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Prediction



Prediction

1. Train the model on data at hand

2. Predict unknown outcome on future data

Examples

= diagnosis of disease based on symptoms

= spam based on content of email



Model

= generalized linear model

g(y)=x'B+e

Parameter estimation

= find B3 that minimizes MSE / deviance



Under- and overfitting

Too few predictors in the model

= relevant predictors are missing
= parameter estimates are biased

= poor predictions on new data

Too many predictors in the model

= capitalization on chance, spurioussness, multicollinearity
= parameter estimates have high variance

= poor predictions on new data



Bias versus Variance
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Figure 1: Hitting the bull's eye. .



Bias-Variance Tradeoff

Bias—Variance Tradeoff
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Figure 2: Optimal prediction is compromise between bias and variance.



How to find the optimum?

Data science techniques

= stepwise procedures (AIC/BIC)
= regularization

= GAM’s

= trees

= boosting/bagging

= support vector machines

= deep learning



Regularization
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Lasso and ridge

Regularization

= penalizing MSE /deviance with size parameter estimates

Lasso defined by /1 penalty AY2_,|5|

= shrinks parameters to 0

Ridge defined by /> penalty: A Y7, sz

= shrinks parameters towards 0

=\ controls amount of shrinkage

= predictors are standardized
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Regularization vs Stepwise

Stepwise procedures

= penality on number of parameters (AIC/BIC)

= no hyperparameter to be estimated

Regularization

= penality on size of parameters

= optimal shrinkage parameter to be estimated
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Train/dev/test

1. Partition the data in training/test set

2. Cross validate \'s on train/validation set

3. Choose A with smallest averaged deviance (or +1 SD)
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. Compare deviance test with competing models
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Figure 3: Train/dev/test
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R package glmnet

glmnet ()

= fast algorithm to compute shrinkage for sequence A

= plot parameter shrinkage as function A

glmnet.cv()

= performs k-fold cross validation to determine optimal A

= plot averaged deviance as function A
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Example
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Spam filter

Classify email as spam/nonspam

Response variable

= 2788 mails classified as “nonspam”

= 1813 mails classifed as “spam”

57 standardized frequencies of words/characters, e.g.

= 1S (), #, etc.

= make, all, over, order, credit, etc.
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The model

Logistic regression model

logit(7) = x'B

where 7 is the probability of spam.

Testing for interactions:

= 2-way: 1596 additional parameters
= 3-way: 29260 additional parameters

Restrict models to 2-way
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Model comparisons

Models

» main-effects with glm()
» stepwise with step()

= ridge with glmnet ()

» lasso with glmnet ()

» full 2-way with glm()
Which model has lowest deviance on test set?
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Shrinkage ridge (top) and lasso (bottom)

Results for training set (no cross validation)

Coefficients

Coefficients
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and lasso (right)

Averaged deviance ridge (left)

Results cross validation
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Results on test set

Deviance Error rate #pars Ll-norm

main effects 269.7 3o 58 104.9

ridge 246.7 7.2 1653 39.3

lasso 213.1 6.3 108 14.6

stepwise 572.9 7.7 129 3554.1
= lasso

nonspam spam

nonspam 665 32
spam 40 414
= main

nonspam spam
nonspam 666 31
spam 41 413
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Conclusions

Regularization

= reduces variance without substantially increasing bias
= ability to handle large number of predictors

= fast algorithm

Extensions

= mixing 1 and ¢, penalties (e.g. elastic net)
= grouped lasso (e.g. hierarchical models)

= similarities with Bayesian models
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Thanks for your attention!
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