Letter to the Editor

Rapid test for the serodiagnosis of acute canine leptospirosis

Acute leptospirosis in dogs – Weil’s disease – is a life-threatening condition with zoonotic potential and which requires laboratory testing for accurate diagnosis. We report the development and evaluation of the first – patient side diagnostic test for acute canine leptospirosis which is based on the detection of *Leptospira*-specific immunoglobulin M antibodies. For serum samples from dogs with laboratory confirmed acute leptospirosis from the Netherlands the sensitivity was 100% (95% Confidence interval [CI], 76.7–100). The specificity was 95.3% (95% CI, 88.8–98.3) and all positive control dogs had a history of recent vaccination.

Suspicion of Weil’s disease (acute icteric leptospirosis) in dogs requires rapid laboratory confirmation, because prompt intervention is essential for the survival of the patient (André-Fontaine, 2006; Davies, 2008; Maele van de et al., 2008; Levett, 2001). The causative pathogenic leptospires can be isolated from a wide range of – healthy – animal species of which many function as maintenance hosts – reservoirs – (Levett, 2001). Rodents and other small mammals are the maintenance hosts for the *Leptospira* pathogenic to humans and domestic animals. Dogs can host *Leptospira* belonging to a range of serogroups, but particularly the members of the serogroups Icterohaemorrhagiae and Canicola may cause severe acute icteric disease (Hartman, 1984), although subclinical infections occur on wide scale (Rojas et al., 2010; Houwers et al., 2010). Hence agent detection has limited diagnostic value. Canine leptospirosis is considered a public health issue because of the risk of transmission to dog owners and caretakers.

The most commonly applied serological test, the Microscopic Agglutination Test (MAT), which requires specific laboratory facilities and expertise, detects agglutinating antibodies and paired serum samples with an interval of at least ten days are needed to diagnose acute infection. ELISA for the detection of *Leptospira*-specific immunoglobulin M (IgM) antibodies presents a reliable test for diagnosing acute canine leptospirosis in a single sample as specific IgM antibodies quickly rise during the early stage of the infection (Hartman, 1984), but also requires laboratory facilities. To enable prompt diagnoses at the point of care – patient side –, we developed and evaluated a simple and rapid, user-friendly assay detecting canine IgM against all pathogenic serovars, the rapid canine leptospirosis test.

This so-called lateral flow assay consists of a plastic device containing a composite assay strip flanked at one end by a reagent pad and an absorption pad at the other (Smits et al., 2001; Eapen et al., 2002). The strip contains two lines, a test line consisting of a *Leptospira* specific antigen and a control line consisting of purified anti-dog IgM. The reagent pad holds dried conjugate consisting of colloidal gold-labeled anti-dog IgM antibody. The antigen was prepared by heat-extraction and proteolytic digestion of cultured pathogenic leptospirol strain Wijnberg of serovar Copenhageni. The rapid test is performed by adding 5 μl of neat serum to the sample pad followed by the immediate addition of 130 μl of running fluid (PBS containing 1.67% bovine serum albumin and 3% Tween 20). The result is read after 10 min by visual inspection for staining at the test and control lines. A valid test result is obtained if staining of the control line is observed. The test line may stain at different intensities, and a positive result was subjectively rated 1+ when staining was weak, 2+ when staining was moderate, 3+ when staining was strong and 4+ when staining was very strong (Fig. 1). Very weak (+/-) staining was considered negative. To secure stability of the bio-components, individual devices are sealed airtight in a moisture resistant protective foil together with a small bag containing dried silica. This acute canine leptospirosis Test-it™ device is available from the Royal Tropical Institute/Life Assay Diagnostics.

Performance of the rapid test was evaluated with several sets of dog serum samples. For validation of the diagnostic accuracy a total of 130 sera were taken from the serum banks of the Veterinary Microbiological Diagnostic Centre (VMDC) and the clinical chemistry laboratory (UVDL) of the Faculty of Veterinary Medicine of Utrecht University, the Netherlands. These included 23 samples from dogs with laboratory confirmed – IgM ELISA positive – acute leptospirosis and 107 samples from a random selection of dog sera which were submitted for other reasons than suspicion of leptospirosis and with accompanying clinical information that did rule out the likelihood of the presence of an infectious disease. VMDC’s routinely used IgM/IgG specific indirect ELISA was used as reference test. The antigen consisted of an extract from strain Wijnberg (serovar Copenhageni) and the procedure was adapted from the original description by Hartman et al. (1983). Samples with a
clear IgM titer and an equal or lower IgG titer were considered indicative of acute infection, thus positive.

The rapid test was positive with all 23 samples from the confirmed acute leptospirosis cases: sensitivity 100% (95% confidence interval [95% CI], 76.7–100). It reacted negative with 102/107 (95.3% specificity; 95% CI, 88.8–98.3) of the healthy control samples. However, according to the subsequent information provided by the veterinary surgeons, all five positive dogs appeared to have been vaccinated within 5 months prior to sampling and this may have biased the specificity value. To rule out cross-reactivity with other infectious agents, 59 serum samples from dogs with various other infectious diseases than leptospirosis including leishmaniasis, distemper and demodicosis together with 40 samples from healthy dogs taken from a serum bank at the University of Trás-os-Montes e Alto Douro in Portugal were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

In addition, to asses the performance of the rapid test in different geographic settings, possibly with other prevailing serovars, 75 dog serum samples from the School of Veterinary Medicine of the University of the West Indies in Trinidad & Tobago were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

Table: Dogs with clinical signs of leptospirosis vs Dogs without clinical signs of leptospirosis

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM ELISA titre</td>
<td>1:1.280</td>
<td>1:640</td>
<td>1:1.280</td>
<td>1:2.560</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IgG ELISA titre</td>
<td>1:320</td>
<td>1:160</td>
<td>1:640</td>
<td>1:1.280</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAT titre</td>
<td>1:80²</td>
<td>0</td>
<td>1:160³</td>
<td>1:320⁴</td>
<td>1:160⁴</td>
<td>1:640⁵</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rapid test result</td>
<td>2+⁶</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>N²</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

1. **Titers ≥ 1:160** are indicated; 2. strain Jez Bratislava, serovar Bratislava; 3. strain Kantorowic, serovar Icterohaemorrhagiae; 4. strain Wijberg, serovar Copenhageni; 5. strain Poi, serovar Poi; 6. Staining intensity of antigen line (1+, weak; 2+, moderate; 3+, strong; 4+, very strong); 7. N, negative.

The rapid test was positive with all 23 samples from the confirmed acute leptospirosis cases: sensitivity 100% (95% confidence interval [95% CI], 76.7–100). It reacted negative with 102/107 (95.3% specificity; 95% CI, 88.8–98.3) of the healthy control samples. However, according to the subsequent information provided by the veterinary surgeons, all five positive dogs appeared to have been vaccinated within 5 months prior to sampling and this may have biased the specificity value. To rule out cross-reactivity with other infectious agents, 59 serum samples from dogs with various other infectious diseases than leptospirosis including leishmaniasis, distemper and demodicosis together with 40 samples from healthy dogs taken from a serum bank at the University of Trás-os-Montes e Alto Douro in Portugal were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

In addition, to asses the performance of the rapid test in different geographic settings, possibly with other prevailing serovars, 75 dog serum samples from the School of Veterinary Medicine of the University of the West Indies in Trinidad & Tobago were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

In addition, to asses the performance of the rapid test in different geographic settings, possibly with other prevailing serovars, 75 dog serum samples from the School of Veterinary Medicine of the University of the West Indies in Trinidad & Tobago were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

In addition, to asses the performance of the rapid test in different geographic settings, possibly with other prevailing serovars, 75 dog serum samples from the School of Veterinary Medicine of the University of the West Indies in Trinidad & Tobago were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

In addition, to asses the performance of the rapid test in different geographic settings, possibly with other prevailing serovars, 75 dog serum samples from the School of Veterinary Medicine of the University of the West Indies in Trinidad & Tobago were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.

In addition, to asses the performance of the rapid test in different geographic settings, possibly with other prevailing serovars, 75 dog serum samples from the School of Veterinary Medicine of the University of the West Indies in Trinidad & Tobago were tested: 97/99 (98.0%; 95% CI: 92.9–99.8) were negative while the two samples with a positive result were from a dog with leishmaniasis and the other one was healthy.
Finally, urine and blood samples from dogs from Trinidad & Tobago were subjected to culturing as described elsewhere (Suepaul et al., 2010); a total of 16/75 (21.3%) dogs were positive with nine yielding serovar Copenhageni. The latter dogs were all clinically suspected which is consistent with the notion that clinical leptospirosis in dogs is predominantly caused by members of serogroup Icterohaemorrhagiae.

In conclusion, the rapid test reported here for the first time offers the option for reliable point of care – patient side – diagnostic testing for clinically suspected acute leptospirosis in dogs. Positive results in non-suspected dogs may occur as a result from previous vaccination or from acute but sub-clinical infection.

References

Theresia H. Abdoel
KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Meibergdreef 39, 1105 AZ, Amsterdam, the Netherlands

Dirk J. Houwers
Veterinary Microbiological Diagnostic Centre, Division of Clinical Infectiology, Dept. Infectious Diseases & Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, the Netherlands

Astrid M. van Dongen
Dept. of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, the Netherlands

Abiodun A. Adesiyun
School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago

Matilde Jiménez-Coello
Departamento de Biomedicina de Enfermedades Infecciosas y Parasitarias, Laboratorio de Biología Celular, CIR Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida Yucatán, Mexico

Luis Cardosoab
Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal

Parasite Disease Group, Instituto de Biología Molecular e Celular, Universidad do Porto, Portugal

Sharianne M. Suepaul
School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago

A. Ortega-Pacheco
Departamento de Medicina Interna y Cirugía, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatan, Mérida, Yucatan, Mexico

Henk L. Smits*
KIT Biomedical Research, Royal Tropical Institute/Koninklijk Instituut voor de Tropen (KIT), Meibergdreef 39, 1105 AZ, Amsterdam, the Netherlands

*Corresponding author. Tel.: +31 0 (20) 5665470 E-mail address: h.smits@kit.nl (H.L. Smits)

7 December 2010