Statistical learning

An introduction

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

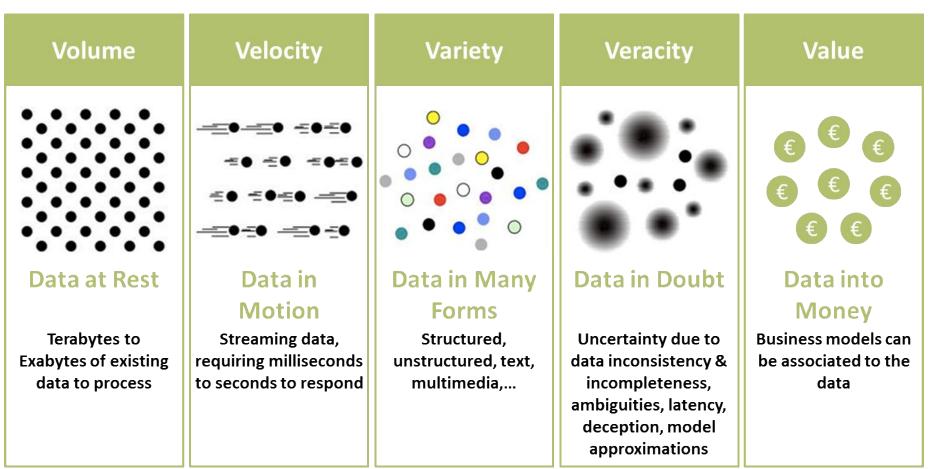
🖄 Springer

Date	Торіс	Presented by
8 november	Statistical learning: an introduction	Dr. Emmeke Aarts
29 november	Regression from the data science perspective	Dr. Dave Hessen
6 december	Classification	Dr. Gerko Vink
10 januari	Resampling Methods	Dr. Gerko Vink
7 februari	Regularization	Dr. Maarten Cruijf
7 maart	Moving beyond linearity	Dr. Maarten Cruijf
4 april	Tree-Based models	Dr. Emmeke Aarts
9 mei	Support vector Machines	Dr. Daniel Oberski
6 juni	Unsupervised learning	Prof. Dr. Peter van der Heijden

Outline

- What is statistical learning
- Accuracy versus interpretability
- Supervised versus unsupervised learning
- Regression versus classification
- Model accuracy & bias-variance trade off
- Potential benefits for social scientist
- Software

What is statistical learning – Big data


- '[B]ig data' [...] refers to
 - large,
 - diverse,
 - complex,
 - longitudinal,
 - and/or distributed data sets

generated from

- instruments,
- sensors,
- Internet transactions,
- email,
- video,
- click streams,
- and/or all other digital sources available[.]

(NSF, NIH 2012)

What is statistical learning – Big data

Source: http://informationcatalyst.com

Adapted by a post of Michael Walker on 28 November 2012

What is statistical learning – Big data

So, how different from e.g., the massive data sets arising in physics?

1. 'Big data' [is] the amassing of huge amounts of statistical information on **social** and **economic** trends and **human behavior**. (M. Chen)

data on people

2. Granularity: documents of social phenomena at the granularity of *individual* people and their activities. (M.I. Jordan)

Issues regarding ethics, privacy, bias, fairness, and inclusion.

For a nice overview on this, see Hanna Wallach on *Medium*: Big data, machine learning and the social sciences: Fairness, accountability, and Transparancy

Why should social scientist bother

- Science: "minimal evidence of emerging computational social science engaged in quantitative modeling of these new kinds of digital traces." (Lazer, Science)
- Industry & government: computational social science is occurring on a large scale, in places like
 - Google
 - Yahoo
 - the National Security Agency

See e.g.: D. Lazer et el. (2009). Life in the network: the coming age of computational social science. Science

What is statistical learning

Machine learning (ML): Allowing computers to learn for themselves without explicitly being programmed

- Google: AlphaGo, computer that defeated world champion Go player
- Apple & android: Siri voice assistant

Train a system by showing examples of inputoutput behavior, instead of

programming it manually by anticipating the desired response for all possible inputs

What is statistical learning

- Artificial intelligence (AI): Constructing machines (robots, computers) to think and act like human beings
- ML is a subset of AI
- Statistical learning (SL): a set of approaches for estimating *f*; a function that represents our data that can be used for e.g., prediction and/or inference
- SL is a subset of ML

Supervised learning **Statistical model** Input Output

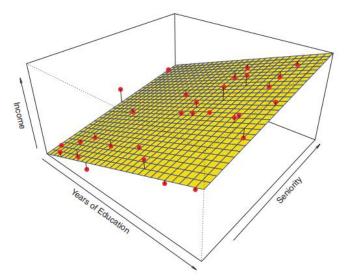
Building a statistical model for predicting / estimating an output based on one or more inputs

Graph from: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

Supervised learning

- most widely used machine-learning methods are supervised
 - spam classifiers of e-mail
 - face recognizers over images
 - medical diagnosis systems for patients
- Methods include
 - decision trees
 - (logistic) regression
 - support vector machines
 - neural networks
 - Bayesian classifiers

Unsupervised learning **Statistical model** Input

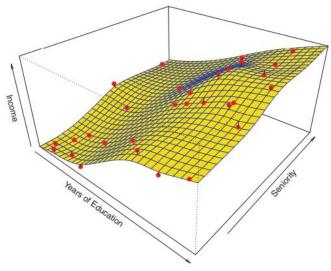

Inputs, but no outputs. Try to learn structure and relationships from these data

Unsupervised learning

- assumptions about structural properties of the data
- Dimension reduction methods
 - principal components analysis
 - factor analysis
 - random projections
- Clustering
 - K-means clustering

How do we learn

Parametric models



Linear model

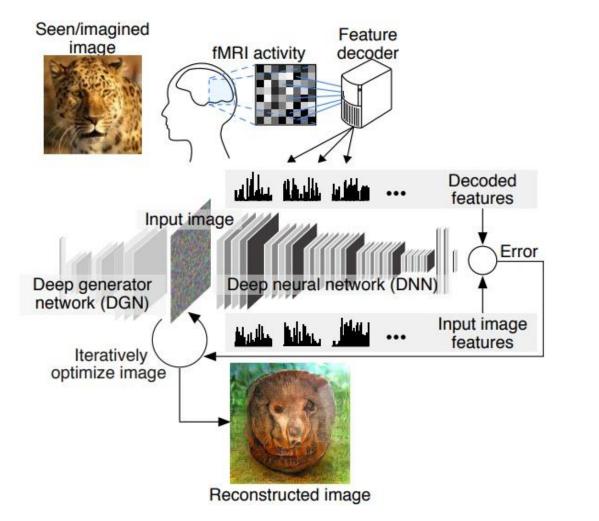
Restrictive

Inference: interpretable

Non-parametric models

Graphs from: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

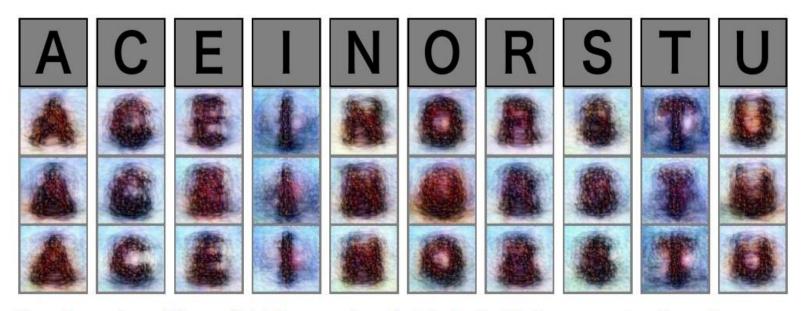
Smooth thin-plate spline model


Flexible

Not so interpretable

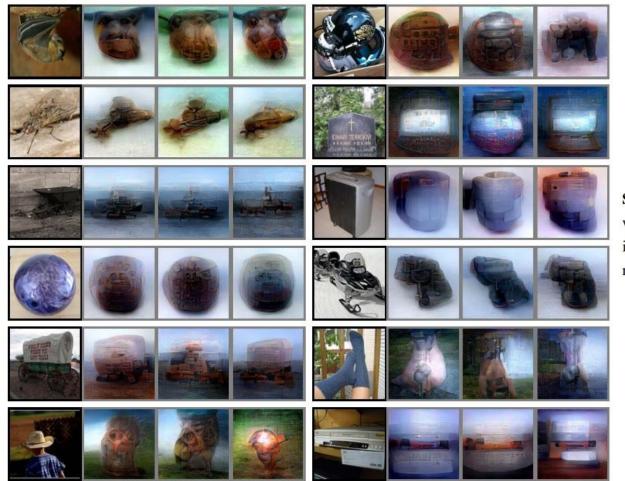
Accuracy versus interpretability

Black box example from neuroscience



Deep image reconstruction from human brain activity

G. Shen*, T. Horikawa*, K. Majima*, and Y. Kamitani


2017

Black box example from neuroscience

Supplementary Figure 9 | All examples of alphabetical letter reconstructions. Images with black and gray frames show presented and reconstructed images, respectively (reconstructed from VC activity without the DGN). Three reconstructed images correspond to reconstructions from three subjects.

Black box example from neuroscience

Supplementary Figure 2 | Other examples of natural image reconstructions obtained with the DGN. Images with black and gray frames show presented and reconstructed images, respectively (reconstructed from VC activity using all DNN layers). Three reconstructed images correspond to reconstructions from three subjects.

Accuracy versus interpretability

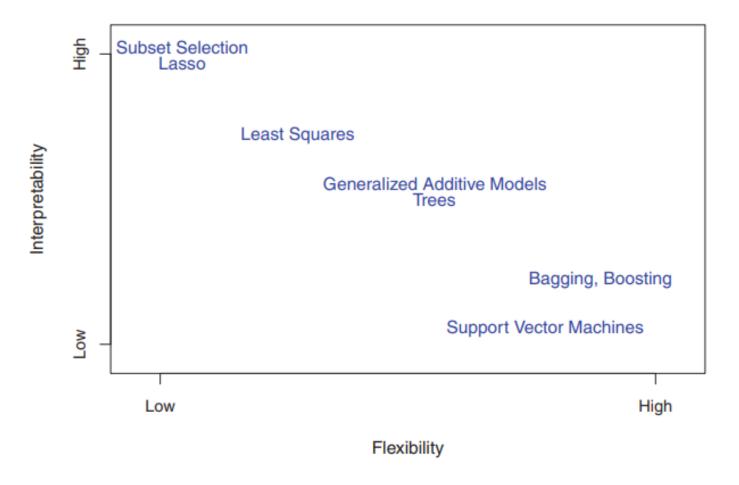
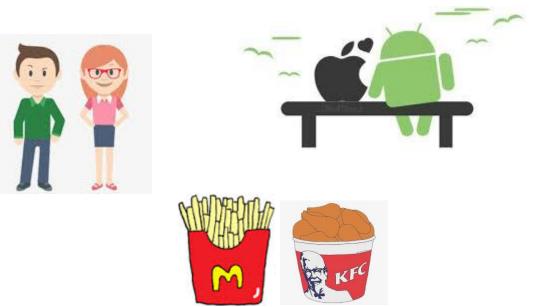


Illustration from: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

Regression versus classification

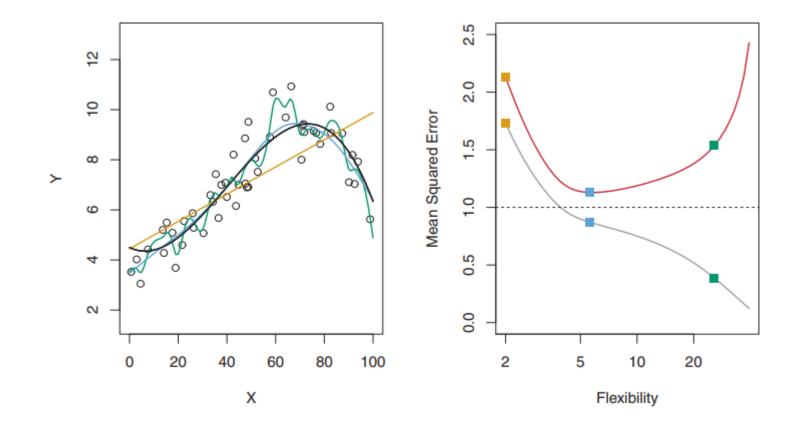

Quantitative outcomes

shutterstock.com + 76007212

Qualitative outcomes

Predict an quantitative outcome -> regression

Predict to which category an observation belongs -> classification


Model accuracy

Model accuracy: Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2,$$

To obtain the MSE, we use training set and a test set

Model accuracy

Graphs from: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

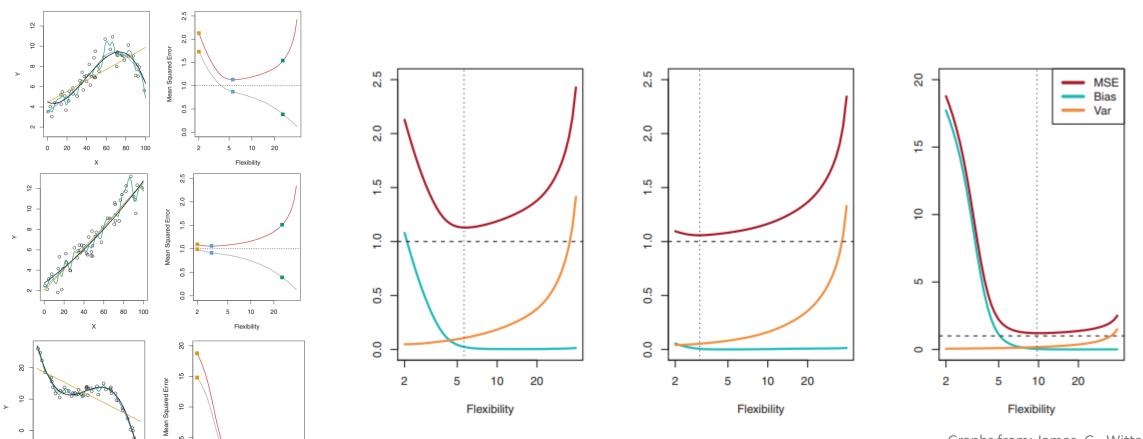
Bias-variance trade off

9

0

20

60 80 100


х

Emmeke Aarts

2

10 20

Flexibility

Graphs from: James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning

Potential benefits for social scientist

- Solutions to overfitting (what we call the replication bias)
- 1. uncover patterns and structure embedded in data
- 2. test and improve model specification and predictions
- 3. perform data reduction

Software

- R and Python: core of machine learning development
- Matlab has a ML toolbox, but lacks customizability
- Some techniques available in SPSS / Stata
- Specific programs for specific techniques, e.g., Tensorflow

References

- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: springer
- Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., ... & Jebara, T. (2009). Life in the network: the coming age of computational social science. *Science*, *323*(5915), 721.
- Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. (2017). Deep image reconstruction from human brain activity. *bioRxiv*, 240317.
- https://medium.com/@hannawallach/big-data-machine-learning-and-the-socialsciences-927a8e20460d