continued

In practice we can’t observe the true ”risk”, 𝑄 ∶= 𝐸(x,𝑦)∼𝐷 [loss(𝑦, 𝑓(x))].
We only observe a sample, 𝑆 = 𝒟𝑛.
We then work with the empirical risk,

𝑄train ∶= ∑
𝑖∈𝑆

loss(𝑦𝑖, 𝑓(x𝑖))

A key problem of ML is that 𝐸𝒟(𝑄train) ≤ 𝑄, i.e. the training loss is optimistic.
This means minimizing 𝑄train to estimate 𝑓 would lead to overfitting.
A common solution is to regularize the objective:

𝑓𝑆(x) = min
𝑓∈ℱ [𝑄train + 𝜆||𝑓||ℱ] ,

where the second term penalizes the ”capacity” of the function 𝑓.
Support vector machines also take this ”loss + penalty” form.

31 / 39

Linear decision boundary

𝑓(x) = x𝑇𝛽 + 𝛽0
Remember: 𝑦𝑓(x) is the ”residual” incorrectness of classifcations

32 / 39

SVCs, loss + penalty formulation

𝑓𝑆(x) = 𝛽0 + x𝑇𝛽
with

𝛽0, 𝛽 = min
𝛽0,𝛽 [∑

𝑖∈𝑆
(1 − 𝑦𝑖𝑓(x𝑖))+ + 𝜆

2||𝛽||2] ,

where (.)+ gives positive part of input (”relu”). Loss (1 − 𝑦𝑓) is ”hinge loss”:

−4 −3 −2 −1 0 1 2 3 4

Hinge loss

33 / 39

SVC and logistic regression are similar

𝑓𝑆(x) = 𝛽0 + x𝑇𝛽
with

𝛽0, 𝛽 = min
𝛽0,𝛽 [∑

𝑖∈𝑆
(1 + exp[−𝑦𝑖𝑓(x𝑖)]) + 𝜆

2||𝛽||2] ,

Loss (1 + exp(𝑦𝑓)) is ”logistic deviance” loss:

−4 −3 −2 −1 0 1 2 3 4

Hinge loss

Logistic loss

34 / 39

SVC vs. logistic regression

• Hinge loss gives exact zeroes for all training observations that are
correctly classified by the model;

→ only need to remember observations on or beyond margin, the
”support vectors”.
Some robustness to ”inliers”

• Logistic loss is optimized when 𝑓 gives the log-odds ratio, which can be
converted easily into a probability → ”self-calibrating”

𝑓𝑆(x) 𝑝→ ln [𝑃(𝑦 = +1|x)/𝑃(𝑦 = −1|x)]
(”proper scoring rule”)

• All observations play a role, less computationally efficient prediction, less
sensitive to shi ts in wrong classifications than SVM

[Hastie et al. 2017]

35 / 39

Kernelized SVC = SVM

𝑓(x𝑖) = 𝛽0 + K𝑖,∶(𝛼 ⊙ y),
where ⊙ is the elementwise (”Hadamard”) product. Objective is then

𝛽0, �̂� = min
𝛽0,𝛼 [∑

𝑖∈𝑆
(1 − 𝑦𝑖𝑓(x𝑖))+ + 𝜆

2𝛼𝑇K𝛼] ,

where 𝛼 is an 𝑛-vector of weights. Notice we only need the Gram matrix K and
the training outcomes y.

Due to the hard break in the hinge loss, most elements of �̂� will equal zero.
Nonzero elt’s of �̂� correspond to training observations that are support vectors.

36 / 39

Kernel logistic regression: why not

𝑓(x𝑖) = 𝛽0 + K𝑖,∶(𝛼 ⊙ y),

𝛽0, �̂� = min
𝛽0,𝛼 [∑

𝑖∈𝑆
(1 + exp[−𝑦𝑖𝑓(x𝑖)]) + 𝜆

2𝛼𝑇K𝛼] ,

37 / 39

Support vector machines, classical formulation (SVC)

min
𝛽,𝛽0

||𝛽||

subject to 𝑦𝑖𝑓(x) = 𝑦𝑖(x𝑇𝑖 𝛽 + 𝛽0) ≥ 1, 𝑖 ∈ 𝑆 .
This is the same as maximizing the ”dual”:

max𝛼 [∑
𝑖∈𝑆

𝛼𝑖 − 1
2 ∑

𝑖∈𝑆
∑
𝑖′∈𝑆

𝛼𝑖𝛼𝑖′𝑦𝑖𝑦𝑖′x𝑇𝑖 x𝑖′] ,

subject to 0 < 𝛼1 < 1 and ∑𝑖 𝛼𝑖𝑦𝑖 = 0, where the 𝛼𝑖 are 𝑛 Lagrange
multipliers. This problem can be solved with standard quadratic programming
so tware. We’ll then get

𝛽 = x∑
𝑖∈𝑆

𝛼𝑖𝑦𝑖x𝑖

The important thing to note is that x enters the algorithm only through the
casewise inner product, x𝑇𝑖 x.

38 / 39

Conclusion

• SVM is still alive and kicking

• SVM needs careful tuning

• Kernels are interesting, especially with structure

• Lots of things besides the hinge loss linear classifier can be kernelized

39 / 39

