

Designing Engineered Tissues from the Microscale to the Macroscale via Bioprinting

Riccardo Levato^{1,2,3}

Assistant Professor, ¹Regenerative Medicine Center and ²Dept. of Orthopaedics, University Medical Center Utrecht, ³Dept. of Clinical Sciences, Utrecht University, The Netherlands *Biofabrication and tissue-mimetic biomaterials*

r.levato-2@umcutrecht.nl

From the idea to the biological object

Capturing the Shape-to-Function relationship

Levato&Jungst+, Adv Mater 2020

Bone, Cartilage and Joint restoration

Levato+, Acta Biomater **2017** Lim&Abinzano+, Adv Healthc Mater **2020**

Liver organoids

Schneeberger+, Biofabrication 2016 ; Bouwmeester+, unpublished

Diloksumpan+, Adv Healthc Mater **2020** Diloksumpan+, Biofabrication **2020**

Mammary duct

Buccholz+, unpublished

Challenges towards treating osteochondral defects

Bioprinting (UMCU)

Shape Mechanics Biomaterials Cell-matrix interaction

Cell Microenvironment (Osaka)

How can we modulate the microenvironment to promote bone vascularization?

Collagen Microfibers (CMF) to regulate cell behavior at the microscale

a

June -> First visit to Osaka (RL)

Sept-Oct -> Margo Terpstra performs secondment in Osaka (learning cell coating and microfiber preparation techniques) July -> Prof. Matsusaki Lectures at the RMCU and at the Utrecht Summer School

Nov-Dec -> Jinyu Li performs secondment in Utrecht (bioprinting of microfibers and angiogenesis)

A roadmap to large, clinically relevant bioprinted tissues

Layer-by-layer manufacturing: rapid prototyping, but how rapid?

DLP

Volumetric Bioprinting

Volume-in-Volume

From 2.5D-layers to 3D field-based manufacturing

Bernal+, Adv Mater 2019 ; Loterie+, Nat Commun 2020

Improved printing time, surface finishing and free-form fabrication

Smooth surface features

- 5.71 \pm 2.31% volume variation compared to STL Pefusable channels = 200 μ m
- Positive features = 80 to 140 μ m

 Volumetric Printing
 Extrusion-Based Printing
 Digital Light Processing

Complex architectures: anatomical trabecular bone

Osteo-MSC Endothelial cells Pericytes

Bernal+, Adv Mater 2019

Printing time = 12.5 s Size = 11 x 10 mm

Long term cell functionality of bioprinted progenitor cells

25 -0.4 Compression 20 GAG/DNA [µg/µg] -0.3 15-0.2 Modulus [MPa] 10--0.1 5 LIVE / DEAD ſ d28 d28 d1 d1 Confocal Section D)

Bernal+, Adv Mater 2019

Combining strengths...a little step forwad each time

Thanks for your attention

RMCU Orthopaedics Biofabrication in translational medicine

Jos Malda Riccardo Levato Paulina Nuñez Bernal Florencia Abinzano Sammy Florczak Iris Otto Margo Terpstra Anneloes Mensinga Irina Mancini Paweena Diloksumpan Mattie van Rijen Margot Rikkers

> EPFL - Lausanne Christophe Moser Paul Delrot Damien Loterie

Miguel Castilho

Susanna Piluso

Joost van Duijn

Mylene de Ruijter

Madison Ainsworth

Wuerzburg University

Nasim Golafshan

Inge Dokter

Lotte Groen

Yang Li

Utrecht University

René van Weeren Bart Spee Kerstin Schneeberger Tina Vermonden

AO Research Insitute David Eglin Mauro Alini Tiziano Serra Osaka University Michiya Matsusaki

University of Otago Tim Woodfield Khoon Lim

Hubrecht Institute Hans Clevers Anne Rios

Swansea University Ilyas Khan

DutchArthritisSociety

NNOVATION Council BETA Arch Damien Lo

2020

