
Department of Information and Computing Sciences

Train Shunting and Service Scheduling:

an integrated local search approach

Masters Thesis

Author:

Roel W. van den Broek

Utrecht University

First Supervisor:

dr. J.A. Hoogeveen

Second Supervisor:

dr. ir. J.M. van den Akker

Supervisor NedTrain:

ir. B. Huisman

January 2017



Abstract

Trains have to be maintained and cleaned regularly to ensure high passenger safety and

satisfaction. These service tasks must be performed outside the rush hours, when the

trains are parked off the main railway network at dedicated service sites. The activities

on a service site are currently scheduled by hand; a difficult and time-consuming task

that consists of matching incoming and outgoing trains, scheduling the service tasks,

assigning trains to parking tracks and routing the trains over the service site. We

propose a local search approach for the automated construction of such shunt plans

that integrates these four planning aspects. Our heuristic is applied successfully to

artificial and real-world planning problems, and outperforms a state-of-the-art mixed

integer programming algorithm.
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Chapter 1

Introduction

In this study we will focus on the service site scheduling problem in the Dutch railroad

network. The service sites in the Netherlands are operated by NedTrain, a subsidiary of

the Nederlandse Spoorwegen (Dutch Railways; NS), the largest Dutch railway operator.

The NS transports more than 1.1 million passengers each day on one of the busiest

railroad systems in the world. Within the NS, NedTrain is tasked with the maintenance,

cleaning and refurbishment of rolling stock. To ensure that train passengers arrive both

safely and comfortably at their destination, trains need to be maintained and cleaned

at regular intervals. NedTrain has specialized maintenance depots, where most of the

larger, technical maintenance and repair is done. More frequent tasks such as cleaning,

washing, inspection and small maintenance are performed at service sites close to major

stations, since these operations typically take no more than a few hours. An example of

a service site can be seen in Figure 1.1. During the morning and evening rush most of

the rolling stock will be used to transport the large number of commuters. In contrast,

outside these peak hours, and especially at night, far fewer trains are needed to meet the

demand, and the excess has to be parked away from the main railroad network. Part

of the surplus is sent to the service sites for parking, and hence the sites function as

shunting yards as well.

Figure 1.1: An example of a service site operated by NedTrain.

1
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Plans for the service sites are created manually by the long-term planners at NedTrain.

These shunt plans describe, for a twenty-four hour planning horizon, the assignment

of incoming trains to departures the next morning, the order of completion of the ser-

vice tasks, the tracks on which the trains will be parked and the exact route of each

train movement. The arrival times are based on a fixed timetable, and service tasks are

scheduled using their respective norm duration. Due to the proximity of the sites to

major stations, most of which are located in urban areas, both the service and storage

capacity is limited. Furthermore, train movements are highly constrained and trains

should be parked such that each train movement has an unobstructed path to its desti-

nation. Consequently, the construction of conflict-free shunt plans is no trivial feat, and

even for experienced planners a tedious and time-consuming process. Ideally, this task

would at least be partially automated, producing plans that require only a few manual

adjustments from the planners.

Although automated plan generation can be used as an operational decision-support

system, the main motivation behind this study is to aid tactical and, to some extent,

strategical decision making. Over the course of the next few years, NS will expand its

fleet significantly to handle the ever increasing number of passengers. While additional

rolling stock is beneficial to the everyday commuter, it causes more stress on the service

sites. To evaluate whether the current facilities will be sufficient and, if not, where

expansion is necessary, the capacity of the service sites has to be determined. Train

carriages of older train types used by the NS have roughly the same size and NedTrain

expressed the capacity traditionally as the number of carriages that could be parked

simultaneously at a site. However, with the advent of new train types, the coach length

is no longer uniform. Furthermore, the static parking measure provides no information

on the actual processing capacity regarding the service tasks.

To obtain a more accurate capacity estimate, NedTrain is now defining the capacity of

a service site as the maximum number of trains for which reliably a feasible shunt plan

can be constructed. Due to the sheer number of scenarios that have to be evaluated to

obtain an accurate estimate, it is not possible for the planners to create all shunt plans

by hand, emphasizing the need for an automated plan generation system.

Unfortunately, previous attempts to automate the shunt planning either did not model

all essential aspects of the service sites, such as the service task scheduling, or performed

less than the planners at NedTrain. Over the past few year, the NS has developed a

tool based on the state-of-the-art mathematical model formulated by Kroon et al.[21]

to aid in the planning process at the service sites. However, this tool often fails to find

feasible shunt plans, even for instances that are easily solved manually. To estimate the

capacity of a service site accurately, the performance of any shunt plan generation tool
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should at least be on par with human planners. Therefore, it is imperative to explore

alternative approaches to the shunting problem.

The aim of this research is to develop an algorithm that can construct shunt plans for a

twenty-four hour period, given the layout of the service site, a time table of arriving and

departing trains and a list of service tasks that need to be completed. Both the arrival

times and the service task durations are assumed to be deterministic.

Even without disturbances, finding a feasible shunt plan is a difficult problem, as it

combines several well-known NP-hard problems. The service task scheduling can be

viewed as a Resource-Constrained Project Scheduling Problem (RCPSP) with addi-

tional side constraints resulting from the parking. More specifically, it resembles an

Open Shop Scheduling Problem with machine flexibility (multiple service facilities),

buffer and blocking constraints (parking of trains), and release dates and deadlines (ar-

rival and departure). To determine whether all trains can be parked, a Bin Packing

Problem has to be solved. Furthermore, when trains have to be moved to allow another

train to move over a track, the routing in the shunt plan strongly resembles sliding block

puzzles such as the Rush Hour Problem. As challenging as these individual problems

are, the algorithmic complexity of shunt planning arises mainly from the interaction

of the matching, task scheduling, parking and routing components. The strong depen-

dency between the different elements of a shunt plan makes it difficult to decompose

the problem into multiple smaller, largely independent subproblems, a technique often

proposed in literature for similar complex problems.

In the next chapter we will review research related to train scheduling problems in general

and shunting problems in specific. An in-depth explanation of the problem central to this

thesis is provided in Chapter 3. In Chapter 4 we introduce our local search model for the

problem, and results for a number of real world instances will be presented in Chapter 5.

Although the goal of this study is to construct shunt plans for the service sites operated

by NedTrain, our algorithm can easily be applied to similar train (or tram) shunting and

scheduling problems. To highlight the flexibility of our approach, multiple extensions

and variants of the basic problem, as well as the necessary modifications to our local

search model to cope with these modifications, are discussed in Chapter 6. Finally, the

conclusions of this study and topics for future research are discussed in Chapter 7.
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Literature Review

In this chapter, we will provide a general overview of literature in the field of tram and

train shunting problems, as well as an in-depth review of work related specifically to

train shunting and maintenance. The research in this last section pertains mostly to

shunting problems in the Dutch railway network.

2.1 General Shunting Problems

One of the earlier shunting problems discussed in literature is the problem of dispatching

trams from a depot. Blasum et al. [2] have studied the assignment of trams stored in a

depot with last-in-first-out tracks to round trips such that the number of shunt moves

— moving a tram from one track to another — is minimized. They have shown that

this problem is NP-hard and have proposed a dynamic programming algorithm to solve

small instances of the problem. Winter and Zimmer [25] investigated the stored tram

assignment problem extended with the assignment of arriving trams to tracks. Besides

introducing an Integer Linear Program (ILP) to find the optimal solution, the authors

focused on real-time decision-making to handle arrival delays of the trams. They have

developed a number of heuristics that combine real-time information and the optimal

solution computed with the ILP. These heuristics yield near-optimal results in less than

three minutes for instances consisting of thirty to fifty trams.

The stored tram assignment problem introduced by Blasum et al. was shown by Egger-

mont et al. [10] NP-hard even if each track in the depot contains at most two trams.

Furthermore, they have shown that the extended tram assignment problem described by

Winter and Zimmer remains NP-hard when the instances are restricted to tracks that

contain at most three trams

4
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A survey of research on train sorting problems in shunting yards is provided by Gatto

et al. [13]. In these problems, a single arriving freight train is split into individual cars.

The cars have to be parked on some track such that they can depart in some predefined

order. These freight cars have no engine and are parked by pushing them one by one over

a hump. As the cars roll down the hump, they are guided through a tree of switches to

arrive at their designated track. The problems are classified according to whether they

allow extra shunt moves by locomotives and the objective function, such as minimizing

the number of shunt moves or the number of tracks used. A broader overview of freight

train sorting problems is presented by Boysen et al. [3]. Their survey includes practical

aspects such as solution robustness and recovery, as well as research on train sorting

problems with departure lateness minimization objectives.

The topic of robust train sorting is central to the work of Cicerone et al. [6]. They

propose recovery rules that can be applied to their generated feasible solution to cope

with disturbances in the input data, such as track unavailability or an unexpected car

order in the incoming train. The authors have shown the trade-off between robustness

and optimality, as well as the difficulty of creating solutions that are robust to multiple

types of disturbances.

2.2 Passenger Train Shunting and Maintenance Problems

The train unit shunting problem (TUSP) was first introduced by Freling et al. [12] and

consists of matching arriving train units to departing trains and parking these units

on a track at a shunt yard. These train units are self-propelled and can be coupled to

form a single, longer train. The authors use a decomposition approach in which a train

unit matching is constructed first. In the matching problem, parts of the arriving trains

are assigned to corresponding blocks of train units in departing trains. The objective

of this subproblem is to find a matching that minimizes the number of times arriving

trains have to be split to assign each train unit to exactly one position in a departing

train. The corresponding mathematical model is solved using the standard MIP solver

CPLEX. Secondly, the parts assigned in the matching problem are parked on a track at

the shunt yard. A column generation approach, based on assignments of sets of train

parts to each track, is used to find a feasible parking plan. To solve the pricing problem

— construct a set of train parts that fits on the track such that each train part can

leave on time without being blocked by another train — the authors propose a dynamic

programming algorithm. The routing of the train parts on the shunt yard is not taken

into account. They generated a shunt plan for a typical weekday at the shunt yard in

Zwolle, consisting of eighty train units to be parked, in roughly half an hour.
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Although Lentink et al. [23] use a decomposition approach similar to Freling et al.

to solve the TUSP, they include the routes taken by the trains, and decompose the

problem in four steps. First a matching is determined using the algorithm proposed by

Freling et al. A graph representation of the shunt yard is presented in their study, which

is used to estimate the routing costs from and to each shunt track. These estimates

are used in the third step, the parking subproblem, to improve the column generation

approach proposed by Freling et al. Finally, the actual routes are computed using the

graph representation and the track occupation resulting from the previous step. Trains

can move simultaneously and the entire path of a train movement is reserved for the

duration of the move. The routes are computed sequentially and the order of evaluation

is improved by a local search approach that swaps the order of two movements. The

authors have shown that the time needed to generate a feasible shunt plan, including

routing, for the shunt yard in Zwolle was around twenty minutes with their approach.

Instead of solving all components of the TUSP sequentially, Kroon et al. [21] construct

solutions for the matching and parking subproblem simultaneously. This greatly in-

creases the complexity of the problem, resulting in a mathematical formulation for the

integrated approach that contains a large number of crossing constraints. Testing the

model on a realistic case at the shunt yard in Zwolle revealed that there were over 400.000

constraints, which was too much for the CPLEX solver to find a feasible solution in a

reasonable amount of time. To reduce the number of crossing constraints, the authors

grouped them in clique constraints. This allowed them to find feasible solutions for their

test case. Unfortunately, even with the reduction in constraints, the computation time

increases rapidly with larger problems, taking several hours to complete.

An integrated approach has been investigated by van den Akker et al. [1] as well.

They propose a greedy heuristic and an exact dynamic programming algorithm to the

combined matching and parking problem. The heuristic uses track assignment and

matching rules that select the locally best action on arrival and departure such that train

units are parked in the correct order for the departing trains. The dynamic programming

approach looks at all possible shunt track or matching assignments at each event on the

shunt yard, and relies heavily on pruning nodes in the dynamic programming network

that are unlikely to lead to the optimal solution as a way to reduce its computation time.

In contrast to the model formulated by Kroon et al., both algorithms can include waiting

time for the arriving and departing trains at the platforms. Furthermore, the exact

algorithm is also capable of shunting a parked train unit to a different track, resulting in

much more flexibility in the shunt plans. This property is difficult to include in the linear

programming approaches proposed by other authors, due to the exponential increase in

variables and constraints, even when allowing each parking interval to be split only once.

The greedy heuristic is quite fast, but it is not capable of finding feasible solutions for
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complex problems. Even with the pruning rules, the exact algorithm requires more than

ten minutes to find a plan for a dozen train units, making it hard to use in practice.

In the work of Lentink [22] a practical extension to the TUSP is studied. Besides

matching, parking and routing, the train units on a service site have to be cleaned as well.

The cleaning subproblem is a crew scheduling problem, in which each train unit should

be cleaned by a crew before it departs from the site. The first three steps are solved

using the methods proposed in earlier work [12, 23]. The schedule for the cleaning crews

is constructed last. The cleaning problem is modeled as a machine scheduling problem

without preemption, where the machines correspond to the crews. The objective used

for the machine scheduling problem is the minimization of the sum of the completion

times. A mathematical model based on this formulation, in which the planning horizon

is discretized into one minute blocks, is solved using CPLEX.

Jekkers [19] presented two genetic algorithms (GAs) for the integrated matching, parking

and routing problem, both including waiting time at the arrival and departure platform.

The algorithms have genes for the parking locations and the arrival and departure wait-

ing times. One variant of the GA has also an extra gene for the matching, whereas the

other one determines the matching using a greedy heuristic. The fitness of each member

of the population is determined with a deterministic simulation. Routes are constructed

during the simulation. This approach is applied successfully to generate shunting plans

for shunt yards located near Rotterdam Central Station and Hoofddorp, two major sta-

tions operated by the NS group. The largest of the two instances, the shunt yard in

Rotterdam, had seventy train units that needed to be parked, and took fifty minutes of

computation time.

An integral approach is used by Jacobsen and Pisinger [18] to solve a train parking

and maintenance problem. Each train has to be maintained at one facility or workshop

located on the service site and parked before and after the service task. Using three meta-

heuristics, Guided Local Search, Guided Fast Local Search and Simulated Annealing,

the authors attempt to construct schedules such that no trains are blocked by other

trains, no departure delays occur and the makespan of the service tasks is minimized.

Their results show that the local search approaches provide results close to shunt plans

constructed by CPLEX, while taking only seconds of computation time compared to

the twelve hours needed by the MIP solver. However, the largest instances contain no

more than ten trains, with one maintenance task per train, which is not representative

of real-world scenarios. Furthermore, the absence of routing and matching makes their

approach not directly applicable to the scheduling problem for the service sites operated

by NedTrain.



Literature Review 8

Van Dommelen [9] considered the train unit shunting problem with the extension of

service tasks for a specific service site of NedTrain, the Kleine Binckhorst. Given a fixed

matching, the goal is to generate feasible shunt plans that include servicing, parking

and routing. The order of the service tasks are modeled mathematically as a flow shop

problem, which is solved using CPLEX. The resulting parking intervals per train unit

are then used as input for a tool called the OPG, which is developed internally by the

NS, that determines both the parking locations and the routes. A feasible schedule

for a test case with 35 train units was found after two hours of computation time.

However, the OPG was not guaranteed to generate shunt plans without routing conflicts

at that moment, suggesting that the reported number of parked train units might be an

overestimate of the actual service site capacity.



Chapter 3

Problem Description

To ensure that all trains are clean and well-maintained at the start of their shift, a plan-

ner has to create shunt schedules that encompass all facets of the service site. Arriving

trains should be assigned to departing trains. Furthermore, the planner has to decide on

when the service tasks should be performed and, in case a service is offered on multiple

tracks, where the tasks should take place. Whenever a train is not being serviced, it

needs to be assigned to a track for parking. In the parking track assignment, the planner

has to take into account both the length of the track and the order of parking. The

latter is to avoid conflicts when trains depart from the track. Furthermore, the routes

driven by the trains from track to track have to be specified in the shunt plan.

While some elements of a shunt plan are difficult to properly schedule by themselves,

especially when the number of trains and tasks is large, the main complexity of the

shunting problem follows from the interaction between the different components. Ad-

justments to the matching or the service schedule result in different parking intervals,

and whether there is an unobstructed path from one track to another depends entirely

on the current track occupation of the service site.

In this chapter, we will provide a glossary of the terms used to describe the problem,

followed by an overview of the Train Unit Shunting Problem (TUSP) as described by

Lentink [22]. We will illustrate the problem examined in this study with an example at

the end of the chapter.

3.1 Preliminaries

The infrastructure of a service site consists of a set T of tracks which are connected by

a number of switches. Figure 3.1 shows a small example service site. A track τ ∈ T

9
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Figure 3.1: An example of a service site. Trains enter and exit the site over gateway-
track G and can be parked on tracks 1 to 4. The tracks are connected by the switches
α and β. The length of the parking tracks is displayed in meters. A cleaning platform

allows internal cleaning tasks to be performed on trains positioned on track 2.

has a length of lτ and two end-points which are referred to as the A- and B-side of τ .

Tracks approachable from both sides are called free tracks and their behavior regarding

the parking of trains is best modeled as a deque (doubly-ended queue). LIFO-tracks are

only accessible from one side, with the other side being blocked by a bumper, and are,

as their name suggest, similar to a stack. Examples of both track types can be seen in

Figure 3.2. Define Tfree to be the set of all free tracks and TLIFO the set of LIFO-tracks,

then Tfree ∪ TLIFO = T . A service site is connected to the rest of the railway network

through one or more tracks known as gateway-tracks.

Figure 3.2: A LIFO-track (top) and a free track (bottom), depicted by the solid
horizontal lines, each with parked trains 1 and 2. Access to the tracks is shown by the
dashed lines. The LIFO-track is only approachable from the A-side (left), and has a
bumper on the B-side. As train 2 was first to enter the LIFO-track, it cannot depart
before train 1. In contrast, train 2 can leave the free track without conflicts, albeit only

from the B-side.

Each service task σ ∈ S that must be performed on the service site has a duration of

dσ and a set of tracks Tσ on which the task can take place. The service tasks can be

divided in two categories:

• The track-specific tasks Sspec require a certain facility that is located along a track,

such as the train wash or a cleaning platform (see Figure 3.1). Only a single train

can be processed at a time in each facility.

• Contrarily, multiple track-independent tasks Sindep can be done simultaneously on

each possible track, although a service crew is needed to perform each of the tasks.
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The facilities and crews are collectively referred to as resources in this study.

Figure 3.3: Two train units of the same train type, ICM, but different subtypes: the
top train unit consists of three carriages (ICM-3); the bottom one has four (ICM-4).

The trains we consider in this study consist of train units, bi-directional and self-

propelling vehicles that move without a dedicated locomotive. All train units on a

service site are referred to as the set TU . Train units tu ∈ TU are classified according

to types (ttu) and subtypes (sttu). An example of two train units is shown in Figure 3.3.

Two train units can only be combined to one longer train if their train types are equal.

The subtype indicates the number of carriages of a train unit, and therefore determines

its length. The set of all service tasks belonging to the same train unit tu is denoted as

Stu.

On a service site the incoming trains can be split and combined to form new train

compositions. These temporary compositions are referred to as shunt trains. During its

stay at a service site, a train unit is always part of a shunt train, although the specific

shunt train can vary over time. Likewise, a train unit cannot be part of two shunt

trains simultaneously, since at each split or combine one or more new shunt trains are

formed and the old shunt trains cease to exist. Each shunt train can have a number of

predecessors and successors, which describe the transition of train units between different

shunt trains due to splitting and combining.

In the example in Figure 3.1, a train, entering the service site through the gateway-

track, might be planned to park on track 1. The train can only move to track 1 by

reversing on one of the tracks 2 to 4. This reversal of direction is called a saw move. To

accomplish this manoeuvre, the control of the train has to be transferred to the tail of

the train, which then becomes the new head of the train. Furthermore, the driver must

walk to the other end of the train to resume the movement, as only a single driver is

available per train. In general, the saw moves are time-consuming operations, and hence

avoided by human planners if possible. The steps involved in a saw move are illustrated

in Figure 3.4

A crossing is defined as the (undesired) scenario in which the path of a moving train is

blocked by one or more other trains. For example, if train 2 in Figure 3.2 attempts to

leave the LIFO-track before train 1, its path is obstructed by train 1 and a crossing will

occur. A shunt plan that contains a crossing is infeasible.
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(a) Move to the reversal track (b) Transfer control (c) Move to the destination

Figure 3.4: The steps of a saw move to get the train, depicted as a rectangle, from
its original track to the top track. It moves to a track on which the saw manoeuvre is
possible (a), before transferring control from one end to the other (b). As a result the
original head (H) of the train becomes its tail (T) and vice versa. The train can then

move to its destination (c).

3.2 Train Unit Shunting Problem

Lentink identified four subproblems in the Train Unit Shunting Problem, namely match-

ing, parking, routing and cleaning. For the purpose of this study we will expand the

notion of cleaning to service tasks in general. In the following subsections we will de-

scribe the different components of the TUSP in detail and indicate any differences in

our problem formulation and the problem as described by Lentink [22].

3.2.1 Matching

In the matching problem, we are given a set of arriving trains AT and a set of departing

trains DT . Each arriving train at ∈ AT has an arrival time aat and consists of a sequence

of one or more train units (tuat1 , · · · , tuatm). No two arriving trains have a train unit in

common and the set of all train units in the arriving trains equals the set TU . Similarly,

a departing train dt ∈ DT departs at time ddt and specifies a sequence of one or more

train subtypes (stdt1 , · · · , stdtn ). The arrivals and departures are mixed over time, i.e. a

departure can happen before all trains have arrived.

The objective in the matching problem is to match each train unit tu in an arriving

train at to a specific position i in one of the departing trains dt such that

1. sttu = stdti , the train subtypes match, and

2. aat ≤ ddt, the train unit enters the service site before departure.

In general, we can refine the second condition to include the duration of the service tasks

of train unit tu,

aat +
∑
σ∈Stu

dσ ≤ ddt, (3.1)
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since the train unit has to spend at least that amount of time on the service site. Note

that this is a necessary, yet not sufficient condition for the trains to depart on time.

Other factors such as the duration of the train movements and the schedule of the

service task can still cause delayed departures.

When two train units, coupled at arrival, are assigned either to two different departing

trains or in a different order to a single departing train, they have to be split on the

service site. Similarly, if train units assigned to the same departed train are not coupled

(correctly) at arrival, a combine operation has to take place. For most trains, each

splitting operation takes two minutes and a combine three minutes. Therefore, it is

usually preferable to find a matching that minimizes the number of changes to the train

compositions.

In practice, parts of the matching are already predefined, that is, some train units

are already assigned to a specific position of a departing train. These train units are

scheduled in advance to ensure that they reach one of the maintenance depots in time

for larger maintenance. The fixed matches simplify the matching problem significantly,

although it limits the flexibility at the service site by forcing undesirable splits and

combines.

We assume the service site to be empty at both the start and the end of the day. Trains

parked for multiple days are easily modeled by adding dummy arrivals before all other

arrivals and corresponding dummy departures after the other trains have left the service

site.

It was shown by Lentink [22] that the problem of finding a train unit matching that

minimizes the number of splits and combines, without even taking the routing and

service task durations into account, is NP-hard in the strong sense by a reduction from

the 3 PARTITION problem.

3.2.2 Task Scheduling

For each train unit, we are given a set of service tasks together with their respective dura-

tions. Each service task requires some resource for its entire duration and the availability

of resources is usually limited. Furthermore, we assume no precedence relations between

service tasks, neither between tasks of different train units nor among tasks belonging

to the same unit. In the task scheduling problem, a schedule must be constructed such

that all tasks are completed and all trains can depart on time.

Although services are specified for individual train units, in practice the tasks are carried

out on the shunt train level, meaning that all service tasks of the same resource are
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performed as one for a shunt train, with the corresponding duration equal to the sum

of the separate train unit tasks. As a result, the actual tasks that have to be scheduled

depend on the composition of the shunt trains.

If we assume all arriving and departing trains to consist of a single train unit, the ser-

vice task scheduling simplifies to a generalization of the Open Shop Scheduling Problem

(OSSP), a well-known NP-complete problem. Specifically, we get an open shop schedul-

ing problem with machine flexibility, release dates and deadlines. In this formulation,

the different resources are the machines. Each train unit is a job, with its service tasks

corresponding to operations in the OSSP. The release dates and deadlines of an operation

depend on the arrival and departure of the train unit.

3.2.3 Parking

A shunt train that moves to a track τ will be added in front of one of the two sides of the

sequence of trains already parked on the track. This side is fixed if τ is a LIFO-track,

otherwise it depends on the arrival side of the train. The main objective in the parking

problem is to place all shunt trains on the tracks such that at any moment in time the

combined train length does not exceed the length of the track, while simultaneously

ensuring that each shunt train has an unobstructed path off the track when it has to

depart. The order of trains on a free track depends not only on the order of arrival, but

also on the arrival side. Therefore, the arrival side has to be specified as well when we

park a train on a free track.

An additional constraint is that parking, splitting and combining is not allowed at the

gateway-tracks, which in particular means that all shunt trains of a departure composi-

tion should be parked on one track in the correct order to combine the trains. To avoid

conflicts in the shunt plan, it is allowed to park a train temporarily at a different track,

a property that is exploited in the work of van den Akker et al. [1].

For the case that the parking intervals of all shunt trains are known, the problem turns

out to be NP-complete. This was proven by Lentink [22] using a reduction from the

BIN PACKING problem.

3.2.4 Routing

The aim of the routing problem is to find for each train movement an unobstructed path

that minimizes the movement duration. Many functions, with varying levels of detail,

can be used to approximate the duration of a route. For the service sites operated
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by NedTrain, we estimate the duration based on the number of tracks, switches and

required saw moves on the path, using the following values.

• Traversing a track takes sixty seconds, regardless of train type or length.

• Transitioning from one track to another requires thirty seconds for each switch

along the way. This is a rather crude estimate, as switches can be operated either

automatically or by hand, depending on the service site. For automatic switches,

the thirty seconds is a realistic duration, whereas roughly two minutes are needed

if the driver has to operate the switch by hand. However, the manual switches will

be on average half the time already in the correct position, requiring no operating

time. Furthermore, it is usually possible for one of the staff to operate the switch

in advance, which justifies the thirty seconds approximation. The duration is

independent of the train composition.

• In contrast, the time it takes to perform a saw move does depend on both the train

type and the train length. The reversal of a train requires that the control of the

train is transferred to the other side and the driver must walk from one end to the

other. The process of reversing a shunt train usually takes somewhere between

two and four minutes, while the time it takes for the driver to walk to the other

side of the train is estimated to be between twenty to thirty seconds per carriage.

Note that when a train performs a saw move, it traverses the track used for the

reversal twice, which has to be taken into account during the computation of the

duration of a route.

These durations have been validated by the planners at NedTrain to provide a good

approximation of the actual movement durations observed on the service site.

In contrast to the work of Lentink, we do not allow simultaneous movements on the

service site. Due to safety regulations, train controllers, of whom there is often only one

present at a site, may only guide a single train movement at any time. Although these

regulations are in reality often violated due to delays, an initial shunt plan should follow

the correct procedure, thus significantly simplifying the routing problem. As routes can

no longer intersect, there is no longer any interaction between them, meaning that the

computation of one route is independent of other routes. Furthermore, we can define a

linear ordering on all movements on a service site.

It can occasionally happen that while a train is moving, another train arrives according to

the timetable. However, since gateway-tracks are not available for parking, the incoming

train has to move immediately to a different track, thus violating the single movement
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rule. Therefore, in order for a plan to be feasible, it should ensure that no other train

moves during an arrival.

We can find a shortest path (or determine that no path exists) in polynomial time if we

assume the track occupation on the site at the time of the movement to be fixed. How-

ever, we are allowed to move parked trains out of the way and position them elsewhere.

The problem of deciding whether there exists a sequence of train movements such that

a shunt train reaches its destination closely resembles the decision variant of the sliding

block puzzle RUSH HOUR, a problem known to be PSPACE-complete [11].

3.3 Example

Figure 3.1: An example of a service site. Trains enter and exit the site over gateway-
track G and can be parked on tracks 1 to 4. The tracks are connected by the switches
α and β. The length of the parking tracks is displayed in meters. A cleaning platform

allows internal cleaning tasks to be performed on trains positioned on track 2.

To illustrate the train unit shunting problem, let us consider a simple scenario of three

train units at the service site in Figure 3.1. There are two arriving and two departing

trains in this example, which are scheduled according to the timetable in Table 3.2. The

train units are of the ICM type, depicted in Figure 3.3. The duration of a saw move of

an ICM train is four minutes plus an additional thirty seconds per carriage. Two train

units are scheduled for an internal cleaning, as can be seen in Table 3.1.

Train Units Type Service Tasks

1 ICM-3 (82m) cleaning (34 minutes)
2 ICM-3 (82m) cleaning (34 minutes)
3 ICM-4 (107m) none

Table 3.1: The train units in the example scenario.

No predefined matching is provided in this scenario, and hence we can freely assign the

train units 1 and 2 to either the first departure or the right-most position in the second

departing train. The first arriving train has to be split, because there is no match for

the entire train and the train is longer than the length of track 2, which provides access
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Arriving Train Time

(1, 2) 12:00
(3) 12:30

Departing Train Time

(ICM-3) 12:45
(ICM-4, ICM-3) 14:00

Table 3.2: The arrivals and departures in the example scenario. The departure trains
specify the composition of subtypes instead of the train units, since the assignment is
part of the matching problem. The ordering of the train units or subtypes indicates
from left to right the order of the train units or subtypes in the train on the service site.

Train Unit Consecutive Locations (Activity)

1 G (A) → 3 (P) → 4 (P) → 2 (C) → 1 (P) → G (D)
2 G (A) → 3 (P) → 2 (C) → G (D)
3 G (A) → 1 (P) → G (D)

Table 3.3: The locations of each train unit in chronological order. The activity at
each location — arrival (A), parking (P), cleaning (C) and departure (D) — is displayed

between parentheses.

to the cleaning platform. Furthermore, there will be one combine operation to form the

composition of the second departure. With only a single cleaning platform, we have to

decide in which order the service tasks will be completed. Additionally, we have to park

the three train units when they are not being cleaned in such a way that the trains can

depart on time without any crossings.

Let us start the construction of a feasible shunt plan by matching incoming to outgoing

trains. We assign train unit 2 to the train departing at 13:00; the other two train

units will be part of the second departure. As train unit 2 is the first to depart, we

schedule it to be cleaned before train unit 1. A feasible assignment of parking locations

is shown in Table 3.3. The corresponding movements and composition changes are listed

in chronological order in Table 3.4.

The movement durations are based on the values provided in Section 3.2.4. For example,

the movement of the last departure travels over six tracks (a reversal track is counted

twice) and crosses each switch on the service site twice, which requires 6 · 1 + 4 · 1/2 = 8

minutes. The saw move adds an extra 4 + 7 · 1/2 = 71/2 minutes based on its length, for

a total of 151/2 minutes. Note that this shunt train has to reverse on track 4, as track 3

is too short for this manoeuvre.

This example illustrates the main complexity of the Train Unit Shunting Problem. Al-

though the individual shunting subproblems — matching, servicing, parking and routing

— are seemingly trivial to solve, the interaction between these components will make

most shunt plans infeasible. Although parking on track 3 is possible, it blocks vir-

tually all routes on the service site. Furthermore, poorly parked trains might require

multiple saw moves, which can easily cause departures to be delayed in this heavily time-

constrained example. The service task schedule is determined entirely by the matching,
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Start Time End Time Shunt Train Activity Track(s)

12:00:00 12:02:30 (1,2) Movement G → 3
12:02:30 12:04:30 (1,2) → (1), (2) Split 3
12:04:30 12:07:00 (2) Movement 3 → 2
12:07:00 12:09:30 (1) Movement 3 → 4
12:30:00 12:41:00 (3) Movement G → 3 → 1
12:41:00 12:45:00 (2) Movement 2 → 3 → G
12:45:00 12:55:30 (1) Movement 4 → 3 → 2
13:29:30 13:33:30 (1) Movement 2 → 3 → 1
13:33:30 13:36:30 (3), (1) → (3, 1) Combine 1
13:44:30 14:00:00 (3, 1) Movement 1 → 3 → 4 → 3 → G

Table 3.4: The movements and composition changes of trains in a shunt plan for the
example scenario provided in Tables 3.1 and 3.2.

as there is not enough time to clean both train units of the first arriving train before

one of them has to depart. The matching is dependent on the parking and routing as

well; switching the order in which train units 1 and 2 depart will result in an infeasible

solution due to the small time-window between the first arrival and departure.

Other examples of the interactions between the different components of the TUSP are

listed below.

• As trains might be forbidden to park on tracks that are part of some facility, service

tasks can be scheduled such that fewer trains have to be parked simultaneously.

• Some tracks might only be reachable by moving through some facility, which cre-

ates a dependency between the routing and servicing subproblems.

• As mentioned in Subsection 3.2.1, whether a matching is possible depends both

on the service task schedule and the routes that are taken. The latter is in turn

mostly determined by the location of the parked trains.
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A TUSP Local Search Model

In the past few years, the NS has developed a tool for the matching, parking and routing

subproblems of the TUSP. This tool, called the OPG, first estimates the routing cost of

shunt from one track to another, similar to the approach taken by Lentink et al. [23].

Secondly, the matching and parking subproblems are solved simultaneously, using the

cost estimates of the routes to find track assignments that simplify the subsequent rout-

ing problem. To find a matching and a parking assignment, a problem formulation based

on the mathematical model introduced by Kroon et al. [21] is solved by CPLEX. In the

final step of the OPG, many routes are generated for the movements, and CPLEX is

used to find a feasible combination of these routes. The OPG allows movements to

be performed simultaneously. To determine the capacity of the service sites, the OPG

has recently been extended to include the scheduling of service tasks. This extension

greedily schedules tasks in order of the earliest possible starting time such that no pair

of tasks of the same train unit are executed simultaneously. The movements required

by the resulting schedule are then supplied to the other components of the OPG. The

task scheduler determines the tracks for the track-specific tasks, while the locations of

track-independent tasks are assigned by the matching and parking module of the OPG.

Although the OPG is able to construct shunt plans for small instances, the results are

currently unsatisfactory in more realistic cases. The OPG is capable of planning fewer

train units than human planners, due to its limited flexibility — most notably, it lacks

the option to shunt a train to a different track during a parking interval — and excessive

computation time for larger instances.

Since the mathematical models developed thus far have proven to be either too complex

or too restrictive to solve the TUSP in a reasonable amount of time, it is worthwhile

to explore different techniques for solving the train unit shunting problem. Heuristics

based on decomposing a problem into smaller, independent parts are often applied to

19
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similar problems, because the individual subproblems are usually much simpler to solve

than the parent problem. However, a decomposition method is unlikely to be effec-

tive for the TUSP due to the complex interactions between the different components.

Therefore, we propose an integrated approach based on local search to the train unit

shunting problem in this study. Local search algorithms gradually improve some can-

didate solution, a shunt plan in case of the TUSP, by making small changes, and have

been applied numerous times in the field of Operations Research with great success. A

stochastic variant of local search, Simulated Annealing [20], is used in this study, but

many aspects of our proposed method apply to similar heuristics such as Tabu Search

[14, 15] as well.

In this chapter we will present all the components of our local search approach to the

Train Unit Shunting Problem. We start with an overview of the simulated annealing

technique, followed by the objective function used in our algorithm. A graph repre-

sentation of shunt plans is introduced next, which, together with a set of local search

operators, can be embedded within the simulated annealing framework to construct good

solutions for the TUSP. We conclude this chapter with a procedure to find an initial

shunt plan for the local search.

4.1 Introduction to Simulated Annealing

Local search is a heuristic method that attempts to find the global optimum, a solution

that minimizes some objective function. Starting from an initial solution, local search

algorithms move through the search space, the set of all solutions, by iteratively applying

small, local changes. The procedure of making a certain type of adjustment to a solution

is referred to as a search operator. The neighborhood of a solution is the set of all solutions

reachable from the current solution through a single application of a search operator.

A local search algorithm has to decide which solution is selected from the neighborhood

as a candidate solution for the next iteration of the search process. This does not

necessarily have to be the best neighbor, or even a neighbor solution with a better

objective value than the current solution. In the naive local search approach called hill-

climbing we repeatedly move to a better neighbor until we reach a position in the search

space where all neighbors are worse. This position is referred to as a local optimum.

Although the global optimum is a local optimum as well, search spaces often contain

many local optima, and the objective value of a local optimum does not have to be close

to the global optimum. Since there are no better neighbors around a local optimum, the

hill-climbing approach cannot escape from a potentially bad solution. Therefore, more
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sophisticated local search algorithms have mechanisms to move away from local optima,

accepting a worse solution in hopes of finding a better area in the search space later on.

Much research has been devoted to creating better search strategies. One extensively

studied technique is Simulated Annealing [5, 20], a stochastic search process that has seen

many successful applications to other computational problems. A simulated annealing

algorithm randomly selects a neighbor and accepts it immediately as the candidate

solution for the next iteration if it is an improvement over the current solution. If the

selected solution is worse, it is selected with a certain probability depending on the

difference in solution quality and the state of the search process. Let b be the selected

neighbor of the current solution a, and suppose we are minimizing an objective function

f . If f(b) > f(a), then the probability of acceptance p is

p = e
f(a)−f(b)

T , (4.1)

where T is a control parameter called the temperature. Every Q iterations, we multiply T

with a value 0 < α < 1 to gradually decrease the probability of accepting a deterioration

over the course of the search. The algorithm ends when a stopping criterion, such as a

maximum running time or time without improvements, is fulfilled and returns the best

solution found during the entire search.

4.2 Objective Function

A solution to the train unit shunting problem is a shunt plan that consists of

1. an assignment of incoming train units to positions in the departing trains, as well

as the splits and combines required for the matching,

2. a service task schedule, containing for each service task a starting time and a

resource,

3. the parking track (and arrival side) for each time period that a train is idle, and

4. the order of movements along with the routes taken by each.

The aim of our local search algorithm is to find a shunt plan that respects all constraints

described in Chapter 3. Our heuristic is built around the concept of resource feasibility.

We ensure in all generated plans that each service resource, whether facility or crew,

has at most a single task at any time. No simultaneous movements are allowed as

well, since the drivers can be viewed as a type of resource. Additionally, a proper
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matching of arriving and departing trains is ensured during the entire algorithm, i.e. no

type mismatch can occur. The other constraints in TUSP, most notably regarding the

departure time and the routing conflicts, are added as soft constraints in the objective

function.

We can compute the following properties for a shunt plan p.

• crp(m) = the number of crossings of movement m.

• tlvp(τ) = the number of occasions in the entire shunt plan that the combined train

length of shunt trains occupying track τ exceeds the length lτ .

• delayp(d) = the delay of departure train d.

• delayp(a) = the delay of arrival train a. Note that an arrival delay can only occur

when a train arrives during the movement of another train. Trains are not allowed

to stand still on a gateway-track.

• gcp(d) = 1 if departure train d requires a combine operation on its gateway-track,

and 0 otherwise.

A shunt plan is feasible only if none of these values are greater than zero. During the

local search, we have to determine whether a neighbor solution is preferable over the

current shunt plan, i.e., estimate if it is “closer” to being feasible. To the end, we assign

penalties to the undesirable properties in the objective function and search for a solution

that minimizes the costs. The cost of shunt plan p is computed with the equation

cost(p) = wcr ·
∑

movement m∈p
crp(m) +

wtlv ·
∑
τ∈T

tlvp(τ) +

wd ·
∑

departure d∈p
1(delayp(d)) + w′

d ·
∑

departure d∈p
delayp(d) +

wa ·
∑

arrival a∈p
1(delayp(a)) + w′

a ·
∑

arrival a∈p
delayp(a) +

wgc ·
∑

departure d∈p
gcp(d) +

wm · |{m | movement m ∈ p}| ,

(4.2)

where 1 is the indicator function. In this equation, each property of the shunt plan

is multiplied with a corresponding weight w. Although it is sufficient to include only

the existence of delays in the objective function, as even a delay of one second is still

not acceptable, the total delay is used to guide the local search. This is based on
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the assumption that smaller delays are usually more easily resolved. The number of

movements is penalized, as a shunt plan with minimal moves is preferred by the planners

at NedTrain. Although the movement count is not used to determine the feasibility of

a shunt plan, it can aid the local search by directing it to more promising areas in the

search space.

4.3 Shunt Train Activity Graph

Essential to any local search algorithm is a solution representation that properly captures

all important aspects of the solution, while simultaneously allowing for easy modification

through the local search operators. This is especially important for the Train Unit

Scheduling Problem with its tightly connected supproblems.

To represent the different characteristics of a shunt plan and ensure that all hard con-

straints are respected, we model each activity in the shunt plan as a node in a precedence

graph. The resulting Shunt Train Activity Graph — referred to as STAG or simply Ac-

tivity Graph in the remainder — is a directed acyclic graph, where the arcs indicate the

precedence relations between the nodes. The activity graph for the example shunt plan

constructed in Section 3.3 is shown in Figure 4.1. We distinguish multiple node types

based on their activity, each type having its own set of data associated to the node. Our

graph model consists of the following node types.

1. The arrival nodes contain information on the arrival time and track.

2. Similarly, a departure node stores the departure time and track.

3. The service nodes keep track of their service tasks, such as cleaning, and assigned

resource.

4. parking nodes.

5. A movement node stores the entire path from origin to destination together with

its duration.

6. The departure movement node is a specialized movement node that always precedes

a departure node. If not all shunt trains are combined before departure, the

departure movement node contains multiple routes to the departure track; one for

each shunt train that is not yet combined.

Additionally, all node types except the movement node store information on the assigned

track and arrival side. The first four node types are referred to as track activity nodes.

The arcs in the graph express precedence constraints of



A TUSP Local Search Model 24

Figure 4.1: The activity graph of the shunt plan in Section 3.3. The arrival (A),
service (S), parking (P), movement (M), departure movement (DM) and departure
(D) nodes are connected by arcs indicating the precedence relations. Solid, black arcs
represent the order of operations of one or more shunt trains. The corresponding train
units of the nodes are between parentheses. The grey, dashed arcs determine the order
of the movements, and the black, dotted arc indicates which service task is completed
first. The assigned track for each parking node is shown in subscript. Other information

stored at the nodes is omitted for clarity.

1. activities either of the same shunt train or between a predecessor-successor-pair of

shunt trains,

2. movements or

3. service tasks assigned to the same resource.

All nodes, except for the movement nodes, have at most one incoming and one outgoing

arc, both connected to a movement node. Movement nodes have at least one incoming

and one outgoing arc, with more than one incoming arcs indicating a combine operation

and multiple outgoing arcs when splitting. Here, we assume that splits always happen

directly after arriving on a track and combines just before departure from a track.

Examples of splitting and combining can be seen in Figure 4.1 at the first movement

node respectively the departure movement nodes. If, for example, a shunt train stays

on the same track for parking after a service operation, there still is a movement node

separating the two activities in the STAG, albeit one with an empty route and no

duration.

The movement and service orders are modeled explicitly in the activity graph. Further-

more, the matching follows directly from the shunt train compositions at the departure

nodes. The parking and route information is stored at the corresponding nodes; hence

the corresponding shunt plan can easily be inferred from the activity graph.

Due to the strong dependencies between the different elements of the TUSP, few adjust-

ments to a shunt plan are truly local. Even a simple change of track of a parking node in

the STAG can affect all movement during the entire parking interval. Therefore, when-

ever a local search operator modifies the current STAG, we not only need to determine
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Figure 4.2: A single track at the service site is split into four vertices, two at each
side. Arcs model the possible moves of a train on the track and the connection to other

tracks on the service site.

the cost of the new solution, but also evaluate the routes and finish times of multiple

nodes. In the next two sections we will discuss how these components are updated.

4.4 Routing

After each alteration, we recompute all routes that were potentially affected by the

change. To find the shortest path for each movement, a model of the railroad infras-

tructure at the service site is needed. Similar to the approach taken by Lentink [22],

we model the infrastructure as a graph with sets of four vertices for each track. Each

track has two vertices on either side, one for entering and one fore exiting the track on

that side. The arcs in the graph represent the possible manoeuvres of a shunt train.

Arcs connecting the entry vertex on one side to the exit vertex on the opposite side

allow trains to move over the track, while arcs between the two vertices on the same side

indicate a saw move on that particular side of the track. Access to the track is modeled

through incoming arcs at the entry vertex and outgoing arcs from the exit vertex to

other tracks.

The objective in the routing problem is to find the path with the shortest durations

among the routes of minimal crossing count. We can model this problem as a single-

source shortest path problem by assigning weights to each arc in the graph. These

weights consist of two components, one based on the duration of the action corresponding

to that arc and one indicating the cost in terms of crossings. We can map the durations

described in Section 3.2.4 directly to weights for the different arc types.

• The arcs that connect the two sides of a track have a weight of sixty seconds.

• Access arcs, used to move from one track to another, have a penalty of thirty

seconds for each switch between the two tracks.
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• The time it takes to perform a saw move, and hence the weight of the corresponding

arcs, depends on the composition of the train. The weight of a saw move arc is for

each train composition simply the time in seconds needed for the manoeuvre.

The weights that penalize paths with crossings depend on both the train length and the

occupation of the tracks during the movement. Moving over a track results in a crossing

whenever there are one or more trains positioned on the track. During a saw move, a

crossing occurs if the total amount of free space on the track is less than the length

of the reversing shunt train. We count the situation where the track is empty, yet the

train is longer than the track, as a crossing as well, since this is not allowed in a feasible

shunt plan. As shunt trains are not allowed to park on the railroad that connects the

individual shunting tracks, they can always move along those arcs in the graph without

the risk of a crossing. The actual weight of a crossing is chosen such that it dominates

the duration weights of all possible routes to prefer paths with fewer crossings over a

shorter, but more conflicted path.

By expressing the routing problem as a single-source shortest path problem, we can apply

standard search algorithms such as Dijkstra’s algorithm [8] to find the least conflicted

route with the shortest duration for each movement.

The frequent shortest path computations are expected to have a significant impact on

the running time of the entire local search algorithm, as each adjustment of the activity

graph likely requires several movements to be recomputed. Therefore, we propose two

methods to improve the speed of solving the routing subproblem. Firstly, we note that

the number of train compositions is fairly limited in practice. Each train type only has

a few subtypes and the maximum length of a train is restricted, as it has to fit on some

station platform. This allows us to compute for each train composition the path with the

shortest duration between every pair of tracks on an empty service site in advance. The

solutions to these all-pairs shortest path problem can then be used as a heuristic to guide

the search for the shortest path in case the service site is not empty, extending Dijkstra’s

algorithm to the informed search algorithm A* [16]. Both Dijkstra’s algorithm and A*

search for the shortest path from source s to target t by constructing partial paths —

the shortest path to a set of discovered but not yet expanded vertices — and repeatedly

expanding the partial path that is estimated to be the shortest path to t. Let, for any

two vertices u, v, d(u, v) be the distance from u to v including crossings and let h(u, v)

be the distance without. Dijkstra’s algorithm expands the partial path ending at v that

minimizes d(s, v), whereas A* uses d(s, v) + h(v, t) as estimate for the expansion order.

For A* to find the shortest path, the heuristic has to be admissible, meaning that it

never overestimates the distance of one track to another. The admissible criterion is

clearly satisfied by the shortest duration heuristic, as it provides a perfect estimate if
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the shortest path is unobstructed and underestimates the length of the path whenever

there is a crossing. The heuristic allows us to find the shortest path more quickly than

with a plain Dijkstra’s algorithm, although its effect becomes less evident as the number

of occupied tracks grows.

Secondly, the crossings depend on the occupation of the tracks, or the state, of the

service site at the time of the movement. It is likely that, during the computation of

the shortest path, we encounter a state similar or identical to some previous state. This

can be exploited by storing each computed route along with the current state and using

a cached route if the origin and destination are the same and the states are similar.

To determine whether two states are similar, we only consider the potential crossings

along the route. This allows us to express a state as a set of Boolean values, two per

track, that indicate the existence of a conflict when reversing on or crossing the track.

Constructing this expression can easily be done if the current state of the track and the

shunt train of the movement are known. Note, however, that no information on the

shunt train is stored, hence in similar states we store the same route for all shunt trains.

This route is not necessarily the optimal path for all shunt trains, as the time it takes to

perform a saw move depends on the train type and the number of carriages. In practice

the duration of saw moves dominates the time required to move over the tracks and

switches on the route, thus resulting in very few suboptimal paths. Furthermore, the

most important aspect, the number of conflicts, will be the same in both the stored and

the shortest path, suggesting that this improvement is a favorable trade-off. To prevent

the cache mechanism from consuming too much memory, it is advisable to limit its size

and remove old entries once the cache starts to fill.

4.5 Time

Once the routes have been computed, the arrival and departure punctuality can be

computed. We evaluate the movements in order and determine the earliest start time of

a movement node as the maximum end time over all predecessor nodes in the activity

graph. The end time is then the start time plus the duration of routing and, if applicable,

splitting or combining.

The departure movement nodes are a special case, since a departing train needs to arrive

exactly on time at the gateway track, instead of when it is finished with its tasks. For

these nodes, we set the start time as close as possible to the scheduled departure time

minus the duration, without preceding any predecessor nodes.
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As the time computation requires only constant time per node in the activity graph,

its effect on the overall computation time is likely to be dominated by the routing

subproblem.

4.6 Search Neighborhoods

In the next four subsections, we will outline the neighborhoods that will be explored for

new solutions by our algorithm. The neighborhoods are grouped by the subproblems —

routing, parking, servicing or matching — affected by their corresponding local search

operators.

Our local search approach does not include a neighborhood for the splitting and com-

bining of trains. Although the activity graph is capable of modeling any configuration

of splits and combines of the shunt trains, we split each arriving train at most once, at

the first track the train is moved to after arrival. Similarly, each shunt train is combined

no more than once, just before departure from the service site. Furthermore, an arriving

train is split precisely into the parts determined by the current matching and the length

restrictions based on the service tasks, as described in Subsection 3.2.1. The matching

itself can be modified by applying a local search operator, and any change in matching

is likely to result in different splits and combines.

This heuristic approach to splitting and combining removes the dimensions of how and

when to change shunt train composition from the search space of our local search al-

gorithm, reducing its size considerably. This allows us to focus solely on the remaining

components of the shunt planning process. Regarding the performance impact on our

algorithm of the splitting and combining restriction, it is unlikely that all feasible shunt

plans are outside the reduced search space. On one hand, splitting and combining only

once per train reduces the time spent on composition changes. On the other hand, the

early splits and late combines mean that the shunt trains, and thus the service task du-

rations, are short for most of their stay at the service site, which in general simplifies the

service scheduling and parking subproblems. These two changes are expected to provide

a good balance between the routing durations, which include splitting and combining,

and the service and parking scheduling, that favour short trains and services; hence an

operator that changes train compositions would only be usefull in rare circumstances.

4.6.1 Routing

The routes taken by the shunt trains are recomputed whenever the track occupation

changes, and as such, no local search operator is needed for the path-finding component
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of the routing problem. However, we can attempt to improve a shunt plan by reordering

the movements. Suppose that train a is parked on a LIFO-track. If a train b arrives

on the same track just before train a departs, a crossing will occur. In this case, it

is beneficial to let a depart before b arrives. The search neighborhood of rearranging

movements is denoted as the movement shift neighborhood. The corresponding local

search operation consists of selecting a movement node and shifting it earlier or later in

the linear ordering imposed on the train movements. To ensure that the resulting shunt

plan is valid, a number of constraints have to be respected. Shifting node n to an earlier

or later position, before respectively after node m, is only allowed if

1. the nodes n and m have no train unit in common and

2. no service tasks assigned to the same resource overlap.

If shifting a node to an earlier or later position of the linear ordering of movements is

not allowed, then the same holds for all further positions in the respective direction.

In some cases, we can improve the shunt plan by reducing the number of movements.

Consider the scenario where we have shifted a node next to a movement node of the

same shunt train. Suppose that the node between the two movements in the activity

graph is a parking node. Then the shunt train has to move from some activity to the

track corresponding to the parking node, wait there some time and then continue to

its next activity, whereas in the meantime, no other changes in activity happen on the

service site according to the shunt plan. When such a scenario occurs, we can simply

skip the parking activity and merge the two movement nodes.

Merging the movement nodes means that there is no buffer time between two other

activities. This can severely limit the flexibility of subsequent local search operators.

Therefore, all operators can insert an extra parking activity into the graph whenever

buffer time between two activities is necessary.

4.6.2 Parking

Conflicts in the shunt plan such as crossings and trains exceeding the track length can

often be solved through changes in the parking activities. We propose three different

search neighborhoods for our local search approach that modify the parking location of

shunt trains.

1. The parking reassignment neighborhood simply consists of all shunt plans that can

be constructed by changing the track and arrival side of one parking activity. This
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means that for each free track on which we can park the shunt train, there will

be a solution for both arrival at the A-side and the B-side in the neighborhood.

If multiple parking activities have the same movement node as predecessor in the

activity graph due to a split, we change the assignment for all involved parking

nodes. Otherwise, a single train movement would end at different tracks, and the

shunt plan would be invalid.

2. Similarly, the parking swap neighborhood is the set of solutions obtained by swap-

ping the track and arrival side of two parking activities that overlap in time.

3. To overcome one of the drawbacks of the OPG, we introduce the parking reposition

neighborhood. The corresponding local search operator splits a parking node into

two, with a movement node in-between. Either the first or the second parking

node is assigned to a different track, the other one remains the same. This allows

us to move a train that is blocking the path out of the way or position a train such

that it can be combined before departure. Due to the number of parking activities,

possible track assignments and positions for the new movement node in the linear

ordering of movements, we only apply this operator when it can potentially solve

a conflict. This means that we limit the operator to cases where a conflict, such

as a crossing, occurs on the same track as the parking activity and position the

new movement node resulting from the split just before the movement leading to

the conflict.

One of the main reasons to include the number of movements in the objective

functions is to prevent this local search operator from introducing an excessive

number of extra parking activities.

4.6.3 Servicing

The local search operators that adjust the resource assignment and order of the service

tasks are based on operators proposed in the literature on similar problems such as the

Job Shop Problem [7], the Open Shop Problem [24] and their counterparts with machine

flexibility [4].

1. All valid solutions that can be constructed by swapping the order of two consecutive

service tasks assigned to the same resource are part of the resource order swap

neighborhood.

2. Similarly, the train order swap neighborhood contains the shunt plans in which

the execution order of two consecutive service tasks of the same shunt train are

swapped.
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3. In a solution in the resource reassignment neighborhood, a single service task is

assigned to a valid position in the task schedule of a different suitable resource.

The order of tasks of the shunt train remains the same.

The order of the movements to and from the rescheduled service tasks often has to be

updated as well. These movement nodes are inserted in the ordering on the movement

activities such that tasks using the same resource do not overlap and the time between

the movements to and from the same task is close to the duration of the task.

As with the movement shift neighborhood, we have to take care that we preserve the

acyclic property of the activity graph of all neighbors, because activity graphs with cycles

correspond to invalid solutions. For the resource and train order operators, generating

invalid solutions can easily be avoided by checking whether the start of a subsequent

task of the first shunt train respectively resource occurs before the end of a previous

task of the second shunt train / resource. If this is the case, the swap is not valid, as

can be seen in Figure 4.3. The resource reassignment operator can only assign a service

task to a resource if the task schedule of the resource has a position available between

predecessor and successor tasks of the service task.

(a) Swapping tasks a and b assigned to resource R2 is
not possible

(b) Swapping tasks c and c′ belonging to the same shunt
train is not possible

Figure 4.3: Infeasible service task schedule swaps in the resource order swap (a) and
the train order swap (b) neighborhoods. The swaps are not possible, as both require
the order of other tasks to be adjusted as well. Dashed arcs indicate resource order;

solid arcs represent precedence relations of tasks of the same shunt train.

4.6.4 Matching

Changes to the matching are made by interchanging the assignment to positions in

departing trains of two (partial) shunt trains. The matching of these parts can only

be swapped if their composition is identical, none of the train units has a fixed match

and, for both parts, the arrival time plus the sum of the service tasks durations is less

than the assigned departure time. The train unit swap operator corresponding to these

interchanges can cause the composition of the shunt trains to change. Train units might
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become part of a different shunt train, multiple shunt trains can be merged or a single

shunt train is split into parts. We update the activity graph by connecting the last service

or parking node of each shunt train to the correct departure movement node. Cycles in

the graph can occur if a movement of the newly assigned train units is scheduled later

than the departure movement; hence we adjust the position of the departure movement

in the movement ordering if necessary to avoid invalid shunt plans. When there is a

departure delay, we move the departure movement to an earlier time if possible.

Since service tasks are executed on the shunt train level, the change in train composition

can result in new tasks that have to be assigned to resources and ordered. If the new

service tasks are the result of a split, they can often simply be inserted back into the task

schedule at the position of the service task they were originally part of. When multiple

service tasks are merged, we first attempt to insert the new task at the position of one of

the original tasks. If no allowed position is found, we look for any available resource that

has a position available that causes no resource conflicts, allowing the tasks of the shunt

train to be reordered. Otherwise, we randomly select one of the positions of the original

tasks and delay all other subsequent tasks assigned to the corresponding resource.

Furthermore, each of the parking activities of the new shunt trains have to be assigned

to a track. When splitting, we simply use the track assignment of the original shunt

train. For merged shunt trains, we select for each parking activity the track that results

in the smallest number of conflicts. The track occupation over time is often changed

significantly by the swaps, thus requiring many train movements to be reevaluated.

The train unit swap operator is highly disruptive to the shunt plan, with far less simi-

larity between neighboring solutions constructed by this operator than neighbors in the

search neighborhoods described in the previous sections. Instead of operating locally,

the solutions in this swap neighbor more or less resemble restarts of the local search

algorithm. Therefore, we propose another, more restricted neighborhood to use in con-

junction with the train unit swap operator. This shunt train swap neighborhood is a

subset of the train unit swap neighborhood, in which we only consider swapping the

assignments of entire shunt trains and do not merge shunt trains. In these solutions,

no shunt train will be split and individual train units cannot be assigned to a different

shunt train. Although the corresponding local search operator is far less flexible than

the train unit swap operator, it has the property that the shunt train composition, and

thereby the set of service tasks, is preserved between neighbors. This limits the changes

in the activity graph to the departure movement nodes. Ideally, we would only use the

train unit swap operator if major modifications to the matching have to be made, and

search for solutions in the shunt train swap neighborhood otherwise.
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4.7 Initial Solution

In the previous sections we have described our local search algorithm for the train unit

shunting problem. However, every local search requires an initial solution to start with.

One of the properties of simulated annealing is the tendency to move away quickly from

the initial position in the search space, as it often accepts a deterioration in solution

quality at the start of the search. As a result, any decent shunt plan suffices as initial

solution. On the other hand, the shunt plan has to adhere to the hard constraints posed

in Section 4.2. Therefore, we will present a simple sequential algorithm to construct the

first shunt plan.

We start with the matching subproblem. A perfect matching between the incoming and

outgoing train units is constructed such that no arriving unit is matched to a position on

a train that departs before all tasks of the unit can be finished. This constraint on the

matching is similar to the necessary condition for entire shunt trains in Equation (3.1).

The arriving units and departing types form a bipartite graph, which allows us to con-

struct the matching using the well-known matching algorithm of Hopcroft-Karp [17].

Note that we can immediately abort the search for a feasible shunt plan if no perfect

matching can be found.

From the train unit matching we can derive the minimum number of splits and combines

that have to be performed to transform the incoming trains into the desired departure

compositions. Train units coupled on arrival can only remain together if

1. all are assigned in the same order to consecutive positions on a departing train,

2. their arrival time plus the sum of the duration of their service tasks is less than

the departure time, and

3. for each service task there is a track adjacent to the required facility that is long

enough to harbor all train units at once.

Although we have the train unit swap operator to change the composition of the shunt

trains, it is desirable to start with a matching that has few splits and combines. To reduce

the number of composition changes, we use a simple simulated annealing algorithm

which uses only one local search operator that swaps the assignment of train units with

equal train subtypes, regardless of time constraints. The objective function we try to

minimize consists of the number of splits and combines and a penalty for each train unit

that cannot depart on time. This local search runs for a fixed amount of time, no more

than a few seconds, and returns a feasible matching that minimizes the cost function.
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A task schedule is constructed next. The tasks of each shunt train and their due date —

the departure — result from the matching in the previous step. In order of increasing

due date, the tasks are added one by one to the schedule of a corresponding resource. If a

task can be assigned to multiple resources, the resource with the currently smallest total

processing time is selected. The order of tasks of the same shunt train is determined by

the earliest starting time of the tasks in their resource schedule. Ties in the shunt train

task order are broken randomly.

Movements from and to each service task are assumed in the initial heuristic, that is,

each shunt train will be parked between each service task. Furthermore, there is a

movement for both arrival at and departure from the service site. For each task, we can

determine its start and end time using the earliest starting time rule, i.e. scheduling the

tasks as early as possible. These times are then used to define a linear ordering on the

movements, breaking ties between simultaneous movements at random.

Finally, we need to decide where each shunt train will be parked between arrival, service

tasks and departure. The track for each parking interval is picked randomly from the

tracks with sufficient free space during the entire interval, or assigned randomly if no

such track is available.



Chapter 5

Results

In this chapter, we compare the performance of the simulated annealing approach (SA)

proposed in Chapter 4 with the OPG tool developed by NS on both artificial and real-

world test cases. The test cases are based on one of the service sites operated by

Nedtrain, the “Kleine Binckhorst”, which is situated near The Hague Central Station.

The Kleine Binckhorst is a service site of medium size, and consists mostly of free tracks.

An overview of this service site is provided in Figure 5.1. The gateway-tracks that pro-

vide access to the Kleine Binckhorst are track 906a and 104a. Parking and reversing

on these tracks is not allowed. There are three dedicated service facilities: a washing

machine (“wasinstallatie”) on track 63, a platform for internal cleaning (“reinigingsper-

ron”) between tracks 61 and 62 and an inspection pit (“inspectieput”) at track 64. Only

a single train can be cleaned externally at the washing machine. There are two crews

at the cleaning platform, allowing a train to be cleaned at each track adjacent to the

platform. Since the pit is used only for unplanned maintenance, service tasks related

to the pit are not part of the shunt plan. However, trains must not be parked at track

64. The track-independent maintenance checks that are carried out by service crews at

Kleine Binckhorst can take place on any track that is not part of some facility. The saw

move duration and the average service task duration used in the test cases are listed in

tables 5.1 respectively 5.2.

35



R
esu

lts
36

Figure 5.1: Service site “Kleine Binckhorst”.
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Train Type Saw Move Base Saw Move Carriage

SLT 2 1/3

VIRM 4 1/2

DDZ 4 1/2

Table 5.1: The saw move duration of the train types in minutes. The duration consists
of a base time required to transfer control and additional walking time per carriage.

Train Type Train Subtype Length Internal Cleaning Washing Maintenance Check

SLT SLT-4 70 15 23 23

SLT SLT-6 101 20 24 27

VIRM VIRM-4 109 37 24 11

VIRM VIRM-6 162 56 26 14

DDZ DDZ-6 154 56 26 18

Table 5.2: The train length in meters and the average service task duration in minutes
for each train subtype.

The main goal of this study is to determine the capacity of the service site. As the

cost of expanding a service site is far greater than that of hiring extra personnel, we can

assume for this particular problem that there are always sufficient service crews available

on site. As a result, we can simplify our simulated annealing approach by removing the

track-independent service tasks from the task scheduling problem. Although the track-

independent tasks still have to be performed, we can easily check for each of those

tasks whether the corresponding shunt train is parked at a suitable track long enough to

complete the task. Tasks that remain unplanned can either be penalized in the objective

function or inserted back into the activity graph as service nodes to ensure that they

will be planned in later iterations of the local search. The settings used by both the

simulated annealing algorithms with and without explicit maintenance checks can be

found in Table 5.3. In the next section we will evaluate the effect of this improvement

by comparing the results of the simulated annealing approach that penalizes unplanned

tasks (SA w.o. checks) with the original algorithm proposed in Chapter 4 (SA).

Setting T α Q wcr wtlv wd wd′ wa wa′ wgc wm wut

Value 8 0.97 2000 10 15 40 0.05 20 0.03 20 0.02 10

Table 5.3: The settings of our local search approach used in the tests. The simulated
annealing settings are discussed in Section 4.1. The weights w of the objective function
are described in Section 4.2. The penalty for unplanned track-independent service tasks

is denoted by wut.
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Figure 5.2: The PDFs of the arrival and departure times of trains in the artificial
test cases.

Train Subtype Arrival Internal Cleaning Washing Maintenance Check

SLT-4 0.28 1.00 0.16 1.0

SLT-6 0.17 1.00 0.16 1.0

VIRM-4 0.41 1.00 0.16 0.58

VIRM-6 0.10 1.00 0.16 0.58

DDZ-6 0.04 1.00 0.16 0.58

Table 5.4: The Arrival column shows the distribution of the subtypes over the arriving
trains. The probability that a task has to be performed on a certain train unit is shown

in the last three columns.

5.1 Artificial Scenarios

To evaluate the performance of the different algorithms, we generated test cases based

on distributions of time tables and service tasks that resemble a normal weekday at the

Kleine Binckhorst. Figure 5.2 shows the probability density function of the arrival and

departure times. Note that the departure times will be slightly biased, since we sample

the distribution again if a train would depart before its arrival. The train type and

service task distributions are shown in Table 5.4. The scenarios do not have a fixed

matching; the arrival-departure assignment has to be performed entirely by the tested

algorithms. The maximum length of composite trains in our test cases is three train

units, and approximately half the arriving and departing trains is composed of two or

more train units.

Our test cases have a varying number of train units, and for each number of train units

we generated ten scenarios. The number of feasible plans found by the two simulated

annealing algorithms (SA and SA w.o. checks) and the OPG are shown in Figure 5.3.
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Figure 5.3: The number of feasible shunt plans found in ten runs for each the artificial
test cases with service tasks. The results of three algorithms are shown: the simulated
annealing heuristic (SA) described in Chapter 4; the modified simulated annealing
approach without explicit maintenance checks proposed at the start of this chapter

(SA w.o. checks); and the OPG.

A comparison of the running times of successful runs can be seen in Figure 5.4. The

algorithms stop when a feasible solution is found. A limit of five minutes of computation

time is given to all algorithms.

The tests show that the local search algorithms are capable of planning more train units

than the OPG. As we can see in Figure 5.3, our heuristics manage to find feasible shunt

plans in half of the cases with 24 train units, whereas the OPG fails to generate solutions

for scenarios with more than ten train units. More importantly, the performance of the

OPG is much less reliable. Even with as few as four train units, it struggles to find

feasible shunt plans consistently. In contrast, the algorithms proposed in this study

continue to perform well up to twenty trains. Although there are only a few data points

due to the limited number of instances solved successfully by the OPG, Figure 5.4

suggests that the average running time of the OPG already starts to increases rapidly

with small instances.

The two simulated annealing approaches show a more graduate rise in computation time,

both requiring less than 90 seconds for 24 train units. Interestingly, the two local search

algorithms perform quite similar. The running times as well as the number of feasible
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Figure 5.4: The average running time in seconds needed by the three algorithms to
generated the feasible shunt plans depicted in Figure 5.3 is plotted against the number

of train units in the test cases.

solutions found are largely comparable, suggesting that planning the maintenance checks

has little impact on the construction of the overall shunt plan. This is consistent with

the planning process of the planners at NedTrain, as they often insert these short and

flexible maintenance checks in the service schedule after determining all other aspects

of the shunt plan.

The comparison between the simulated annealing approach and the OPG is not entirely

fair. The matching, parking and routing modules of the OPG are the result of years of

research, whereas the priority rule for the service scheduling is an ad hoc solution to be

able to answer the capacity question posed by NedTrain. To eliminate the effect of the

task scheduling module in the OPG, we compare the performances of the algorithms on

test cases without service tasks, again varying the number of train units and generating

the scenarios based on the distribution in Figure 5.2 and Table 5.4. The results of the

conducted experiments are visualized in Figures 5.5 and 5.6. Note that the simulated

annealing approaches with and without explicit maintenance checks will perform identi-

cally in the absence of service tasks; hence we only report their results once. Instead, we

ran additional tests of our simulated annealing algorithm, this time without the parking

reposition neighborhood (SA w.o. parking reposition operator). Removing this search

operator brings the parking flexibility of our approach closer to that of the OPG, which
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Figure 5.5: The number of feasible shunt plans found in ten runs for each the arti-
ficial test cases without service tasks. The results of three algorithms are shown: the
simulated annealing heuristic (SA) described in Chapter 4; the simulated annealing
approach without the parking reposition operator (SA w.o. parking reposition); and

the OPG.

allows us to investigate the impact of this search space reduction on the ability to find

feasible shunt plans.

As can be seen in Figure 5.5, the number of trains that the service site can handle in-

creases remarkably when no tasks have to be performed. This suggests that the current

bottleneck of the site is most likely one of the service facilities. The performance of

the OPG is closer to our algorithms when no service tasks have to be scheduled. Fur-

thermore, its reliability has been improved significantly, implying that the OPG would

benefit greatly from a better task scheduler. Nevertheless, our heuristic is still capable

of generating feasible shunt plans for higher numbers of train units, and manages to do

so in less time than the OPG.

Comparing the results of the tests of the simulated annealing approach with and without

the parking reposition operator shows that the increased parking flexibility is needed

when the service site contains many train units. The heuristic without parking reposi-

tioning performs close to the OPG, indicating that increasing the parking flexibility of

the OPG might be necessary to produce better results. However, even without the park-

ing reposition neighborhood the local search approach performs slightly better than the

OPG, a surprising result given the fact that the OPG allows simultaneous movements

on the service site.
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Figure 5.6: The average running time in seconds needed by the three algorithms to
generated the feasible shunt plans depicted in Figure 5.5 is plotted against the number

of train units in the test cases.

An interesting result is the poor performance of both the simulated annealing approach

with restricted parking flexibility and the OPG on instances with less than twelve train

units. This might be explained by the limited number of possible matchings. When it

is not possible to shunt a parked train to a different track, even simple instances with

only two train units can be infeasible. For example, if an arriving train composed of

two train units of different subtypes has to depart with the order of the train units

reversed, then it is not possible to solve this instance. Both splitting and combining

cannot happen on gateway-tracks, and thus at least one of the two train units has to

be moved from their parked location to a different track in this case. If sufficient train

units are available on the service site, we can simply change the matching to avoid this

situation. Therefore, smaller instances are more likely to be impossible to solve for the

two algorithms. Similarly, instances where the matching is already (partially) fixed will

be harder when parking flexibility is limited.

Figure 5.6 shows the same image as Figure 5.4 regarding the running times of the

algorithms. Most notably, the OPG requires several minutes even with few train units.

The difference in computation time between the two simulated annealing variants is

likely caused by the reduced number of neighbors when the parking operator is not

applied.

Note that, although the Kleine Binckhorst is just one of many service sites operated by

NedTrain, its characteristics, such as the service types and the number of facilities, are
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shared with most other sites. Furthermore, no planning strategies developed specifically

for the Kleine Binckhorst are included in our local search approach, suggesting that our

algorithm will be able to handle similar scenarios for other service sites as well.

5.2 Real-world Scenario

In order to be able to support human planners in their decision-making process, our al-

gorithm should be capable of solving the real-world instances that are currently planned

manually by the long-term planners at NedTrain. Therefore, we have tested our local

search approach on a scenario of a normal week day at the Kleine Binckhorst as well.

This instance consists of 32 train units, arriving and departing in 23 respectively 21

trains. Due to the time table, the maximum number of train units simultaneously on

the service site is 25; these train units occupy 77 per cent of the total track length

available for parking. There are 59 service tasks that must be completed: 27 internal

cleanings, 25 maintenance checks and 7 train washes. The distributions of the train

types and the time table correspond to the data in Figure 5.2 and Table 5.4.

We have used the simulated annealing approach described in Chapter 4 to search for a

feasible shunt plan for the test case, which was found after four minutes of computation

time. In this solution, the 23 arriving trains are split into 27 shunt trains. The shunt

plan contains 88 shunt movements, of which 32 contain a saw move. The large number of

saw moves result in an average movement duration of 10 minutes, meaning that almost

15 hours of train movements are needed in this 24-hour shunt plan. In 14 cases a parked

train is shunted to a different track to make room for another train.

This test case shows that our local search algorithm can be used as a decision-support

system for NedTrains planners. Although the planners indicated that the algorithm

is a useful tool to generate base plans which they can further expand themselves, they

would like to see more details specific to the individual service sites included in the shunt

plans. In the next chapter, we will investigate extensions to our heuristic to include more

aspects of the planning such as planner preferences and additional constraints on the

service site.



Chapter 6

Service Site Model Extensions

Although the formulation of the train unit shunting problem approximates the compo-

nents of service site scheduling well enough to determine the capacity, it does not capture

all practical aspects that a human planner has to take into account to construct a shunt

plan. Additionally, regulations can differ between service sites and tend to change every

few years. Therefore, it is vital that a shunt plan generation tool can be adapted to

handle new, practical requirements without much effort. In this chapter we will ex-

amine the implications of several extensions of and modifications to the basic TUSP

model on our algorithm. Adjustments to our approach that are needed to cope with the

new problems are provided in most cases; the difficulties that have to be overcome are

pointed out otherwise.

6.1 Position of Trains on the Track

A feature of the parking problem not present in our TUSP model, yet potentially relevant

in practice, is the position of a train on the track. Even if enough physical space is left

on the track, it is possible that a train cannot be parked directly on the track due to

poor positioning of other trains on that track. In the example in Figure 6.1, train B

has to be moved to make room for the arriving train A. To perform the repositioning of

the train, a driver is needed for a few minutes. Therefore, human planners prefer shunt

plans that require few repositionings. To model this aspect of the shunting problem in

our algorithm, we need to determine for each service or parking activity the position on

the track.

For LIFO-tracks, the ideal position of a shunt train is always at the rear-end of the

track, since this position maximizes the available space on the track. This is not as

44
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Figure 6.1: An example of a suboptimal parking position on the track. Although
there is sufficient space on the track for both trains, train B has to be moved to allow

A to arrive.

straightforward on the free tracks. Positioning a shunt train at the A-side of a free track

maximizes space on the B-side, but prevents other shunt trains from parking at the

A-side, unless we move the trains on the track to a different position. Furthermore, even

if there already is a train parked at a free track, then it does not need to be optimal to

park subsequent arriving trains as close as possible to that train, as there might be a

better position that anticipates future arriving trains. An example of this can be seen

in Figure 6.2(a), where train t3 is not parked adjacent to the already parked train t1, as

that would not leave enough space for train t4 to be parked on the track.

Computation of the position of a train depends on both the other trains parked on the

track and the saw moves that use the track for the reversal manoeuvre. Conversely,

the train positions affect the optimal route of a train movement. This means that the

train routes are no longer independent of each other, resulting in a motion planning

problem for the movements. However, including the motion planning in the local search

is unlikely to yield good results, as movements themselves change frequently during the

local search. Therefore, it is probably more efficient to simply compute the paths of the

movements as if they are independent, allowing the computation time to be spent on

parts of the problem that have a bigger impact on the overall shunt plan.

When computing the positions of trains on a track τ , we view saw moves as short intervals

during which the reversing trains are parked on that track. If all parking intervals and

the arrival sides of the trains are known, then we can determine the train positions on

the track in linear time using a graph G = (V,E) representing the adjacency relations

between the parked trains. Each vertex v ∈ V corresponds to a parking interval of

a train, and we put an edge e ∈ E between two vertices if the corresponding trains

are parked adjacently on the track. Since each arrival at and departure from track τ

contributes to at most one edge, the size of the edge set E is linear in the number of

parking intervals.

We orient the graph G such that each arc points towards the vertex on the A-side of

the track. An example can be seen in Figure 6.2(b). The resulting graph GB→A =
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(V,AB→A) is acyclic, as a parked train cannot be both on the A- and on the B-side

of a set of trains. GB→A is then used to compute for each parked train the minimum

distance to the A-side of the track that is needed to park all trains without overlap. The

minimum distance distA(tv) to the A-side of train tv can be computed recursively using

the equation

distA(tv) =


0 if succB→A(v) = ∅

max
w∈succB→A(v)

{distA(tw) + lw} otherwise,
(6.1)

where succB→A(v) is the set of successors of v in GB→A and lw is the length of the

train tw. In essence, we look for the path in the graph starting from v that maximizes

the total length of trains corresponding to the vertices on that path. Repositioning the

trains on track τ is only necessary if there exists a path in the graph of which the total

train length exceeds the track length lτ .

(a) An example train position assignment of five trains, where t5
does not fit on the track.

(b) The corresponding graph GB→A.

Figure 6.2: An example of a track position assignment (a) and the corresponding
graph used to compute the positions (b). Figure (a) represents the trains as rectangles,
with on the horizontal axis the duration of the parking interval and vertically the length
of the train. The longest path of adjacently parked trains, (t4, t3, t5) exceeds the track
length of 3. The other paths in the graph, (t1, t2) and (t1, t3, t5) do fit on the track.

As it is not always possible to find a feasible shunt plan without repositioning some

trains on a track, see Figure 6.2(a), it is desirable to minimize the number of trains that

need to be shunted to a different position on the same track. However, if there already

is a conflict on the track, such as a crossing or an exceedance of the track length by

the total length of trains parked simultaneously, then we might as well skip the position

computation, as a penalty for a conflict should dominate the maximum penalty for train

repositioning on that track. Therefore, we can assume for the repositioning computation

that no crossings occur on the track and that the length of the track is only exceeded

by poor positioning of the trains.
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Figure 6.3: The graph of adjacent trains after repositioning train t3 in Figure 6.2 just
before the arrival of t5.

When we reposition a train tv on track τ , then the corresponding vertex v in the graph

GB→A will be replaced by two new vertices, vbefore and vafter. All vertices w connected

to v by an arc will be connected to vbefore if tw arrived before the reposition. Similarly,

vafter will be connected to a vertex u if v was connected as well and tu departed from

the track after repositioning tv. If train tv is adjacent to some other train tw at the time

of the reposition move of tv, then both vbefore and vafter will be connected to vertex

w. Therefore, repositioning trains can create a feasible train position assignment by

splitting chains of adjacent trains that exceed the track length lτ into multiple shorter

chains, as is shown in Figure 6.3.

Only the arrival of a train at the track increases the length of a path in the graph GB→A;

hence it is sufficient to limit repositioning to the moments just before train arrivals. Let

a1, a2 · · · , an be the ordered sequence of the arrivals of the n trains at the track. Then we

have moments m1,m2, · · · ,mn at which we might reposition the trains, where moment

mi takes place just before arrival ai. For each pair of moments (mi,mj) with i < j,

we will determine whether there exists a feasible track position assignment if we only

consider the trains parked on the track during the interval (mi,mj).

We can use this information to compute a sequence of moments M = (mi1 , . . . ,mik)

such that for each consecutive pair of moments (mij ,mij+1) in M there exists a feasible

track position assignment of the trains parked in interval (mij ,mij+1). By repositioning

all parked trains part of a path exceeding the track length at each of the moments mi1

to mik of the sequence, we get a feasible track position assignment for all trains parked

on the track.

Let xi be the number of trains parked at moment mi on the track that are part of a path

exceeding the track length. We will search for a sequence M = (mi1 , . . . ,mik) that both

corresponds to a feasible track position assignment after repositioning on the moments

mij and minimizes the number of trains that have to be repositioned,
∑

mij
∈M xij . A

dynamic programming approach can be used to find such sequence. Let Ri,j be the

minimum number of trains that have to be shunted to a different position on the track

to have a feasible track position assignment of the trains parked in the interval (mi,mj),
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and let mn+1 be a dummy moment that occurs after all trains on the track have departed.

Then we can use the recursive relation

Ri,j =

0 if the position assignment in interval (mi,mj) is feasible,

min
i<k<j

Ri,k + xk +Rk,j otherwise.

(6.2)

to construct the minimum weight set of train repositioning moments by backtracking

from R1,n+1.

The number of intervals (mi,mj) for which the track position assignment has to be

computed is quadratic in the number of parked trains, and each computation takes

linear time; hence the total running time to compute the number of track repositionings

is O(n3).

6.2 Additional Resource Constraints

The service task component of the TUSP is a somewhat basic model of the crew and

facility scheduling problem at the service sites. A simple, yet practical extension of the

model is the inclusion of time-windows for the resources. For example, the cleaning

platform might operate only between 22:00 and 7:00, thus requiring all cleaning tasks to

be completed in that interval. To include such a constraint, we simply force the starting

time of each service task affected to be at least the start of the time-window. Ensuring

that all these service tasks are finished before the end of the interval is more difficult.

Instead, a penalty can be added to the objective function for the amount of overtime.

Depending on the requirements, this can either be part of the feasibility of the shunt

plan — no overtime is allowed — or an optimization objective to reduce the overtime

payment. Time-windows can be included in the construction of the train matching, since

a train unit that has a task that must be completed in a time-window cannot depart

before the start of the window.

More complex is the introduction of additional resources, such as crews for the facilities

of the track-specific tasks. Crews can, for example, be assigned to multiple facilities

and vice versa. This extension is rather straightforward, since it simply results in more

arcs in the activity graph. The service task local search operators have to take the

new constraints into account to prevent cycles and similar operators have to be used

to swap the order and switch the assignment for the extra resources. However, due to

the increased complexity of the problem and the additional neighborhoods, it is likely

that this extension will have a significant negative impact on the running time of the

algorithm.
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6.3 Environmental Regulations

Due to the proximity of the service sites to urban areas, NedTrain has to comply with

increasingly rigid environmental regulations. Especially sound production is an impor-

tant issue, as most of the activity on the service site takes place during the night. Shunt

plans can help reduce the noise disturbances by parking trains at certain tracks to block

the sound or by minimizing the number of train movements in some interval.

Ideally, we would have a fast, yet reasonable accurate way to approximate the noise

production at a service site. Then we could penalize a shunt plan if the noise exceeds

the regulatory threshold. Unfortunately, no such function is available at NedTrain at

the time of writing. In the absence of a good approximation, a poor man’s solution

would be to penalize the nightly train movements and reward trains parked to block the

sound.

6.4 Simultaneous movements

Similar to the TUSP formulation by Lentink [22], we might allow simultaneous train

movements on the service site. In this case, general railway regulations specify that the

paths of simultaneously moving trains must not cross. Each train reserves the entire

path for the duration of the movement.

Relaxing the restriction on the number of concurrent movements adds a very complex

dimension to the train unit shunting problem, as the route of a train is highly dependent

on the paths taken by other simultaneously moving trains. Furthermore, we no longer

have a linear ordering on all movements. For each track we still need to define in which

order the movements to and from that track occur. Otherwise, train movements will

be performed as soon as possible, causing conflicts in the parking problem. Allowing

simultaneous movements therefore results in a partial ordering on the movements instead

of a linear one.

Other aspects of the routing extension have to be taken in consideration as well. We

will list a number of questions that determine the general outline of a heuristic for the

extended routing problem.

• Do we decompose the routing problem into the individual movements or will we

compute the routes of simultaneous movements all at once?

• If the movements are planned sequentially, in what order do we evaluate them?



Service Site Model Extensions 50

• Do we start a movement at the earliest possible starting time or can we wait until

a previous movement is finished to obtain a shorter or less conflicted route?

• Do we represent the drivers explicitly in the model as resources?

Lentink computes the routes sequentially at their earliest starting time without consid-

ering the drivers. A local search approach is used to find a good evaluation order of the

movements. Although the author showed that decent routes could be found in just a

few seconds, improving the order of the movements with local search is not feasible for

our algorithm. Our algorithm performs millions of iterations, and most search operators

change one or more movements significantly.

A fast evaluation of the routing problem is thus crucial to our algorithm. This suggests

that computing the routes sequentially is preferred over an integrated approach. Since

there is a limited number of drivers available on site, modeling the drivers as resources

will result in a more accurate approximation of reality. However, this also requires us to

solve an assignment problem of movements to drivers. A simpler approach is to check

during the computation of each route whether it causes the number of drivers to be

exceeded, and to delay some of the involved moves if necessary. Even if we assume

unlimited drivers, it is unlikely that many movements will be performed at the same

time, and hence few movements are expected to be delayed in this approach.

In most cases it is preferable to start a movement as soon as possible. Even if a better

route becomes available by delaying a movement, the reduction in movement duration

is likely to be offset by the delayed starting time. Only if a movement has no feasible

path due to the route of another movement, a delay is warranted.

The order in which the movements are evaluated can have a large impact on the overall

solution quality. Unfortunately, the local search heuristic proposed by Lentink requires

too much computation time. Simpler would be to flatten the partial ordering of the

movements and evaluate them in that order. Movements without precedence relations

that overlap in time would have to be ordered using some priority rule, which could

include components such as service durations and the time table. If this order results in

departure delays, an additional step would be to reorder the evaluation sequence of the

movements, prioritizing movements involved in the delays, and to compute the routes

once more. Using this two-step heuristic, all routes are evaluated at most twice.
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6.5 Routing Extensions

Most trains maintained by NedTrain have electrical engines, collecting current from the

high-voltage electrical overhead lines. However, not all service sites are fully outfitted

with overhead lines. The electrical trains should not be parked on or move over tracks

without overhead line. Both the parking and the routing constraints are easily imple-

mented in the current model. In the parking search operators we only assign trains to

allowed tracks. For the routing problem we can use two different routing graphs; one

that includes the unpowered tracks for non-electrical trains and one that contains only

the tracks with overhead lines to route the electrical trains.

Another extension that provides a more accurate representation of a service site is to

model the switch positions explicitly. This is not hard to incorporate in the algorithm,

as we can simply keep track of the state of a switch, updating the switch direction after

each movement. To compute the duration of a route, we can, for example, use zero

seconds if the switch is in the correct position and one minute if it has to be changed,

instead of the fixed approximation of thirty seconds. This allows the shunt plan to use

the switches more efficiently, reducing the time spent on movements. However, it does

make the duration of a movement dependent on the routes of earlier movements. Since

the gain of better switch usage is probably rather small, not much computation time

should be spent on the optimization of the switches. The two-step approach proposed

in the previous section to evaluate the movements sequentially could be applied in this

case as well.

In our current model we only allow trains to perform a saw move on a track if the length

of the train does not exceed the track length. However, trains can use the short pieces

of track that join tracks and switches to reverse as well. For example, the railroad parts

that connect the switches between track 906a and 59 in Figure 5.1 are long enough to

perform a saw move, allowing a train parked on track 59 to approach track 56 from

the left-hand side. To model this properly, we could assign to each approachable side of

every track a tree that represents all the sequences of track parts usable when performing

a saw move on that side. The tree is rooted at the track where the saw move should

take place. The children of each node in the tree would be the railroad parts that

are connected to the track corresponding to the parent node and on which saw moves

are allowed. Checking whether a saw move is possible can be done by searching for a

sequence of tracks, starting at the root of the tree, that has sufficient space for the train.

This can be done efficiently with a depth-first search, as we only have to look at the

children of a node if the sum of track lengths on the path to the node is less than the

reversing train length and all tracks on the path are unoccupied.
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Conclusion

In this thesis, we have studied the problem of parking and servicing train units at service

sites operated by NedTrain. The research is conducted with the purpose of determining

the capacity of these sites, which is defined as the maximum number of trains that can

be scheduled at the site by planners. The shunt plans are currently constructed by hand,

but to answer the capacity question the planning process should be automated.

To address this issue, we presented a simulated annealing algorithm that evaluates all

components of the train unit shunting problem — matching, service scheduling, parking

and routing — simultaneously to construct shunt plans. This is realized by modeling

the activities that take place on the service sites as nodes in a precedence graph. Our

integrated search approach makes small local changes to this train activity graph to

iteratively improve a shunt plan.

The performance of our proposed heuristic is compared to a tool built by the NS, named

the OPG. We tested both algorithms on a number of artificial and real scenarios at one

of NedTrains service sites. We have shown that our local search approach outperforms

the OPG in artificial test cases, despite the years of research behind the latter [21, 23].

The proposed simulated annealing algorithm is capable of planning more trains than

the OPG, even if we assume that no service tasks have to be performed. As a result,

NedTrain has incorporated our local search approach in the software used to compute

the service site capacity. Furthermore, a feasible shunt plan was generated by our local

search approach for a large real-world scenario, indicating that the heuristic can be

used to support the human planners as well. Trials are already being conducted by

NedTrains long-term planners to evaluate if our algorithm can speed up their planning

process. Overall, the results demonstrate that integrating all aspects of the TUSP into

one local search is an effective strategy for handling the complex interactions between

several NP-hard subproblems.

52
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7.1 Future Research

Although the capacity measurement was the main goal of our research, the shunt plans

generated by our algorithm can be useful to the planners as well. The long-term planners

at NedTrain have expressed their interest in our local search approach to support their

planning process. Practical modifications to the model needed for this use case were

presented in the previous chapter. However, some of these, specifically the position on

the track and simultaneous movements, require further investigation before they can be

included in our approach.

Aside from the necessity to model the actual shunting process accurately, a shunt plan is

only of use in real scenarios if it is also robust. Disturbances in both train arrival time and

service tasks duration will often occur at the service site, and the service site operators

have to adapt to these events. This means that they occasionally have to deviate from

the shunt plan constructed by the long-term planners. Ideally, a shunt plan should

be able to absorb most disturbances, and require only small adjustments otherwise.

However, if a shunt plan is not robust, even small delays might require radical changes

to the original shunt plan. Therefore, it would be interesting to investigate algorithms

that include the robustness of a shunt plan in their objective. The first step would be to

determine how we can express shunt plan robustness properly. There is not necessarily a

single expression, as a shunt plan might be robust to some type of disturbances, and yet

fail in other cases. One approach to increase the robustness is to test each shunt plan by

running a number of stochastic simulations that vary arrival times and task durations,

and penalize (parts of) plans that perform poorly in most simulations.

When a shunt plan becomes infeasible during the course of the day due to disturbances,

the service site operator has to adapt the plan to the new situation. Preferably, the new

solution would closely resemble the original shunt plan to avoid rescheduling many of

the tasks of drivers and service crews. A local search algorithm such as ours could be

useful to cope with this kind of problem, as it can start from the original shunt plan and

iteratively improve it to regain plan feasibility. Penalties can be assigned to solutions

that deviate too far from the original plan. Further research could be conducted to find

a proper plan-similarity measure or other online strategies such as scheduling policies

for the service operators.

The results in this study provide not only information on the performance of our al-

gorithm, but also identify the key issue in the OPG and the underlying mathematical

model by Kroon et al. [21] that limits its practical applicability. The inability of shunt-

ing a parked train to a different track in the midst of its parking interval was shown to

be too restrictive to find feasible shunt plans in many cases, especially trains consist of
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multiple units. To make the OPG more effective in real-world scenarios, the possibility

to split the parking interval would have to be incorporated in the mathematical model.

A challenging, yet interesting topic of further research would be to formulate this exten-

sion to the model without introducing an insurmountable number of additional variables

and constraints.
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