
Estimating Stability for Efficient Argument-based Inquiry -
Proofs

Daphne Odekerken1,2, AnneMarie Borg1, and Floris Bex1,3

1Department of Information and Computing Sciences, Utrecht University
2National Police Lab AI, Netherlands Police

3Tilburg Institute for Law, Technology and Society, Tilburg University

This document gives the proofs of the propositions stated in [2].

1 Preliminaries
In this section, we introduce the base argumentation framework for which we study the stability problem.
We use a variation on ASPIC+ [3], a framework for structured argumentation that evaluates arguments with
Dung-style semantics [1]. From ASPIC+, we use the concepts of a logical language, a knowledge base and
a set of defeasible rules. We add the notions of topic and queryable literals. The topic is the literal for which
we want to know the stability status. Queryables are those literals in the logical language which can be
obtained by querying the client agent. We add the notion of queryables since they restrict the possibilities
of updating the knowledge base.

Definition 1 (Argumentation Setup). An argumentation setup AS is a tuple AS = (L,R,Q,K) where:

• L is a finite propositional language, closed under classical negation (¬). The literalswill be denoted
by lower-case letters. We write a =−b iff a = ¬b or b = ¬a.

• R is a finite set of defeasible rules a1, . . . ,am ⇒ c such that {a1, . . . ,am,c} ⊆ L. Where r ∈ R,
ants(r) = {a1, . . . ,am} are the antecedents of r and cons(r) = c is its consequent. We refer to a rule
with consequent c as “a rule for c”.

• Q ⊆ L is a set of queryable literals, s.t. l ∈Q iff −l ∈Q.

• K ⊆Q is the knowledge base, which is required to be consistent: if l ∈ K then −l /∈ K.

Based on an argumentation setup, arguments can be constructed from R and K, as formally defined in
Definition 2.

Definition 2 (Argument). Let AS = (L,R,Q,K) be an argumentation setup. We denote by Arg(AS) the
set of arguments that can be inferred from AS. We distinguish two types of arguments. An argument A
inferred from AS is:

• an observation-based argument c iff c ∈ K.
The set of premises prem(A) of A is {c}.
The conclusion conc(A) of A is c.
The set of subarguments sub(A) of A is {c}.
The height h(A) of A is 0.
The set of defeasible rules def-rules(A) of A is /0.
The set of direct subarguments dirsub(A) of A is /0.

1

• a rule-based argument A1, . . . ,Am⇒ c iff for each i ∈ [1 . . m]: Ai is in Arg(AS) and has conclusion
ci and there is a rule r : c1, . . . ,cm⇒ c inR.
The set of premises prem(A) of A is prem(A1)∪ . . .∪prem(Am).
The conclusion conc(A) of A is c.
The set of subarguments sub(A) of A is sub(A1)∪ . . .∪sub(Am)∪{A}.
The height h(A) of A is 1+max(h(A1), . . . ,h(Am)).
The set of defeasible rules def-rules(A) of A is def-rules(A1)∪ . . .∪def-rules(Am)∪{r}.
The top rule top-rule(A) is r.
The set of direct subarguments dirsub(A) of A is {A1, . . . ,Am}.

We refer to an argument with conclusion c as “an argument for c”. We refer to a rule-based argument with
top rule r as “an argument based on r”.

Note that we do not require the arguments to be non-circular, therefore, there may be an argument A for
some literal l ∈ L such that A has a proper subargument A′ ∈ sub(A)−{A} with conc(A′) = conc(A) = l.
We formally define circularity in Definition 3.

Definition 3 (Circularity). Let 〈A1, . . . ,Am〉 be a sequence of arguments. 〈A1, . . . ,Am〉 has the circularity
property iff A1 6= Am, conc(A1) = conc(Am) and for each i ∈ [1 . . m−1]: Ai ∈ dirsub(Ai+1). Let A be
an argument. A is circular iff there is a subargument A′ ∈ sub(A) such that there is a sequence 〈A1, . . . ,A′〉
with the circularity property. A is non-circular iff A is not circular.

Example 1. [Circular arguments] Let AS=(L,R,Q,K) be an argumentation setup withL= {a,¬a,b,¬b},
R= {a⇒ b,b⇒ b}, Q= {a,¬a} and K = {a}. Then the arguments a and a⇒ b in Arg(AS) are not cir-
cular. Arg(AS) contains an infinite number of circular arguments as well, for example [a⇒ b]⇒ b and
[[[[[[a⇒ b]⇒ b]⇒ b]⇒ b]⇒ b]⇒ b]⇒ b.

As illustrated in Example 1, for a given argumentation setup AS = (L,R,Q,K), there may be circular
arguments in Arg(AS), which are created by infinitely applying some rule r ∈ R. As a result, these argu-
ments have infinite height. However, as we show in Lemma 1, each circular argument can be turned into
a non-circular argument by removing the circular part. In Lemma 2, we prove that all arguments that are
non-circular have finite height. These properties will be useful in many proofs based on induction later in
this paper.

Lemma 1 (Existence of non-circular arguments). Let AS = (L,R,Q,K) be an argumentation setup and
literal l ∈ L. There is an argument for l in Arg(AS) iff there is a non-circular argument for l in Arg(AS).

Proof. We start with the proof from left to right: assume that there is an argument A for l in Arg(AS). If A
is non-circular, then there trivially is an non-circular argument for l in Arg(AS). Alternatively, assume that
A is circular by Definition 3. Then by Definition 3, there is a sequence 〈A1, . . . ,Am〉 such that Am ∈ sub(A),
conc(A1) = conc(Am), A1 6= Am and for each i ∈ [1 . . m− 1]: Ai ∈ sub(Ai+1) (circularity property). Let
〈A1, . . . ,Am〉 be an arbitrary sequence with the circularity property. Let A′ be the argument obtained by
replacing Am by A1 in A. A1 ∈ sub(Am) ⊆ Arg(AS), so A′ is an argument in Arg(AS). Furthermore,
conc(A1) = conc(Am), so A1 is an argument for conc(Am), so A′ is an argument for l. Since Am /∈ sub(A′),
we know that the sequence 〈A1, . . . ,Am〉 cannot cause A′ to satisfy the circularity property (in contrast to
our original argument A). We chose 〈A1, . . . ,Am〉 arbitrary, so we can repeatedly apply this reasoning for all
sequences with the circularity property until there is no such sequence any more and the resulting argument
for l is non-circular.

The proof from right to left is trivial: each non-circular argument is an argument, so if there is a non-
circular argument for l in Arg(AS), then there is an argument for l in Arg(AS).

Lemma 2 (Finite height and non-circularity). Given an argument A, if A is non-circular, then h(A) 6= ∞.

Proof. Suppose that A is non-circular. This implies that there is no sequence 〈A1, . . . ,Am〉 such that Am ∈
sub(A), conc(A1) = conc(Am), A1 6= Am and for each i ∈ [1 . . m−1]: Ai ∈ dirsub(Ai+1). Let 〈A1, . . . ,A〉
be the longest possible sequence such that for each i ∈ [1 . . m−1]: Ai ∈ dirsub(Ai+1)

First, we show by contradiction that for each r ∈ R, there is at most one Ai ∈ 〈A1, . . . ,A〉 such that
top-rule(Ai) = r. Suppose that there are some Ai,A j such that Ai,A j ∈ 〈A1, . . . ,A〉, top-rule(Ai) =

2

sm b sp ¬b ¬rp b ¬rm ¬b u b s ¬b

sd ¬rd d

f

b t

¬ f

Figure 1: Example of an argumentation setup AS from the law enforcement domain. Note that the literals
b and ¬b are visualised multiple times and attacks between them are omitted for clarity.

top-rule(A j) and Ai 6= A j. Without loss of generality, we assume that i < j. Now consider the sequence
〈Ai, . . . ,A j〉 (which is a subsequence of 〈A1, . . . ,A〉). We have that conc(Ai) = conc(A j), Ai 6= A j and for
each k ∈ [i . . j−1] : Ak ∈ dirsub(Ak+1); by Definition 3, the sequence 〈Ai, . . . ,A j〉 satisfies the circularity
property. Since A j ∈ sub(A), this implies that A is circular, which contradicts our initial assumption. To
conclude, for each r ∈R, there is at most one Ai ∈ 〈A1, . . . ,Am〉 having top-rule(Ai) = r.

Then by definition of height, h(A) ≤ |R|. By Definition 1, R is a finite set, so for each non-circular
argument A: h(A) 6= ∞.

Arguments can attack each other, as formally defined in Definition 4. Our definition of attack corre-
sponds to rebuttal in ASPIC+ [3].

Definition 4 (Attack). Let AS = (L,R,Q,K) be an argumentation setup. For two arguments A,B ∈
Arg(AS) we say that A attacks B iff A’s conclusion is c and either:

• attack on conclusion: −c is the conclusion of B and −c /∈ K.

• attack on subargument: −c is the conclusion of a subargument B′ of B such that B′ 6=B and−c /∈K.

We write that “A attacks B on B′” if A attacks B, B′ ∈ sub(B) and conc(A) =−conc(B′).

From Definition 4 it directly follows that observation-based arguments cannot be attacked.

Example 2 (Online trade fraud, following [4]). Let AS = (L,R,Q,K), visualised in Figure 1, be an ar-
gumentation setup in the domain of online trade fraud, which concerns cases such as fake web shops and
malicious second-hand traders on platforms such as eBay. L consists of the following literals and their
negations: b: complainant (i.e. the client agent) tried to buy a product (as opposed to selling a product);
sm: complainant sent money; sp: complainant sent product; rp: complainant received product; rm: com-
plainant received money; u: suspicious url; s: screenshot of payment; t: trusted web shop; sd: complainant
delivered; rd: complainant received delivery; d: deception; f : fraud. Squares represent literals from L,
rounded squares are queryable literals (from Q) and literals in K are shaded. Rules are represented by
double-lined arrows and attacks as single-lined arrows. Arg(AS) includes an argument for f based on the
rule sd,¬rd,d⇒ f and an argument for ¬ f based on b, t⇒¬ f . These arguments attack each other.

We base the evaluation of arguments on the grounded semantics from [1]. We chose grounded seman-
tics since it is characterised by a single extension and its sceptical nature fits with the conservativity of the
processes we model.

Definition 5 (Grounded Extension). Let AS = (L,R,Q,K) be an argumentation setup and let S⊆Arg(AS).
S is said to be conflict-free iff there are no A,B ∈ S such that A attacks B. S defends A ∈ Arg(AS) iff for
each B ∈ Arg(AS) that attacks A there is a C ∈ S that attacks B. S is admissible iff it is conflict-free and
defends all its arguments. S is a complete extension iff it is admissible and contains all the arguments it
defends. The grounded extension G(AS) is the least (w.r.t. ⊆) complete extension.

Next, we use the notion of grounded extension to define the acceptability of a literal in an argumentation
setup.

3

Definition 6 (Acceptability). Let AS = (L,R,Q,K) be an argumentation setup. The acceptability of literal
l ∈ L given AS is:

• unsatisfiable iff there is no argument for l in Arg(AS);

• defended iff there exists an argument for l in Arg(AS), which is also in the grounded extension
G(AS);

• out iff there exists an argument for l in Arg(AS), but each argument for l in Arg(AS) is attacked by
an argument in the grounded extension G(AS);

• blocked iff there exists an argument for l in Arg(AS), but no argument for l is in the grounded
extension G(AS) and at least one argument for l is not attacked by an argument in G(AS).

These acceptability statuses are complementary: e.g. if a literal is not unsatisfiable, defended or out,
then it is blocked.

Example 3 (Example 2 continued). In the argumentation setup AS from Figure 1, G(AS) contains (unattacked)
arguments for sm, b, ¬rp, u, t, sd, ¬rd and d, so these literals are defended in AS. There are arguments
for f and ¬ f in Arg(AS) that attack each other, but these are not attacked or defended by any argument
in G(AS), so f and ¬ f are blocked in AS. All other literals in L are unsatisfiable in AS, since there is no
argument for these literals in Arg(AS).

In Lemmas 3 and 4, we give a more precise specification of which arguments are either in the grounded
extension (Lemma 3) or attacked by an argument in the grounded extension (Lemma 4). These specifica-
tions will be useful for many proofs in this paper.

Lemma 3 (Specification “in” grounded extension). Given an argumentation setup AS = (L,R,Q,K), an
argument A ∈ Arg(AS) is in the grounded extension G(AS) iff each argument attacking A is attacked by an
observation-based argument.

Proof. The proof from right to left is trivial: observation-based arguments cannot be attacked (Defini-
tion 4), so each observation-based argument is in G(AS). If each argument attacking A is attacked by an
observation-based argument, then A is defended by G(AS), so A ∈ G(AS).

We now prove the left-to-right part by contradiction. Assume that A ∈ G(AS) and that there is an
argument B attacking A, and B is not attacked by an observation-based argument. This implies that A is
rule-based: if A would be observation-based, then there would be no argument in Arg(AS) attacking A.
By Definition 5, G(AS) ⊆ Arg(AS) is a set of arguments that is complete, i.e. G(AS) is conflict-free, each
argument from G(AS) is defended by G(AS) and each argument that is defended by G(AS) is in G(AS).

Now let T = {C ∈ G(AS) | there is a C′ ∈ sub(C) s.t. C′ attacks B}.
We will show that each argument in T is rule-based: an argument C is only added to T if it has a

subargument C′ that attacks B. We assumed that B is not attacked by an observation-based argument,
which implies that C′ must be rule-based. If C would be observation-based, then it would not have a
rule-based subargument C′, so C must be rule-based as well.

Also note that A ∈ T , as we show next: A is attacked by B, so there is a subargument A′ ∈ sub(A)
such that conc(A′) = −conc(B) and conc(A′) /∈ K. If B would be observation-based, then B ∈ G(AS),
which would contradict the assumption that A ∈ G(AS) (since G(AS) is conflict-free). This implies that B
is rule-based. Given that B is rule-based, we have that A′ also attacks B on its conclusion. conc(A′) /∈ K,
so A′ is rule-based. Given that A′ ∈ sub(A), A′ defends A and A′ is rule-based, we have that A ∈ T .

Next, we consider the set S = G(AS)−T . Note that A /∈ S since A ∈ T . Then we know that T is not
empty, so in combination with the facts that S ⊆ G(AS) and S = G(AS)− T we derive that S ⊂ G(AS).
Next, we prove that S is complete, that is: S is conflict-free, each argument from S is defended by S and
each argument that is defended by S is in S.

• S is conflict-free: S⊂ G(AS) and G(AS) is conflict-free.

4

• Now we prove that each argument from S is defended by S. Suppose that there exists an argument
D ∈ S such that D is not defended by S: there is an argument E attacking D and each argument F
attacking E is not in S. E attacks D, so there is an argument D′ ∈ sub(D) such that conc(D′) =
−conc(E). Since D ∈G(AS), we know that G(AS) defends D, so given that E attacks D, there must
be an argument in Arg(AS) that attacks E. So conc(E) /∈ K. But then D′ attacks E, so D′ (which
possibly equals D) defends D. We assumed that D is not defended by S, so D′ /∈ S. D ∈ G(AS)
and G(AS) is complete, so D is defended by G(AS). Then each argument defending D must be in
G(AS)−S = T . This implies that D′ ∈ T , so by definition of T , D′ has a subargument that defends A.
But since D′ is a subargument of D, this implies that D has a subargument that defends A, so D ∈ T .
This contradicts our assumption that D ∈ S, so each argument from S is defended by S.

• Finally, we prove that each argument that is defended by S is in S. Suppose that there exists an
argument D ∈ Arg(AS) such that S defends D and D /∈ S. If S defends D, then G(AS) defends D
(since S ⊂ G(AS)); therefore D ∈ G(AS). D /∈ S, so D must be in T . Then by definition of T , there
is a subargument D′ ∈ sub(D) such that D′ attacks B. Let B′ ∈ sub(B) be the subargument of B
on which D′ attacks B′: conc(B′) = −conc(D′). Remember that each argument in T is rule-based.
D′ ∈ T , therefore conc(D′) /∈K, so B′ attacks D′ as well. D′ ∈ sub(D) and conc(B′) =−conc(D′),
so B′ attacks D. S defends D, so there must be an argument E in S attacking B′. But then E would
attack B as well, since B′ ∈ sub(B). Then by definition of T , E ∈ T , which contradicts our assumption
that E ∈ S. As a result, each argument that is defended by S is in S.

To conclude, there is a set S ⊂ G(AS) such that S is complete. This contradicts our assumption that
G(AS) is the grounded extension: The grounded extension should be minimal w.r.t. set inclusion (Defini-
tion 5). So if A∈G(AS), then each argument attacking A is attacked by an observation-based argument.

Lemma 4 (Specification “out” arguments). Given an argumentation setup AS = (L,R,Q,K), an argument
A ∈ Arg(AS) is attacked by an argument in the grounded extension G(AS) (A is “out”), iff A is attacked by
an observation-based argument.

Proof. We first prove this from right to left: if an argument A ∈ Arg(AS) is attacked by an observation-
based argument B, then B ∈ G(AS), since B cannot be attacked. So A is attacked by an argument in the
grounded extension.

Now we prove the left-to-right part by contradiction. Suppose that an argument A∈ Arg(AS) is attacked
by an argument B in the grounded extension, but A is not attacked by an observation-based argument. Then
there is a subargument A′ ∈ sub(A) such that conc(A′) = −conc(B), conc(A′) /∈ K and conc(B) /∈ K.
B attacks A on A′, but A′ attacks B as well. B is in G(AS), so each argument attacking B is attacked by
an observation-based argument (Lemma 3). So A′ must be attacked by an observation-based argument:
there is a subargument A′′ ∈ sub(A′) such that −conc(A′′) ∈K. But if A′′ ∈ sub(A′) and A′ ∈ sub(A) then
A′′ ∈ sub(A), which implies that A is attacked by an observation-based argument as well. This contradicts
our assumption that A is not attacked by an observation-based argument.

To conclude, an argument A ∈ Arg(AS) is attacked by an argument in the grounded extension G(AS),
iff A is attacked by an observation-based argument.

2 Stability
Using the notion of acceptability (Definition 6), we can determine whether a literal l ∈ L can be accepted
in a given argumentation setup AS = (L,R,Q,K). However, by adding more information, l’s acceptability
status may change. Informally, l is stable in AS if its acceptability status cannot change by adding any
combination of queryables to the knowledge base - provided that the resulting knowledge base is consistent.
Next, we define future setups, which specify how information can be added to AS.

Definition 7 (Future setups). The set of future setups F(AS) of an argumentation setup AS = (L,R,Q,
K) contains all argumentation setups AS′ = (L,R,Q,K′) with K ⊆K′.

If an argument A can be inferred from a given argumentation setup AS = (L,R,Q,K), then A can be
inferred from each future argumentation setup AS′ ∈ F(AS). We formally prove this in Lemma 5.

5

Lemma 5 (Argument persistence in future setups). Let AS = (L,R,Q,K) be an argumentation setup and
let A be an argument in Arg(AS). Then for each AS′ ∈ F(AS): A ∈ Arg(AS′).

Proof. Suppose that AS = (L,R,Q,K) is an argumentation setup and A ∈ Arg(AS). Let AS′ = (L,R,Q,
K′) ∈ F(AS) be an arbitrary future setup. By definition of future setups (Definition 7), K ⊆ K′. From
the definition of arguments (Definition 2), it follows that arguments are constructed only based on their
knowledge base and rule set, so given that A can be constructed from K and R, A can also be constructed
from K′ andR. This implies that A ∈ Arg(AS′).

Note that argumentation setup AS always belongs to the set of future setups F(AS). Further recall from
Definition 1 that K′ must be consistent since AS′ is an argumentation setup. Using the notion of future
setups, we now define stability.

Definition 8 (Stability). Let AS = (L,R,Q,K) be an argumentation setup. A literal l ∈ L is stable in AS
iff any of the following holds:

• for each AS′ ∈ F(AS), l is unsatisfiable in AS′; or

• for each AS′ ∈ F(AS), l is defended in AS′; or

• for each AS′ ∈ F(AS), l is out in AS′; or

• for each AS′ ∈ F(AS), l is blocked in AS′.

Example 4 (Example 3 continued). In our running example, the topic f is stable. By querying the client
agent, we could obtain more information; F(AS) for example contains an argumentation setup with knowl-
edge base K′ = K∪{¬sp} = {sm,b,¬rp,u, t,¬sp}. However, adding information does not influence f ’s
acceptability status: for each AS′ in F(AS), f is blocked in AS′. Therefore, f is stable in AS.

Determining stability is CoNP-hard. This can be shown by a polynomial-time reduction from the
CoNP-complete problem UNSAT.

Proposition 1. [Complexity of stability problem] Given an argumentation setup AS = (L,R,Q,K), the
problem of deciding if a literal l ∈ L is stable in AS is CoNP-hard.

Proof. Consider an argumentation setup AS = (L,R,Q,K) and let STABILITY be the problem of deciding
if a literal l ∈ L is stable in AS. We will show that STABILITY is CoNP-hard by giving a polynomial-time
computable reduction f from the known CoNP-hard problem UNSAT.

Consider a boolean expression φ = (c11∨ . . .∨ c1k)∧ . . .∧ (cn1∨ . . .∨ cnm) in conjunctive normal form
(CNF); let C be the set containing all literals in φ and let vI be the valuation function for propositional
classical logic given the truth assignment function I : C → {True,False}. In the UNSAT problem, the goal is
to decide, given a boolean expression φ = (c11∨ . . .∨ c1k)∧ . . .∧ (cn1∨ . . .∨ cnm) in CNF, if vI(φ) is False
for every truth assignment I.

First, we will give a reduction function from UNSAT to the STABILITY problem. Let f be the function
that converts an arbitrary formula φ = (c11∨ . . .∨ c1k)∧ . . .∧ (cn1∨ . . .∨ cnm) in CNF to an argumentation
setup AS = (L,R,Q,K) (illustrated in Figure 2) such that:

• L consists of:

(1) For each literal in C: the literal and its negation; and

(2) For each clause in φ : a clause-specific literal and its negation; and

(3) A topic literal and its negation.

Formally: L= C ∪{−ci j | ci j ∈ C} (1) ∪{li | ∃ j : ci j ∈ C}∪{−li | ∃ j : ci j ∈ C} (2) ∪{t,¬t} (3);

• R consists of:

(1) For each clause i and for each literal ci j in this clause: ci j⇒ li; and

6

t

l1 . . . ln

c11 . . . c1k cn1 . . . cnm

Figure 2: Reduction UNSAT.

(2) (l1, . . . , ln)⇒ t for t.

Formally: R= {ci j⇒ li | ci j ∈ C} (1) ∪{(l1, . . . , ln)⇒ t} (2).

• Q contains all literals occurring in the CNF φ and their negations: Q = {ci j | ci j ∈ C ∨−ci j ∈ C};
and

• K is empty: K = /0.

We now examine the time needed for computing the reduction f (φ) for an arbitrary formula φ in CNF.
For each literal ci j occurring in φ , two literals are added to the language L, one rule is added to R and
two literals are added to Q. Furthermore, for each clause two literals are added to L. Finally, the topic
literal and its negation are added to L and a single rule for the topic literal is added toR. Since the number
of clauses cannot exceed the number of literals occurring in φ , this reduction can be computed O(|C|)
operations; hence the reduction f can be computed in polynomial time.

Next, we prove that there is no truth assignment I such that vI(φ) = True iff t is stable in AS.
We start by proving this from left to right, by contraposition. Suppose that there exists a truth assign-

ment I for φ = (c11∨ . . .∨ c1k)∧ . . .∧ (cn1∨ . . .∨ cnm) such that vI(φ) = True. We will show that t cannot
be stable. The knowledge base K is empty, so by Definition 2, Arg(AS) = /0. Then there is no argument for
t in Arg(AS). Now let K′ = {ci j ∈ K | vI(ci j) = True} and let AS′ be {L,R,Q,K′}. vI(φ) = True, hence
for each i ∈ [1 . . n], vI(ci1∨ . . .∨cik) = True. Consider an arbitrary i ∈ [1 . . n]. vI(ci1∨ . . .∨cik) = True, so
there is a j ∈ [1 . . k] such that vI(ci j) = True. Then by definition of K′, ci j ∈ K′. By Definition 2, there is
an observation-based argument for ci j. Furthermore, there is a rule ci j⇒ li inR; therefore by Definition 2,
there is a rule-based argument for li in Arg(AS′). Since we chose i arbitrary, for each i ∈ [1 . . n], there is a
rule-based argument for li in Arg(AS′). Then by Definition 2, there is an argument for t based on the rule
(l1, . . . , ln)⇒ t in Arg(AS′).

There is no argument for t in Arg(AS) and AS ∈ F(AS), so by Definition 6, t is unsatisfiable in AS.
There is an argument for t in Arg(AS′); this implies that t is not unsatisfiable in AS′. Then by Definition 8,
t is not stable in AS.

Now, we prove by contraposition that t is stable in AS if there is no truth assignment I such that
vI(φ) = True.

Suppose that t is not stable in AS. Then by Definition 8, t is not unsatisfiable in every AS′ ∈ F(AS).
However, t is unsatisfiable in AS, since there is no argument (for t) in Arg(AS): K = /0. This implies that
there exists an AS′ = (L,R,Q,K′) in F(AS) such that there is an argument for t in Arg(AS′).

t /∈ Q, so the argument for t must be rule-based. The only rule for t in R is (l1, . . . , ln)⇒ t, so there is
an argument for t based on (l1, . . . , ln)⇒ t in Arg(AS′). By Definition 2, for each i ∈ [1 . . n], there is an
argument for li in Arg(AS′).

Consider an arbitrary i ∈ [1 . . n]. li /∈Q, so there must be a rule-based argument for li. Let {ri1, . . . ,rik}
be the rules for li inR. Let ri j : ci j⇒ li (with i ∈ [1 . . k]) be an arbitrary rule such that there is an argument
based on ri j in Arg(AS′). Then there must be an argument for ci j in Arg(AS′). This argument must be
observation-based, hence ci j ∈ K′.

7

q2

¬a a

t

q1

D

b

¬t

¬b

q3

DD

Figure 3: D/B is irrelevant in [5] Case B lit. A.

Let I be a truth assignment such that:

I(ci j) =

{
True if ci j ∈ K′

False if ci j /∈ K′.

Given that ci j ∈ K′, we have that vI(ci j) = True and therefore vI(ci1 ∨ . . .∨ cik) = True as well. Since
we chose i arbitrary, this is the case for every i in [1 . . n]. Then vI((c11∨ . . .∨c1k)∧ . . .∧(cn1∨ . . .∨cnm)) =
vI(φ) = True. So there exists a truth assignment I such that vI(φ) = True.

We have shown that there exists a reduction function f from UNSAT to the STABILITY problem that can
be computed in polynomial time, such that vI(φ) is False for every truth assignment I iff t ∈ L is stable in
f (φ) = AS = (L,R,Q,K). This implies that UNSAT ≤p STABILITY. UNSAT is CoNP-hard, so STABILITY
is CoNP-hard.

CoNP-hard problems are generally considered intractable (unless P = NP). Given the above results
and assuming that P 6= NP, there is no exact polynomial-time algorithm that determines for an arbitrary
argumentation setup AS if a literal is stable in AS. This means that an exact algorithm would need exponen-
tial time, resulting in infeasible computation time for stability detection of e.g. argumentation setups with
large rule sets. Since practical applications require fast computation for arbitrary argumentation setups, we
consider a sound polynomial-time approximation algorithm in the next section.

3 Approximating stability
A first approximation algorithm for determining stability in formal argumentation was proposed in [5]. This
algorithm assigns a label to literals and rules that it considers to be stable. Each label relates to one of the
four cases of stability: U (unsatisfiable); D (defended); O (out); or B (blocked). However, the algorithm
is not complete: there exist argumentation setups which are stable but are not labelled as such by the
approximation algorithm. Although one example is given in [5], the authors give no precise specification
of argumentation setups for which the algorithm does not recognise stability. In the next subsection, we
give two additional examples which reveal different issues of the method by [5]. In Sections 3.2 and 3.3,
we present a refined algorithm to solve these issues. Subsequently, we will show soundness and conditional
completeness and study computational complexity of this refinement in Section 3.4.

3.1 Examples of incompleteness basic algorithm
Figures 3 and 4 illustrate two different issues of the algorithm from [5].

Example 5 (Irrelevant label problem). Figure 3 represents an argumentation setup AS in which q1, q2 and
q3 are queryable. q1 is in the knowledge base and the topic is t. There is an argument for t based on
a⇒ t and an argument for ¬t based on b⇒¬t in Arg(AS). So for each AS′ ∈ F(AS), t is blocked in AS′.
However, t is not recognised as being stable by the algorithm in [5]. The literal q1 and rules q1 ⇒ a and
q1⇒ b are correctly labelled D, but the other literals and rules are not labelled by the algorithm. a and b
are not labelled because they may become either defended (if ¬q2 resp. ¬q3 ∈ K′) or blocked (if q2 resp.
q3 ∈K′). As a result, the rules a⇒¬t and b⇒ t are not labelled because they may become either defended
or blocked. In all future setups in F(AS), the argument for a is either defended (if q2 /∈ K′) or blocked (if

8

tc

ba

Figure 4: Support Cycle. Q = /0, so F(AS) = {AS}. K = /0, so there is no argument for t in Arg(AS).
However, L does not label t.

q2 ∈ K′). Similarly, in every future setup, the argument for b is either defended (if q3 /∈ K′) or blocked (if
q3 ∈K′). The algorithm in [5] has a labelling rule Case B literal A stating that “l ∈ L is labelled B iff l ∈Q
and a rule for l and a rule for−l are labelled D or B”. However, this rule does not apply: although the rules
a⇒ t and b⇒¬t will certainly be labelled D or B in a future setup in which we have more information
about q2 and q3, we do not know the exact label - which is in this case irrelevant.

We will refer to the issue illustrated in Figure 3 as the irrelevant label problem. It is caused by the fact
that L only assigns a label if there is exactly one possible acceptance status for all future setups, but does
not take into account that some acceptability statuses are impossible in a future setup.

The next example reveals another issue of the basic algorithm, which we will refer to as the support
cycle problem.

Example 6 (Support cycle problem). Figure 4 represents an argumentation setup AS in which a, b, c and
t are literals that are not queryable and t is the topic literal. None of the literals is queryable, so there is
no other future argumentation setup than the current setup (i.e. F(AS) = {AS}). There is no argument for
t in Arg(AS), hence t is unsatisfiable in every future argumentation setup. However, no rule or literal is
labelled U since the basic algorithm in [5] only labels a non-queryable literal U if all rules for this literal
are labelled U and a rule only gets labelled U if at least one antecedent of that rule is labelled U . Because
of this support cycle, there is no place to start labelling.

Due to the irrelevant label problem and the support cycle problem, the approximation algorithm from [5]
fails to recognise the stability of some argumentation setups. In an inquiry dialogue context, this would
cause an agent to not recognise the termination criterion. As a result, it might ask unnecessary questions.
In the next two subsections, we will present a solution to these problems.

3.2 Reasoning with possible future labels
In this section, we present an alternative labelling method, that bypasses the irrelevant label problem by
reasoning with possible future labels. Whereas the approximation algorithm presented in [5] relies on a
partial labelling function L that assigns at most one label to each literal in L and rule in R (L : L∪R 7→
{U,D,O,B}where 7→ denotes a partial function), we propose a labelling L′ that assigns a quadruple of four
booleans 〈u,d,o,b〉 to each literal and rule. Each boolean corresponds to an acceptability status. Intuitively,
the truth value of a boolean belonging to a literal or rule represents the possibility that this literal or rule
may become unsatisfiable (u), defended (d), out (o) or blocked (b) in a future argumentation setup.

Similar to the approach in [5], labels of rules depend on the labels of their antecedent literals and labels
of literals depend on the labels of rules for that literal. Literals and rules are labelled incrementally, starting
from queryable literals and literals for which there is no rule and relabelling literals and rules based on the
resulting new labels, until no new label can be added. This procedure is given in Algorithm 1.

Definition 9 (Quadruple labelling L′). Let AS = (L,R,Q,K) be an argumentation setup. The labelling
function L′ : L∪R→ {0,1}×{0,1}×{0,1}×{0,1} assigns a label 〈u,d,o,b〉 to each literal or rule in
L∪R.

Given a literal or rule x ∈ L∪R, we write ¬u(x) [resp. ¬d(x),¬o(x),¬b(x)] iff the u- [resp. d-, o-, b-]
boolean of x’s label is False and u(x) [resp. d(x),o(x),b(x)] iff the u- [resp. d-, o-, b-] boolean of x’s label
is True. We say that a rule or literal x is labelled stable by L′ iff exactly one of the booleans is True: L′(x)
is 〈1,0,0,0〉, 〈0,1,0,0〉, 〈0,0,1,0〉 or 〈0,0,0,1〉.

Given a literal l ∈ L, L′(l) = 〈u,d,o,b〉 where:

9

literal cannot become unsatisfiable: ¬u(l) iff:

L-U-a) l ∈ K; or

L-U-b) there is a rule r for l with ¬u(r).

literal cannot become defended: ¬d(l) iff:

L-D-a) −l ∈ K; or

L-D-b) l /∈Q and for each rule r for l: ¬d(r); or

L-D-c) l /∈Q and there is a rule r′ for −l with ¬u(r′) and ¬o(r′).

literal cannot become out: ¬o(l) iff:

L-O-a) l ∈ K; or

L-O-b) for each rule r for l: ¬d(r), ¬o(r) and ¬b(r); or

L-O-c) l /∈Q and for each rule r for l: ¬o(r); or

L-O-d) l /∈Q and there is a rule r for l with ¬u(r) and ¬o(r).

literal cannot become blocked: ¬b(l) iff:

L-B-a) l ∈Q; or

L-B-b) for each rule r for l: ¬d(r) and ¬b(r); or

L-B-c) for each rule r for l: ¬b(r) and for each rule r′ for −l: ¬d(r′) and ¬b(r′).

L-B-d) there is a rule r for l with ¬u(r), ¬o(r) and ¬b(r) and for each rule r′ for−l: ¬d(r′) and ¬b(r′).

Given a rule r ∈R, L′(r) = 〈u,d,o,b〉 where:

rule cannot become unsatisfiable: ¬u(r) iff:

R-U-a) for each antecedent l of r: ¬u(l).

rule cannot become defended: ¬d(r) iff:

R-D-a) there is an antecedent l of r with ¬d(l).

rule cannot become out: ¬o(r) iff:

R-O-a) for each antecedent l of r: ¬o(l); or

R-O-b) there is an antecedent l of r with ¬d(l) and ¬o(l) and ¬b(l).

rule cannot become blocked: ¬b(r) iff:

R-B-a) for each antecedent l of r: ¬b(l); or

R-B-b) there is an antecedent l of r with ¬d(l) and ¬b(l).

Example 7. We give some intuition on these rules by labelling AS = (L,R,Q,K) illustrated in Figure 5.
Some rules apply if (the negation of) a literal is inK orQ, e.g. q1 is labelled 〈0,1,0,0〉 by Definition 9 case
L-U-a, L-O-b and L-B-a: there is an observation-based argument for q1 which cannot be attacked in any
future setup. The absence of rules for a literal is informative for the acceptability status as well: e.g. l1 is
labelled 〈1,0,0,0〉 by L-D-b, L-O-b/c and L-B-b/c.

Other labels are based on the rules for (the negation of) a literal and propagate properties of (attacks on)
subarguments. For example, q1 ⇒ l2 is labelled 〈0,1,0,0〉 by R-U-a, R-O-a and R-B-a and l2 is labelled
〈0,1,0,0〉 by L-U-b, L-O-c/d and L-B-c/d. Some literals and rules cannot be labelled stable, but still some
acceptability status(es) can be excluded: e.g. the rule q2 ⇒ q3 is labelled 〈1,1,0,0〉 by case R-O-a and
R-B-a.

10

Algorithm 1 Labelling procedure
1: procedure LABELLING-PROCEDURE(L,R,Q,K)
2: Label each literal/rule x in L andR as 〈1,1,1,1〉
3: TODO-SET = empty set
4: for Literal l in L such that l ∈Q or there is no rule for l inR do
5: Relabel l using Definition 9
6: Add all rules having l as antecedent to TODO-SET

7: while TODO-SET is not empty do
8: Pop a rule r from TODO-SET
9: Relabel r using Definition 9

10: if r’s label changed then
11: Relabel cons(r) using Definition 9
12: if cons(r)’s label changed then
13: Add all rules having cons(r) as antecedent to TODO-SET

14: Relabel −cons(r) using Definition 9
15: if −cons(r)’s label changed then
16: Add all rules having −cons(r) as antecedent to TODO-SET

l1

U

q1

D

¬q1

U

q2

D/U

¬l2

U

l2

D

l3

D/U

q3

D/U/O

U D U D/U D/U

Figure 5: Quadruple labelling example.

Example 8 (Alternative labelling Figure 3). Consider the L′ labelling for the argumentation setup from
Figure 3. q1 is in the knowledge base, so by Definition 9, L′(q1) = 〈0,1,0,0〉. Then L′(q1⇒ a) = L′(q1⇒
b) = 〈0,1,0,0〉 by R-U-a, R-O-a and R-B-a. q2 and q3 are queryable but not in the knowledge base and
there are no rules for q2 or q3, so by Case L-O-b and L-B-a: L′(q2) = L′(q3) = 〈1,1,0,0〉. For the rules
q2⇒¬b and q3⇒¬a, only the d- and u-booleans are True by R-O-a and R-B-a. As a result, for the literals
a and b only the d- and b-booleans are True by L-U-b and L-O-c, which implies by R-U-a and R-O-a that
L′(b⇒ t) = L′(a⇒ t) = 〈0,1,0,1〉. Finally, t is labelled L′(t) = 〈0,0,0,1〉 (by L-U-b, L-D-c and L-O-c/d),
so t is labelled stable by L′.

In Example 8 we show that t is labelled stable by our labelling function L′, while its stability was not
detected by the labelling function L from [5]. In general, each literal or rule that is labelled stable by L, is
also labelled stable by L′, but L′ covers more stable setups than L.

Finally, we consider the time complexity of the alternative labelling procedure. As formally shown in
Lemma 6, the labelling procedure can be done in polynomial time.

Lemma 6. The time complexity of Algorithm 1 is O(|L|2 · |R|+ |R|2).

Proof. We will prove this by first showing the amount of time that is required for a single execution of a
given line (also given in the second column of Table 1). Next, we will consider the number of iterations
of each line (third column), multiply them to get the total time required for each line (third column) and
combine this into the big-O notation (final row).

In the following, we will denote positive constants by ci (with i ∈ [1 . . 15]). Line 2 requires visiting all
literals and rules and therefore takes at most c1 · (|L|+ |R|) steps. Line 3 takes constant time c2. Line 4
takes a new literal or rule from Q or R; a single execution of this line takes constant time c3. A single
execution of line 5 requires labelling a literal, which can be done in c4 · |R| time since it requires checking

11

Line Time single execution Max nr. of executions Total time
2 c1 · (|L|+ |R|) 1 c1 · (|L|+ |R|)
3 c2 1 c2
4 c3 |L|+ |R| c3 · (|L|+ |R|)
5 c4 · |R| |L|+ |R| c4 · |R| · (|L|+ |R|)
6 c5 · |R| |L|+ |R| c5 · |R| · (|L|+ |R|)
7 c6 4 · |L| · |R| 4 · c6 · |L| · |R|
8 c7 4 · |L| · |R| 4 · c7 · |L| · |R|
9 c8 · |L| 4 · |L| · |R| 4 · c8 · |L|2 · |R|
10 c9 4 · |L| · |R| 4 · c9 · |L| · |R|
11 c10 · |R| 4 · |R| 4 · c10 · |R|2
12 c11 4 · |R| 4 · c11 · |R|
13 c12 · |R| 4 · |L| 4 · c12 · |L| · |R|
14 c13 · |R| 4 · |R| 4 · c13 · |R|2
15 c14 4 · |R| 4 · c14 · |R|
16 c15 · |R| 4 · |L| 4 · c15 · |L| · |R|
Total time required for all lines O(|L|2 · |R|+ |R|2)

Table 1: Complexity per line of Algorithm 1.

the labels of all rules for that literal. Line 6 requires c5 · |R| time per execution, since a literal is antecedent
of at most |R| rules. Line 7 only needs to check if a set is empty, which can be done in constant time c6.
The next line only needs to pop an element from a set, which can be done in constant time as well, so line 8
needs c7 time. Line 9 relabels a rule, which requires checking the labels of all antecedents of this rule.
Since a rule has at most |L| antecedents, this takes at most c8 · |L| time per execution of Line 9. Lines 10,
12 and 15 only check if the label of a rule or literal changed; this can be done in constant time c9, c11 and
c14 respectively. Lines 11 and 14 relabel a literal, which requires checking the labels of all rules for that
literal. A single execution therefore takes c10 · |R| time for 11 and c13 · |R| time for 14. Finally, lines 13
and 16 both add at most |R| rules to TODO-SET, so a single execution of line 13 needs at most c12 · |R|
time and a single execution of line 16 needs at most c15 · |R| time.

Now we consider the number of iterations of each line; this is also represented in the third column of
Table 1. Lines 2 and 3 are executed just once. Lines 4–6 are repeated for each literal inQ, which must be in
L and for each rule in R. This implies that lines 4–6 are executed at most |L|+ |R| times. The lines 7–10
are executed in every iteration of the while loop. The total number of iterations of the while loop equals
the number of times a rule is added to TODO-SET. A rule is only added to TODO-SET if it was not yet
visited (line 6) or if the label of one of its antecedents changed after a relabelling (line 13 or line 16). Since
the label of a literal can change at most three times (i.e. at most three booleans can be turned to False),
each rule r is recolored at most 4 · |ants(r)| times. There are |R| rules, so lines 7–10 are executed at most
4 · |L| · |R| times. Next, we consider lines 11, 12, 14 and 16. These lines are only executed if the label of a
rule changed. A label can only be changed by turning one of the four booleans to False. Therefore, a label
can be changed at most four times for each rule (we will see in Lemma 10 that in practice, the maximum
of changes is three). There are |R| rules in total, so lines 11, 12, 14 and 16 are executed at most 4 · |R|
times. Finally, lines 13 and 16 are only executed just after the label of a literal changed. This can happen
at most four times for each literal, because at most four booleans can be turned to False. (Again, we will
see in Lemma 10 that the maximum of changes per label is in practice 3.) There are |L| literals in total;
therefore lines 13 and 16 are executed at most 4 · |L| times.

An upper bound on the total amount of time that is needed for all executions of a single line can now
be obtained by multiplying the maximum time required for a single execution by the number of executions
of each line. We do this in the fourth column of Table 1. From these results, it becomes clear that the total
running time of Algorithm 1 is dominated by the lines for relabeling: line 9 takes 4 · c8 · |L|2 · |R| time;
line 11 takes 4 · c10 · |R|2 time and line 14 takes 4 · c13 · |R|2 time. To conclude, the total time complexity
of Algorithm 1 is O(|L|2 · |R|+ |R|2).

12

3.3 Preprocessing
The new labelling proposed in the previous section does not solve the support cycle problem: if we would
apply the labelling L′ from Definition 9 to the argumentation setup from Figure 4, all literals l (including
topic literal t) would be labelled 〈1,1,1,1〉. In order to solve this issue, we add a preprocessing step,
which is specified in Algorithm 2. The idea of this algorithm is that initially, all literals that cannot be
in the knowledge base in a future setup and all rules are labelled 〈1,0,0,0〉 (i.e. unsatisfiable). Then, the
algorithm incrementally removes unsatisfiable labels of rules for which all antecedents are not labelled
〈1,0,0,0〉, and of the consequents of these rules, based on the intuition that there may be an argument
based on these rules in a future setup.

Algorithm 2 Preprocessing step (to obtain Lp)
1: procedure PREPROCESS(L,R,Q,K)
2: Label each literal l s.t. l ∈Q∧−l /∈ K as 〈1,1,1,1〉
3: Label all other literals as 〈1,0,0,0〉
4: Label each r ∈R as 〈1,0,0,0〉
5: while a label changed in the previous loop do
6: for Rule r inR do
7: if L(r) = 〈1,0,0,0〉 and for each l ∈ ants(r): L(l) 6= 〈1,0,0,0〉 then
8: Label r as 〈1,1,1,1〉
9: Label cons(r) as 〈1,1,1,1〉

Lemma 7 (Time complexity preprocessing). The time complexity of Algorithm 2 is O(|L| · |R|2).

Proof. Algorithm 2 needs at most c1 · (|L|+ |R|) operations for line 2–4, where c1 is a positive constant.
Next we consider the time required for the lines in the while-loop. We stay in the while-loop until no label
changed any more in the previous loop, so at least one label had to change in the previous loop. Thanks
to the check L(r) = 〈1,0,0,0〉, for each rule the label can change at most once. Therefore the while-loop
iterates at most |R| times. Line 5 only requires a label check, which can be done in constant time c2. The
for-loop iterates |R| times for each iteration of the while-loop. As a result, the lines 6–9 are executed at most
|R|2 times in total. A single execution of line 6 takes constant time c3. Line 7 checks all antecedents of each
rule, which requires at most c4 · |L| checks per execution where c4 is a positive constant; line 8 and 9 take
constant time c5. So the total time required for all executions of lines 6–9 is at most (c3+c4 · |L|+c5) · |R|2.
The total time required for Algorithm 2 is c1+c2 · |R|+(c3+c4 · |L|+c5) · |R|2 time. As a result, the time
complexity of the preprocessing step must be O(|L| · |R|2).

Lemma 8 (Soundness preprocessing step). Given an argumentation setup AS = (L,R,Q,K) and labelling
Lp after the preprocessing step, for each l ∈ L: if Lp(l) = 〈1,0,0,0〉, then for each AS′ ∈ F(AS): l is
unsatisfiable in AS′.

Proof. We prove this by contraposition. Let l ∈ L be a literal and let Lp be the labelling after the prepro-
cessing step. Furthermore suppose that not for each AS′ ∈ F(AS): l is unsatisfiable in AS′. By Definition 6,
implies that there exists an AS′ = (L,R,Q,K′) in F(AS) such that there is an argument for l in Arg(AS′).
By Lemma 1 there is a non-circular argument A for l in Arg(AS′). We now prove by induction on the height
of A that l is labelled 〈1,1,1,1〉 by Algorithm 2.

Base case: Suppose that h(A) = 0. Then l ∈ K′. This implies that l ∈ Q∧−l /∈ K, so l is labelled
〈1,1,1,1〉 in Algorithm 2 line 2. Since there is no operation which labels literals from 〈1,1,1,1〉 to
〈1,0,0,0〉, we have that Lp(l) = 〈1,1,1,1〉.

Induction hypothesis: If A is a non-circular argument in Arg(AS′) and h(A)≤ k, then Lp(conc(A)) =
〈1,1,1,1〉.

Induction step: Now suppose that h(A) = k + 1. Then A must be a rule-based non-circular argu-
ment A1, . . . ,Am ⇒ l in Arg(AS′). This implies that for each i ∈ [1 . . m]: Ai in Arg(AS′) and h(Ai) ≤ k.
By the induction hypothesis, for each a = ants(top-rule(A)): Lp(a) = 〈1,1,1,1〉, so Lp(l) is labelled
Lp(l) = 〈1,1,1,1〉 by Algorithm 2 line 9. Since there is no operation which labels literals from 〈1,1,1,1〉
to 〈1,0,0,0〉, we have that Lp(l) = 〈1,1,1,1〉.

13

We just proved that each literal l ∈ L for which there is an AS′ ∈ F(AS) such that there is an argument
for l in Arg(AS′) is labelled Lp(l) = 〈1,1,1,1〉 (so Lp(l) 6= 〈1,0,0,0〉). This implies: if Lp(l) = 〈1,0,0,0〉,
then for each AS′ ∈ F(AS): l is unsatisfiable in AS′.

Example 9 (Alternative labelling Example 6). Let us reconsider Figure 4, assuming that the preprocessing
step has been executed. In Line 3, all literals (a, b, c and t) are labelled 〈1,0,0,0〉. Since the if-statement
in Line 7 never returns true, no rule or literal gets another label, so the while loop is executed only once.
After termination of Algorithm 2, all literals are still (correctly) labelled 〈1,0,0,0〉.

Algorithm 3 Stability labeling
1: procedure STABILITY(L,R,Q,K)
2: Apply PREPROCESS(L,R,Q,K) (Algorithm 2) to obtain Lp for each literal/rule x in L andR
3: Apply LABELLING-PROCEDURE(L,R,Q,K) (Algorithm 1) line 3–16

Finally, Algorithm 3 shows our proposed algorithm STABILITY. The algorithm runs PREPROCESS on
the argumentation setup and then labels all literals and rules by repeatedly applying Definition 9.

3.4 Properties of the proposed algorithm
In this subsection, we present properties of STABILITY, our approximation algorithm for estimating stabil-
ity.

3.4.1 Soundness

STABILITY is sound: if the algorithm labels a literal l as stable in an argumentation setup AS, then l is
stable in AS. We will formally prove this in Proposition 2. In order to prove this, we first need to prove the
following lemmas for a given argumentation setup AS = (L,R,Q,K):

Lemma 9 Each rule r ∈R is labelled ¬u(r) iff there is an argument based on r in Arg(AS);

This lemma explains the behaviour of the boolean representing the unsatisfiablility for rules. That
boolean is turned to false if and only if an argument based on that rule can be inferred from the
current argumentation setup. In this case, it is guaranteed that there is an argument for all antecedents
of this rule in the current argumentation setup. Therefore, all antecedents of the rule are certainly not
unsatisfiable in each future argumentation setup.

Lemma 10 No literal l ∈ L or rule r ∈R is labelled 〈0,0,0,0〉;
This lemma excludes the possibility that all four acceptability booleans (unsatisfiable, defended, out
and blocked) are turned to false by the labeling algorithm. This is an important property that we
will use repeatedly to show that a literal or rule is stable after proving that three of its acceptability
booleans have been turned to False.

Lemma 11 If a rule r ∈R for l is labelled ¬u(r) and ¬o(r) and l /∈ Q, then l is not unsatisfiable or out in
any future argumentation setup of AS;

This lemma analyses the situation that both the unsatisfiable and the out boolean for a rule are turned
to False, while its consequent (as well as the negation of the consequent) is not observable. In this
situation, there must be some argument based on that rule in each future setup AS′ that is not attacked
by an argument in the grounded extension G(AS′).

Lemma 12 If a rule r ∈ R for l is labelled ¬d(r) and ¬b(r) then l cannot be defended or blocked in any
future argumentation setup of AS thanks to that rule.

If both the defended and out case of a rule r are turned false, then there is no future argumentation
setup AS′ in which there is an argument based on r that is not attacked by an argument in the grounded
extension of AS′.

14

These lemmas will be used repeatedly in the proof of Proposition 2 (soundness); furthermore Lemma 9
right-to-left is used in Proposition 3 (conditional completeness). Remember that a literal l is labelled stable
by L′ iff L′(l) = 〈1,0,0,0〉, L′(l) = 〈0,1,0,0〉, L′(l) = 〈0,0,1,0〉 or L′(l) = 〈0,0,0,1〉. The stability status
of a literal l is in many cases dependent on the stability statuses of the rules for l. For example, if we want
to show that the out case is sound, then we need to prove: if L′(l) = 〈0,0,1,0〉 then for each AS′ ∈ F(AS),
l is out in AS′. L′(l) = 〈0,0,1,0〉 iff l is labelled ¬u(l), ¬d(l) and ¬b(l) by L′ and L′(l) 6= 〈0,0,0,0〉.
Lemma 10 excludes the possibility that L′(l) = 〈0,0,0,0〉. We will use Lemma 9 to show that there is an
argument for l in Arg(AS); which must be in Arg(AS′) for each AS′ ∈ F(AS), so l is not unsatisfiable in
any AS′ ∈ F(AS). In case l /∈ Q, we will use Lemma 12 to prove that l is not defended or blocked in any
AS′ ∈ F(AS) - which implies that l is out in each AS′ ∈ F(AS). In a similar way, Lemma 11 will be used in
the soundness proof for the blocked case.

Lemma 9 (Argument existence labelling). Given an argumentation setup AS = (L,R,Q,K), let L′ be the
labelling obtained by STABILITY (Algorithm 3). For each r ∈ R: r is labelled ¬u(r) by L′ iff there is an
argument based on r in Arg(AS).

Proof. Let AS = (L,R,Q,K) be an argumentation setup and let L′ be the labelling obtained by STABILITY
(Algorithm 3). Furthermore let r be an arbitrary rule in R. We will prove that r is labelled ¬u(r) by L′ iff
there is an argument based on r in Arg(AS) in both directions.

→→→: if r is labelled ¬u(r) by L′, then there is an argument based on r in Arg(AS).
r cannot be labelled ¬u(r) in the preprocessing step (Algorithm 2: PREPROCESS), since none of
the operations in Algorithm 2 turns the u-boolean of any rule to False. The u-boolean of a rule can
only be relabelled by Algorithm 1 (LABELLING-PROCEDURE) line 9. We now prove that there is
an argument based on r in Arg(AS) by induction on the number of the iteration of the while loop in
which the u-boolean of r was turned from True to False.

Base case: First suppose that r was labelled ¬u(r) in the first iteration of the while loop. Then by
Definition 9 case R-U-a, for each a ∈ ants(r) : ¬u(a). Each antecedent a ∈ ants(r) must have
been labelled ¬u(a) by Algorithm 1 line 5. Since each rule r′ ∈ R is labelled u(r′) before the first
iteration of the while loop, ¬u(a) cannot be caused by case L-U-b, so must be caused by L-U-a: for
each a ∈ ants(r) : a ∈ K. So by Definition 2, for each a ∈ ants(r) there is an argument for a in
Arg(AS); therefore, there is an argument based on r in Arg(AS).

Induction hypothesis: If r was labelled ¬u(r) in the k’th iteration of the while loop or earlier, then
there is an argument based on r in Arg(AS).

Induction step: Now suppose that r was labelled ¬u(r) in the (k+1)’th iteration of the while loop
(by Algorithm 1 line 9). Consider an arbitrary antecedent a ∈ ants(r). a must have been labelled
¬u(a) in the k’th iteration of the while loop or earlier (Definition 9 case R-U-a). So either a∈K (case
L-U-a) or for each r′ for a: r′ is labelled ¬u(r′) in or before the k’th iteration of the while loop (case
L-U-b). If a ∈ K, then there is an observation-based argument for a in Arg(AS). Otherwise, there is
a rule r′ that is labelled ¬u(r′) in the k’th iteration of the while loop or earlier, so by the induction
hypothesis there is an argument based on r′ in Arg(AS). cons(r′) = a, so there is an argument for a in
Arg(AS). Since we picked a arbitrarily from the antecedents of r, we have that for each a ∈ ants(r),
there is an argument for a in Arg(AS). So by definition of rule-based arguments, there is an argument
based on r in Arg(AS).

←←←: if there is an argument based on r in Arg(AS), then r is labelled ¬u(r) by L′.
Suppose that there is an argument based on r in Arg(AS). By Definition 2, for each a ∈ ants(r),
there is an argument for a in Arg(AS). Now let a be an arbitrary literal such that a ∈ ants(r). By
Lemma 1, there is a non-circular argument A for a in Arg(AS). We prove that a is labelled ¬u(a) by
induction on the height of A.

Base case: First suppose that h(A) = 0. Then a ∈K, so a ∈Q. This means that the condition for the
if-statement in Algorithm 1 line 4 applies and a is labelled in Algorithm 1 line 5 and will be labelled
¬u(a) by case L-U-a.

15

Induction hypothesis: If A is a non-circular argument for a with h(A)≤ k, then a is labelled ¬u(a)
by L′.

Induction step: Now suppose that h(A) = k+ 1. So A has the form A1, . . . ,Am ⇒ a and for each
i ∈ [1 . . m] : Ai ∈ Arg(AS). Let top-rule(A) = r′. For each i ∈ [1 . . m], we know that h(Ai) ≤ k
and Ai is non-circular (since A is non-circular), so we can apply the induction hypothesis: for each
a′ ∈ ants(r′), a′ is labelled ¬u(a′) by L′. Next, we show that r′ is considered for relabelling by
Algorithm 1. Let a′l be the last antecedent of r′ that was labelled ¬u(a′l). a′l is relabelled to ¬u(a′l)
either in Algorithm 1 line 5, line 11 or line 14. In all cases, r′ is added to TODO-SET immediately
afterwards (by either line 6, line 13 or line 16, so r′ is considered for relabelling after all antecedents
a′ of r′ were labelled. Given that r′ is added to TODO-SET, it must be popped from this set before
termination of Algorithm 1. Then r′ is relabelled by Algorithm 1 line 9. By Definition 9 case R-U-a,
r′ is labelled ¬u(r′). After this, cons(r′) = a was relabelled in Algorithm 1 line 11. By Definition 9
case L-U-B, a was labelled ¬u(a).

We showed by induction that each literal a ∈ ants(r) is labelled ¬u(a) by L′. Let al the last an-
tecedent of r which was labelled ¬u(al). al is relabelled to ¬u(al) either in Algorithm 1 line 5,
line 11 or line 13. In all cases, r is added to TODO-SET immediately afterwards, so r is considered
for relabelling (i.e. added to TODO-SET) after all antecedents a of r were labelled. Given that r is
added to TODO-SET, it must be popped from this set before termination of Algorithm 1 and relabelled
in line 9. By Definition 9 case R-U-a, r is labelled ¬u(r).

We proved that r is labelled ¬u(r) by L′ iff there is an argument based on r in Arg(AS). Since we chose
r as an arbitrary rule inR, this goes for every rule r inR.

Lemma 10 (No 4x False label). Given an argumentation setup AS = (L,R,Q,K), let L′ be the labelling
obtained by STABILITY (Algorithm 3). For each x ∈ L∪R: L′(x) 6= 〈0,0,0,0〉.

Proof. We first consider the situation that x is labelled unsatisfiable in the preprocessing step: Lp(x) =
〈1,0,0,0〉.

• Let l be a literal (x ∈ L, x = l) and suppose that Lp(l) = 〈1,0,0,0〉. Then by Lemma 8, for each
AS′ ∈ F(AS): l is unsatisfiable in AS′. AS ∈ F(AS) (Definition 7), so l is unsatisfiable in AS. By
Definition 6, this implies that there is no argument for l in AS. Now we prove by contradiction that
L′(l) 6= 〈0,0,0,0〉. Suppose that L′ = 〈0,0,0,0〉. By Definition 9, this must have been caused by
either l ∈ K (case L-U-a) or because there is a rule r for l which is labelled ¬u(r) (case L-U-b).
However, l /∈ K because there is no argument for l in Arg(AS). If there would be a rule r for l
which is labelled ¬u(r), then by Lemma 9, there is an argument based on r in Arg(AS), which again
contradicts our assumption that there is no argument for l. So if l is labelled unsatisfiable in the
preprocessing step (i.e. Lp(l) = 〈1,0,0,0〉), then L′(l) 6= 〈0,0,0,0〉.

• Let r be a rule (x∈R, x= r). Suppose that Lp(r)= 〈1,0,0,0〉. This implies that there is an antecedent
a ∈ ants(r) : Lp(a) = 〈1,0,0,0〉: otherwise, the label of r would have been changed to 〈1,1,1,1〉
by Algorithm 2 line 8. So by Lemma 8, there is an antecedent a ∈ ants(r) such that for each
AS′ ∈ F(AS): a is unsatisfiable in AS′. Consequently, there is no argument for a in Arg(AS), so there
is no argument based on r in Arg(AS). Then by Lemma 9, r is not labelled ¬u(r) by L′. To conclude:
if r is labelled unsatisfiable in the preprocessing step (i.e. Lp(r) = 〈1,0,0,0〉), then L′(r) 6= 〈0,0,0,0〉.

Alternatively, assume that x is not labelled 〈1,0,0,0〉 in the preprocessing step: Lp(x) = 〈1,1,1,1〉. Let
c(x) be the number of the iteration of the while loop (Algorithm 1 line 7–16) in which x is relabelled for
the last time; so if x was relabelled for the last time after the first iteration of the while loop, then c(x) = 1.
Furthermore, let Li be the labelling immediately after the i’th iteration of the while loop. We show that
L′(x) 6= 〈0,0,0,0〉 by induction on c(x).

Base case: First assume that c(x) = 0.

• Let r be a rule (x ∈ R, x = r). We have that Lp(r) = 〈1,1,1,1〉 by an earlier assumption. No rule
is relabelled before the first iteration of the while loop, so given that c(r) = 0, we have L′(r) =
〈1,1,1,1〉 6= 〈0,0,0,0〉.

16

• Alternatively, let l be a literal (x ∈ L, x = l). By an earlier assumption, Lp(l) = 〈1,1,1,1〉. This can
only be caused by the fact that (l ∈ Q∧−l /∈ K) (Algorithm 2 line 2) or there is a rule r for l such
that Lp(r) = 〈1,1,1,1〉 (Algorithm 2 line 9). We will show that in both cases l is labelled d(l).

– First assume that l ∈ Q and −l /∈ K. This implies that l is considered for relabelling in Algo-
rithm 1 line 5. In this relabelling step, none of the labelling rules L-D-a/b/c from Definition 9
applies, so l is labelled d(l).

– Alternatively, there is a rule r for l such that Lp(r) = 〈1,1,1,1〉. Rules are not relabelled before
the first iteration of the while loop, so there is a rule r for l such that L0(r) = Lp(r) = 〈1,1,1,1〉.
Furthermore, for each rule r ∈ R : u(r) since the u-boolean of rules cannot be turned False
before the first iteration of the while loop. As a result, none of the labelling rules L-D-a/b/c
from Definition 9 applies; therefore l is labelled d(l).

To conclude, in both cases l is labelled d(l). Therefore, L′(l) 6= 〈0,0,0,0〉.

So for each x ∈ L∪R such that c(x) = 0: L′(x) 6= 〈0,0,0,0〉.
Induction hypothesis: For each x ∈ L∪R such that c(x)≤ k: L′(x) 6= 〈0,0,0,0〉.
Induction step:

• First, we consider rules. Let r ∈ R be a rule such that c(r) = k + 1. This implies that for each
antecedent a ∈ ants(r) : c(a)≤ k: rules can only be relabelled by Algorithm 1 line 9, so they must
have been added to TODO-SET after the labelling of an antecedent changed in a previous iteration of
the while loop.

We will prove by contradiction that L′(r) 6= 〈0,0,0,0〉. Suppose that L′(r) = 〈0,0,0,0〉. Then ¬d(r),
which must be caused by Definition 9 case R-D-a, so there is an antecedent a ∈ ants(r) : ¬d(a).
Furthermore, we know that ¬b(r). This can be caused by either R-B-a or R-B-b, but in both cases,
there is an antecedent a ∈ ants(r) such that ¬d(a) and ¬b(a). Similarly, the fact that r is labelled
¬o(r) can be caused by either R-O-a or R-O-b, but in both cases, there is an antecedent a ∈ ants(r)
such that ¬d(a) and ¬o(a) and ¬b(a). Finally, ¬u(r) implies that ¬u(a) for each antecedent a of
r. But then there is an antecedent a ∈ ants(r) such that ¬u(a), ¬d(a), ¬o(a) and ¬b(a): L′(a) =
〈0,0,0,0〉. However, this contradicts our induction hypothesis; therefore, there is no rule r ∈R such
that c(r) = k+1 and L′(r) = 〈0,0,0,0〉.

• Now we consider literals: let l ∈ L be a literal such that c(l) = k+1. Note that c(l) = k+1 implies
that l was relabelled for the last time within (the k+ 1’th iteration of) the while loop. Therefore, l
must have been relabelled for the last time by Algorithm 1 in either line 11 or line 14. This implies
that each rule for l or −l must have been labelled in iteration k+1 or earlier. Formally: for each rule
r such that cons(r) ∈ {l,−l}: c(r) ≤ k+ 1. From the induction hypothesis (there is no rule r ∈ R
such that c(r)≤ k and L′(r) = 〈0,0,0,0〉) and our earlier conclusion that there is no rule r ∈R such
that c(r) = k+1 and L′(r) = 〈0,0,0,0〉, we derive: there is no rule r ∈R such that c(r)≤ k+1 and
L′(r) = 〈0,0,0,0〉.
We will now prove by contradiction that there is no literal l ∈ L such that c(l) = k+ 1 and L′(l) =
〈0,0,0,0〉. Suppose that L′(l) = 〈0,0,0,0〉.
First suppose that l ∈Q. This implies that ¬d(l) must have been caused by Definition 9 case L-D-a,
so −l ∈ K. Then by Definition 1, l /∈ K, so ¬u(l) must have been caused by L-U-b: there is a rule r
for l with ¬u(r). Furthermore, ¬o(l) must have been caused by L-O-b: for each rule r for l: ¬d(r),
¬o(r) and¬b(r). But that implies that there exists a rule r for l such that L′(r)= 〈0,0,0,0〉. However,
this contradicts our earlier conclusion that there is no rule r for l such that L′(r) = 〈0,0,0,0〉. So
l /∈Q.

Given that l /∈ Q, ¬u(l) must have been caused by case L-U-b: there is a rule r for l with ¬u(r).
Then ¬o(l) cannot be caused by L-O-a (since l /∈ K) or L-O-b (since there is no rule r for l such
that and L′(r) = 〈0,0,0,0〉). ¬o(l) must be caused by either L-O-c or L-O-d; in both cases, there is
a rule r for l with ¬u(r) and ¬o(r). This implies that ¬b(l) cannot be caused by L-B-b, so it must
have been caused by L-B-c or L-B-d. In both cases, there is a rule r for l with ¬u(r), ¬o(r) and

17

¬b(r) and for each rule r′ for −l: ¬d(r′) and ¬b(r′). Finally, ¬d(l) can be caused by either L-D-b
or L-D-c. However, both cases contradict the induction hypothesis: if it was caused by L-D-b, then
there is a rule r for l with L(r) = 〈0,0,0,0〉; if it was caused by L-D-c, then there is a rule r′ for −l
with L(r′) = 〈0,0,0,0〉.
To conclude, for each l ∈ L such that c(l) = k+1 we have that L′(l) 6= 〈0,0,0,0〉.

Lemma 11 (Labelled not unsatisfiable or out). Given an argumentation setup AS = (L,R,Q,K), let L′

be the labelling obtained by STABILITY (Algorithm 3). For each r ∈ R: if cons(r) /∈ Q and r is labelled
¬u(r) and ¬o(r) by L′, then for each AS′ ∈ F(AS), there is an argument based on r in Arg(AS′) that is not
attacked by any argument in G(AS′).

Proof. Suppose that r is a rule in R such that cons(r) /∈ Q and r is labelled ¬u(r) and ¬o(r) by L′. This
implies that r is not labelled 〈1,0,0,0〉 in the preprocessing step (otherwise the fact that r is labelled ¬u(r)
would imply that L′(r) = 〈0,0,0,0〉, which contradicts Lemma 10). So Lp(r) = 〈1,1,1,1〉. Let c(r) be the
number of the iteration of the while loop (Algorithm 1 line 7–16) in which r is relabelled for the last time
and let Li be the labelling immediately after the i’th iteration of the while loop. We show by induction on
c(r) that for each AS′ ∈ F(AS), there is an argument based on r in Arg(AS′) that is not attacked by any
argument in G(AS′).

We choose c(r) = 1 as base case: if c(r) = 0 then r is not relabelled in the while-loop. This implies
that L′(r) = Lp(r) = 〈1,1,1,1〉, which contradicts our assumption that r is labelled ¬u(r) and ¬o(r) by L′.

Base case: If c(r) = 1, then r is relabelled for the last time in the first iteration of the while-loop. By
Definition 9, the fact that r is labelled ¬u(r) must have been caused by case R-U-a. Then by Lemma 10 the
fact that r is labelled ¬o(r) must have been caused by case R-O-a. Given that c(r) = 1, r must have been
added to TODO-SET in Algorithm 1 line 6. So for each a ∈ ants(r): a ∈ Q or there is no rule for a in R.
Next, we show that each a ∈ ants(r) is in K. Let a be an arbitrary antecedent of r. We consider both the
case that there is a rule for a inR and the case that there is no such rule.

• Suppose that there is a rule r′ for a in R. r′ is relabelled for the last time before the first iteration of
the while-loop. Then r′ must be labelled u(r′): before the first iteration of the while-loop, there is
no line that turns the u-boolean to False. Then the fact that a is labelled ¬u(a) cannot be caused by
Definition 9 case L-U-b, so it must have been caused by case L-U-a: a ∈ K.

• Alternatively, there is no rule r′ for a in R. Then the fact that a is labelled ¬u(a) cannot be caused
by Definition 9 case L-U-b, so it must have been caused by case L-U-a: a ∈ K.

We chose a arbitrarily, so for each a∈ ants(r): a∈K. Now let A be the argument based on r and these
observation-based arguments for the antecedents of r. Then for each a ∈ ants(r): for each AS′ ∈ F(AS)
there is an argument for a in Arg(AS′) that cannot be attacked, so it is not attacked by an argument in
G(AS′). This means that for each AS′ ∈ F(AS), A is not attacked on a subargument in AS′. Furthermore,
note that cons(r) 6∈ Q. This means that there is no observation-based argument for−cons(r) in any future
argumentation setup. By Lemma 4, for each AS′ ∈ F(AS): A is attacked by an argument in the grounded
extension G(AS′) iff A is attacked by an observation-based argument. Therefore A cannot be attacked on its
conclusion by an argument in G(AS′). To conclude, for each AS′ ∈ F(AS) there is an argument (A) based
on r in Arg(AS′) that is not attacked by any argument in G(AS′).

Induction hypothesis: For each r ∈R: if cons(r) /∈ Q, c(r)≤ k and r is labelled ¬u(r) and ¬o(r) by
L′, then for each AS′ ∈ F(AS), then there is an argument based on r in Arg(AS′) that is not attacked by any
argument in G(AS′).

Induction step: Now suppose that c(r) = k+ 1. This implies that for each antecedent a ∈ ants(r) :
c(a) ≤ k: rules can only be relabelled by Algorithm 1 line 9, so they must have been added to TODO-SET
after the labelling of an antecedent changed in a previous iteration of the while loop. By Definition 9 case
R-U-a, each antecedent a of r is labelled ¬u(a). As a result, the fact that ¬o(r) must be caused by case
R-O-a, so each antecedent a of r is labelled ¬u(a) and ¬o(a). Let a be an arbitrary antecedent in ants(r).
We now consider two cases: either a ∈ K of a /∈ K.

If a ∈ K, then a was labelled ¬u(a) by L-U-a and ¬o(a) by L-O-a. By Definition 2, for each a ∈
ants(r), there is an argument for a in Arg(AS), so there is an argument for cons(r) based on r in Arg(AS).

18

By Lemma 5, this argument is in Arg(AS′) for every AS′ ∈ F(AS). Since cons(r) /∈ Q and for each
antecedent a in ants(r): a ∈ K, the argument based on r cannot be attacked by an observation-based
argument in any AS′ ∈ F(AS) (Definition 4). So by Lemma 4, for each AS′ ∈ F(AS), there is an argument
based on r in Arg(AS′) that is not attacked by any argument in G(AS′).

Alternatively, a /∈K. Then a was labelled ¬u(a) by L-U-b: there is a rule r′ for a with ¬u(r′). Then the
label ¬o(a) must be caused by either L-O-c or L-O-d. In both cases, a /∈Q and there is a rule r′ for a that is
labelled ¬u(r′) and ¬o(r′). Since h(r′)≤ k, we can apply the induction hypothesis: for each AS′ ∈ F(AS),
there is an argument based on r in Arg(AS′) that is not attacked by an argument in G(AS′). Since we chose
a arbitrarily, we know that for each AS′ ∈ F(AS), for each a∈ ants(r), there is a rule r′ for a such that there
is an argument based on r′ in Arg(AS′) that is not attacked by an argument in G(AS′). Consider an arbitrary
AS′ = (L,R,Q,K′) in F(AS). Given ants(r) = {a1, . . . ,am}, let Ai be the argument for Ai in Arg(AS′)
that is not attacked by an argument in G(AS′). Then by Definition 2, A : A1, . . . ,Am ⇒ cons(r) is a rule-
based argument based on r in Arg(AS′). We already concluded that A is not attacked on a subargument by
an argument in G(AS′). Since cons(r) /∈ Q, A is not attacked on its conclusion by an observation-based
argument either. By Lemma 4, A is not attacked on its conclusion by an argument in G(AS′). So there is
an argument based on r in Arg(AS′) that is not attacked by an argument in G(AS′). Since we chose AS′

arbitrary from F(AS), this is the case for every AS′ ∈ F(AS). To conclude: for each AS′ ∈ F(AS), there is
an argument based on r in Arg(AS′) that is not attacked by any argument in G(AS′).

Lemma 12 (Labelled not defended or blocked). Given an argumentation setup AS = (L,R,Q,K), let L′

be the labelling obtained by STABILITY (Algorithm 3). For each r ∈ R: if r is labelled ¬d(r) and ¬b(r)
by L′, then for each AS′ ∈ F(AS), each argument based on r in Arg(AS′) is attacked by an argument in
G(AS′).

Proof. Suppose that r is a rule inR such that r is labelled ¬d(r) and ¬b(r) by L′.
First suppose that r is labelled unsatisfiable after the preprocessing step: Lp(r) = 〈1,0,0,0〉. This

implies that r has not been labelled 〈1,1,1,1〉 in Algorithm 2 line 8. That means that the condition L(r) =
〈1,0,0,0〉 and for each l ∈ ants(r) : L(l) 6= 〈1,0,0,0〉 (Algorithm 2 line 7) did not apply to r. In other
words, there must be an a∈ ants(r) such that Lp(a)= 〈1,0,0,0〉. Then by Lemma 8, for each AS′ ∈F(AS):
there is no argument for a in Arg(AS′), so there is no rule-based argument based on r in Arg(AS′). Then
trivially, for each AS′ ∈ F(AS), each argument based on r in Arg(AS′) is attacked by an argument in G(AS′).

Alternatively, Lp(r) = 〈1,1,1,1〉. So r must be labelled ¬d(r) and ¬b(r) by L′. Let c(r) be the number
of the iteration of the while loop (Algorithm 1 line 7–16) in which r is relabelled for the last time and let
Li be the labelling immediately after the i’th iteration of the while loop. We show by induction on c(r) that
for each AS′ ∈ F(AS), each argument based on r in Arg(AS′) is attacked by an argument in G(AS′).

We choose c(r) = 1 as base case. If c(r) = 0, then r is not relabelled in the while-loop, but rules cannot
be relabelled between the preprocessing step and the first iteration of the while-loop. This implies that
L′(r) = Lp(r) = 〈1,1,1,1〉, which contradicts our assumption that r is labelled ¬d(r) and ¬b(r) by L′.

Base case: Suppose that c(r) = 1. Then r is relabelled for the last time in the first iteration of the
while-loop. By Definition 9, the fact that r is labelled ¬d(r) must have been caused by case R-D-a: there is
an antecedent a of r that is labelled ¬d(a). Furthermore, r is labelled ¬b(r). This can be caused by either
case R-B-a or R-B-b of Definition 9, but in both cases, there is an antecedent a of r that is labelled ¬d(a)
and ¬b(a). Let a be the antecedent of r that is labelled ¬d(a) and ¬b(a). We consider two cases: either
a ∈Q or a 6∈ Q.

• First suppose that a ∈ Q. Then the fact that a is labelled ¬d(a) must be caused by Definition 9 case
L-D-a: −a ∈ K. Then there is an observation-based argument for −a in Arg(AS). By Lemma 5, for
each AS′ ∈ F(AS), there is an observation-based argument for −a in Arg(AS′). By Lemma 4, for
each AS′ ∈ F(AS), each argument for a is attacked by an argument in G(AS′).

• Alternatively suppose that a 6∈ Q. We have that c(r) = 1, so r must have been added to TODO-SET
by Algorithm 1 line 6 and a must have been relabelled for the last time by line 5. It also means that
the condition in line 4 must have been true. Given that a 6∈ Q, this means that there is no rule for
a in R. So for each AS′ ∈ F(AS) there is no observation-based argument for a (a 6∈ Q) and there is
no rule-based argument for a (there is no rule for a in R) in Arg(AS′). Then for each AS′ ∈ F(AS),

19

there is no argument for a in Arg(AS). This implies that for each AS′ in F(AS), each argument for a
is attacked by an argument in G(AS′).

To conclude, in both cases, for each AS′ in F(AS), each argument for a is attacked by an argument in
G(AS′).

Induction hypothesis: For each r ∈ R with c(r) ≤ k, for each AS′ ∈ F(AS), each argument based on
r ∈ Arg(AS′) is attacked by an argument in G(AS′).

Induction step: Now suppose that c(r) = k + 1. Consequently, for each antecedent a ∈ ants(r) :
c(a) ≤ k: rules can only be relabelled by Algorithm 1 line 9, so they must have been added to TODO-SET
after the labelling of an antecedent changed in a previous iteration of the while loop. We assumed that r
is labelled ¬d(r) and ¬b(r). The fact that r is labelled ¬d(r) must have been caused by Definition 9 case
R-D-a: there is an antecedent a of r that is labelled ¬d(a). The fact that r is labelled ¬b(r) can be caused
by either R-B-a or R-B-b, but in both cases, there is an antecedent a of r that is labelled ¬d(a) and ¬b(a).
Next, we distinguish two cases: a ∈Q and a /∈Q.

If a ∈ Q, then ¬d(a) must have been caused by Definition 9 case L-D-a. This implies that −a ∈ K.
So there is an observation-based argument A for −a in Arg(AS). By Lemma 5, A is in Arg(AS′) for
every AS′ ∈ F(AS). Being observation-based, A cannot be attacked and therefore A ∈ G(AS′) for every
AS′ ∈ F(AS). If there is an argument for a in any AS′ ∈ F(AS), then it is attacked by A ∈ G(AS′).

Now assume that a /∈Q. This implies that each rule r′ for a is labelled ¬d(r′)∧¬b(r′), as we will prove
next. Given that a /∈ Q, the fact that a is labelled ¬d(a) can be caused by either case L-D-b or L-D-c of
Definition 9.

• First suppose that case L-D-c applies. Then there is a rule r′′ for −a with ¬u(r′′) and ¬o(r′′). We
also assumed that a is labelled ¬b(a). This cannot be caused by case L-B-a, since a /∈Q. It cannot be
caused by case L-B-c or L-B-d either: that would mean that there would be a rule r′′ for −a labelled
〈0,0,0,0〉, which would contradict Lemma 10. So the fact that a is labelled ¬b(a) must have been
caused by case L-B-b: each rule r′ for a is labelled ¬d(r′) and ¬b(r′).

• Alternatively, suppose that a is labelled ¬d(a) by case L-D-b. Then for each rule r′ for a: ¬d(r′).
Again, the fact that a is labelled ¬b(a) cannot be cause by case L-B-a since a /∈ Q. It cannot be
caused by case L-B-d either: that would imply that there would be a rule r′ for a that is labelled
〈0,0,0,0〉, which would contradict Lemma 10. So either case L-B-b or L-B-c applies. In both cases,
each rule r′ for a is labelled ¬b(r′). Together with our earlier conclusion that ¬d(r′) for each rule r′

for a, we derive that each rule r′ for a is labelled ¬d(r′) and ¬b(r′).

To conclude, each rule r′ for a is labelled ¬d(r′) and ¬b(r′). Next, we apply the induction hypothesis for
each rule r′ for a. c(a) ≤ k, so c(r′) ≤ k. By the induction hypothesis: for each AS′ ∈ F(AS), for each
rule r′ for a: each argument based on r′ in Arg(AS′) is attacked by an argument in G(AS′). There are no
observation-based arguments for a, since a /∈Q. So for each AS′ ∈ F(AS), each argument for a in Arg(AS′)
is attacked by an argument in G(AS′).

We can conclude that for each a ∈ L (if a ∈Q or a /∈Q) for each AS′ ∈ F(AS), each argument for a in
Arg(AS′) is attacked by an argument in G(AS′). Then for each AS′ ∈ F(AS), each argument based on r in
Arg(AS′) is attacked on its subargument for a by an argument in G(AS′).

Now that we have proved Lemma 9–12, we can use these lemmas to show that the STABILITY algorithm
is sound: if STABILITY labels a literal l as stable in an argumentation setup AS, then l is stable in AS. We
prove this in Proposition 2.

Proposition 2 (Soundness stability labelling). Given an argumentation setup AS = (L,R,Q,K) and la-
belling L′ obtained by STABILITY (Algorithm 3), if a literal l ∈ L is labelled stable in AS, then l is stable
in AS.

Proof. Suppose that l is labelled stable by STABILITY (Algorithm 3) and let L′ be the obtained labelling.
Then L′(l) = 〈1,0,0,0〉, L′(l) = 〈0,1,0,0〉, L′(l) = 〈0,0,1,0〉 or L′(l) = 〈0,0,0,1〉. In Lemma 8, we
already showed that l is unsatisfiable in every AS′ ∈ F(AS) if l is labelled 〈1,0,0,0〉 by Algorithm 2 (i.e.
Lp(l) = 〈1,0,0,0〉). Next, we assume that Lp(l) 6= 〈1,0,0,0〉. So l must be labelled stable by Algorithm 1.

20

Let c(l) be the number of the iteration of the while loop (Algorithm 1 line 7–16) in which l is relabelled
for the last time and let Li be the labelling immediately after the i’th iteration of the while loop. We show
by induction on c(l) that l is stable in AS.

Base case: First assume that c(l) = 0. We assumed that l was not labelled stable in the preprocessing
step, so Lp(l) 6= 〈1,0,0,0〉; therefore Lp(l) = 〈1,1,1,1〉. However, we assumed that l is labelled stable by
STABILITY, so l must be relabelled afterwards. Given that c(l)= 0, this must have happened in Algorithm 1
line 5.

First suppose that l was labelled u(l) after executing this line. Given our assumption that l is labelled
stable, this implies that L′(l) = 〈1,0,0,0〉. Remember that Lp(l) = 〈1,1,1,1〉. This must have happened in
Algorithm 2 line 2 or line 9. However, we will show that in both cases l would be labelled L′(l) 6= 〈1,0,0,0〉
by Definition 9.

• If l was labelled Lp(l) = 〈1,1,1,1〉 in Algorithm 2 line 2, then l ∈Q and−l 6∈ K. Then L-D-a, L-D-b
and L-D-c do not apply, so l is labelled d(l). This means that L′(l) 6= 〈1,0,0,0〉.

• Alternatively, l was labelled Lp(l) = 〈1,1,1,1〉 in Algorithm 2 line 9. This means that l 6∈ Q∨−l ∈K
and there is a rule r for l that is labelled Lp(r) = 〈1,1,1,1〉 just before (in Algorithm 2 line 8). The
fact that l 6∈ Q∨−l ∈ K implies that l 6∈ K, so Definition 8 case L-O-a does not apply. Given that
there is a rule r for l that is labelled Lp(r) = 〈1,1,1,1〉, cases L-O-b and L-O-c do not apply either.
Finally, note that rules are not relabelled after the preprocessing step and in the preprocessing step
all rules r ∈ R are labelled u(r). That means that case L-O-d also cannot apply for l. As a result, l
must be labelled o(l), so L′(l) 6= 〈1,0,0,0〉.

We derived that in both cases L′(l) 6= 〈1,0,0,0〉. This contradicts our earlier conclusion that L′(l) =
〈1,0,0,0〉. So we must retract our assumption that l was labelled u(l).

Then l is labelled ¬u(l). Given that all rules r ∈ R are labelled u(r), this cannot be caused by Def-
inition 8 case L-U-b. Therefore case L-U-a must have applied: l ∈ K. Then l is labelled ¬o(l) by case
L-O-a and ¬b(l) by case L-B-a, so l is labelled L′(l) = 〈0,1,0,0〉 (defended). Next we show that for each
AS′ ∈ F(AS), l is defended in AS′. By Definition 7, for each AS′ = (L,R,Q,K′) in F(AS), l ∈ K′. So
for each AS′ in F(AS), there is an observation-based argument for l in Arg(AS′). Since observation-based
arguments cannot be attacked (Definition 4, there is an argument for l in the grounded extension G(AS′) of
each future setup AS′ ∈ F(AS). So for each AS′ ∈ F(AS), l is defended in AS′. This means that for each l
such that c(l) = 0: if l is labelled stable in AS, then l is stable in AS.

Induction hypothesis: If a literal l ∈ L with c(l)≤ k is labelled stable in AS, then l is stable in AS.
Induction step: Now consider a literal l ∈ L such that c(l) = k+1 and assume that l is labelled stable.

Then l is either labelled unsatisfiable, defended, out or blocked. Next, we consider all four cases.

First assume that l is labelled unsatisfiable: L′(l) = 〈1,0,0,0〉. We need to prove that for each AS′ ∈F(AS),
there is no argument for l in Arg(AS′). By Definition 2, we distinguish observation-based and rule-based
arguments.

First, we prove that for each AS′ ∈ F(AS), there is no observation-based argument for l in Arg(AS′).
We consider the cases that l ∈ Q and l /∈ Q. First, suppose that l ∈ Q. We know that l is labelled ¬d(l)
(since it is labelled unsatisfiable). Given that l ∈ Q, this must have been caused by Definition 9 case L-
D-a: −l ∈ K. Then for each AS′ ∈ F(AS), there is an observation-based argument for −l in Arg(AS′).
This implies that for each AS′ = (L,R,Q,K′) in F(AS), l /∈ K′ by Definition 1. Alternatively, l /∈ Q. By
Definition 1, for each AS′ ∈ F(AS), l /∈ K′. To conclude, for each AS′ ∈ F(AS), there is no observation-
based argument for l in Arg(AS′).

Next, we will prove that for each AS′ in F(AS), there is no rule-based argument for l in Arg(AS′)
either. In order to prove this, we will first show that each rule r for l is labelled L′(r) = 〈1,0,0,0〉. Again,
we consider the cases that l ∈Q and l /∈Q.

• First suppose that l ∈ Q. We know that l 6∈ K, so ¬o(l) must have been caused by Definition 9 case
L-O-b. Therefore, for each rule r for l: ¬d(r), ¬o(r) and ¬b(r). Then by Lemma 10, each rule r for
l is labelled L′(r) = 〈1,0,0,0〉.

• Now suppose that l /∈ Q. Since l is labelled u(l), we know that u(r) for each rule r for l: otherwise
the u-boolean of l would have been labelled False by Definition 9 case L-U-b. This implies that

21

¬b(l) cannot have been caused by L-B-d. So it must have been caused by either L-B-b or L-B-c.
Next, we consider both cases:

– If ¬b(l) has been caused by L-B-b, then for each rule r for l: ¬d(r) and ¬b(r).

– Otherwise, ¬b(l) was caused by L-B-c, so for each rule r for l is lablled ¬b(r) and for each
rule r′ for −l is labelled ¬d(r′) and ¬b(r′). By Lemma 10, this implies that ¬d(l) cannot have
been caused by L-D-c, so this must be caused by L-D-b. Then for each rule r for l: ¬d(r) and
¬b(r).

To conclude, in both cases each rule r for l is labelled ¬d(r) and ¬b(r). Then by Lemma 10, ¬o(l)
cannot have been caused by L-O-d, so it must have been caused by either L-O-b or L-O-c. In both
cases, for each rule r for l: ¬d(r), ¬o(r) and ¬b(r). By Lemma 10, this implies that each rule r for
l is labelled 〈1,0,0,0〉.

We conclude that for each l ∈ L with c(l) = k+1, each rule r for l is labelled 〈1,0,0,0〉.
Now let r be an arbitrary rule r for l inR. From our earlier conclusion, we know that this rule (like any

rule for l) must be labelled ¬d(r), ¬o(r) and ¬b(r). Then by Definition 9 case R-D-a and ¬d(r), there is
an antecedent a ∈ ants(r) that is labelled ¬d(a). The fact that r is labelled ¬b(r) can be caused by either
case R-B-a or R-B-b, but in both cases, there is an antecedent a∈ ants(r) that is labelled ¬d(a) and ¬b(a).
Similarly, by case R-O-a or R-O-b, we derive that there is an antecedent a∈ ants(r) that is labelled ¬d(a),
¬o(a) and ¬b(a).

By Lemma 10, this implies that there is an antecedent a such that L′(a) = 〈1,0,0,0〉. c(a) ≤ k, so by
the induction hypothesis, for each AS′ ∈ F(AS), a is unsatisfiable in AS′. So for each AS′ ∈ F(AS), there is
no argument for a in Arg(AS′). Then by Definition 2, for each AS′ in F(AS) there is no rule-based argument
for l based on r in Arg(AS′). Since we chose r arbitrary, this is the case for every rule r for l, we can derive
that for each AS′ ∈ F(AS), there is no rule-based argument for l in Arg(AS′).

Given our earlier conclusion that for each AS′ ∈ F(AS), there is no observation-based argument for l in
Arg(AS′), we conclude that for each AS′ ∈ F(AS), there is no argument for l in Arg(AS′). By Definition 6,
for each AS′ ∈ F(AS) l is unsatisfiable in AS′.

Now assume that l is labelled defended: L′(l) = 〈0,1,0,0〉. We distinguish two cases: either l ∈ Q or
l /∈Q.

• First suppose that l ∈ Q. We will show by contradiction that l ∈ K: suppose that l /∈ K. Then
¬u(l) must have been caused by Definition 9 case L-U-b and ¬o(l) must have been caused by case
L-O-b. So there is a rule r for l with ¬u(r) (L-U-b) and for each rule r for l: ¬d(r), ¬o(r) and
¬b(r) (L-O-b). But this implies that there exists a rule r for l such that ¬u(r), ¬d(r), ¬o(r) and
¬b(r), which contradicts Lemma 10. So l ∈ K. By Definition 7, for each AS′ = (L,R,Q,K′) in
F(AS), l ∈ K′. So for each AS′ in F(AS), there is an observation-based argument for l in Arg(AS′).
Since observation-based arguments cannot be attacked (Definition 4), there is an argument for l in
the grounded extension G(AS′) of each future setup AS′ ∈ F(AS). So for each AS′ ∈ F(AS), l is
defended in AS′.

• Next, we consider the alternative case that l /∈Q. Then ¬u(l) must have been caused by Definition 9
case L-U-b: there is a rule r for l with ¬u(r). By Lemma 10, the fact that ¬o(l) cannot have been
caused by L-O-b. Since we also know that l /∈ K, ¬o(l) must have been caused by either L-O-c or
L-O-d. In both cases, there is a rule r for l with ¬u(r) and ¬o(r). This implies that ¬b(l) must have
been caused by either L-B-c or L-B-d. In both cases, there is a rule r for l with ¬u(r), ¬o(r) and
¬b(r) and for each rule r′ for −l: ¬d(r′) and ¬b(r′).

Now let r be the rule for l such that ¬u(r), ¬o(r) and ¬b(r). The fact that r is labelled ¬u(r)
must have been caused by R-U-a: for each antecedent a of r: ¬u(a). Then ¬o(r) has to be caused
by R-O-a (R-O-b would contradict Lemma 10) so for each antecedent a of r: ¬u(a) and ¬o(a).
Furthermore, ¬b(r) must have been caused by R-B-a (again, R-B-b would contradict Lemma 10),
so each antecedent a of r is labelled ¬u(a), ¬o(a) and ¬b(a). By Lemma 10, L′(a) = 〈0,1,0,0〉.
c(l) = k+1, so c(a)≤ k; therefore we can apply the induction hypothesis: for each antecedent a of r,

22

for each AS′ ∈ F(AS), a is defended in AS′. So by Definition 8, for each a ∈ ants(r), for each AS′ in
F(AS), there is an argument for a in G(AS′). By Lemma 3, each argument attacking this argument is
attacked by an observation-based argument. To conclude, for each AS′ ∈ F(AS), for each argument
A based on r in Arg(AS′), each argument B attacking A on a subargument in AS′ is attacked by an
observation-based argument in Arg(AS′).

Now we show that for each AS′ ∈ F(AS), for each argument A based on r in Arg(AS′), each argument
B attacking A on its conclusion in AS′ is attacked by an observation-based argument in Arg(AS′) as
well. For this, we use our earlier conclusion that each rule r′ for−l is labelled ¬d(r′) and ¬b(r′). By
Lemma 12, this implies that for each AS′ ∈ F(AS), for each rule r′ for −l, each argument based on
r in Arg(AS′) is attacked by an argument in G(AS′). So for each AS′ ∈ F(AS), there is an argument
A based on r such that each argument B attacking A is attacked by an observation-based argument in
Arg(AS′). Then by Lemma 3, for each AS′ in F(AS), A ∈ G(AS′). In other words, by Definition 6,
for each AS′ in F(AS), l is defended in AS′.

To conclude, if L′(l) = 〈0,1,0,0〉, then in all cases l is stable in AS (Definition 8).

Alternatively, assume that l is labelled out: L′(l) = 〈0,0,1,0〉. We consider both the case that l ∈ Q and
the case that l /∈Q.

• First suppose that l ∈ Q. Then ¬d(l) must have been caused by Definition 9 L-D-a, so −l ∈ K.
Knowledge bases are consistent by Definition 1, therefore l /∈ K. This means that ¬u(l) must have
been caused by Definition 9 case L-U-b: there is a rule r for l with ¬u(r). Then by Lemma 9, there
is a rule-based argument for l based on r in Arg(AS). By definition of attack (Definition 4), there is
an argument for l in Arg(AS) but each argument for l is attacked by the observation-based argument
−l. Then by Lemma 5: for each AS′ ∈ F(AS): there is a rule-based argument for l in Arg(AS′) which
is attacked by the observation −l in Arg(AS′). Finally, by Lemma 4, for each AS′ ∈ F(AS), l is out
in AS′.

• Now we consider the alternative case that l /∈Q. Then l /∈ K (Definition 1) so ¬u(l) must have been
caused by Definition 9 case L-U-b: there is a rule r for l with ¬u(r). Then by Lemma 9, there is a
rule-based argument based on r in Arg(AS). Furthermore, since l is labelled o(l), we know that there
is no rule r for l with ¬u(r) and ¬o(r) (otherwise Definition 9 case L-O-d would apply). As a result,
L-B-c cannot apply. So the fact that l is labelled ¬b(l) must be caused by either L-B-b or L-B-c. In
both cases, for each rule r for l: ¬d(r) and ¬b(r), as we will show next. For the case that L-B-b
applies, this is immediately clear. If ¬b(l) was caused by L-B-c, then for each rule r for l: ¬b(r) and
for each rule r′ for −l: ¬d(r′) and ¬b(r′). Then, by Lemma 10, the fact that ¬d(l) cannot have been
caused by L-D-c, so must have been caused by L-D-b: for each rule r for l: ¬d(r). To conclude, for
each rule r for l: ¬d(r) and ¬b(r).

Now we can apply Lemma 12: for each rule r for l, for each AS′ in F(AS), each argument based
on r in Arg(AS′) is attacked by an argument in G(AS′). So for each AS′ in F(AS), each rule-based
argument in Arg(AS′) is attacked by an argument in G(AS′). Together with our earlier conclusion
that there is a rule-based argument for l in Arg(AS′) for each AS′ ∈ F(AS), by Definition 6, l is out
in AS′ for each AS in F(AS).

So by Definition 8, l is stable in AS.

Finally, assume that l is labelled blocked: L′(l) = 〈0,0,0,1〉.
This implies that l /∈ Q (Definition 9 case L-B-a). Then also l /∈ K, so ¬u(l) must be caused by case

L-U-b: there is a rule r for l with ¬u(r). ¬o(l) can be caused by either L-O-c or L-O-d. In both cases, there
is rule r for l with ¬u(r) and ¬o(r). By Lemma 11, for each AS′ ∈ F(AS), there is an argument based on r
in Arg(AS′) that is not attacked by an argument in G(AS′).

In order to prove that l is blocked in each AS′ ∈ F(AS), we now only need to prove that for each
AS′ ∈ F(AS), there is no argument for l in G(AS′). For this purpose, we use the fact that l is labelled ¬d(l)
by L′. This implies that for every future argumentation setup AS′ in F(AS) there is no argument for l in the
grounded extension G(AS′), as we will show next by induction.

23

Consider a literal a such that a is labelled ¬d(a) by L′.
Base case: First suppose that c(a) = 0. Then either−a∈K (by Definition 9 L-D-a) or a /∈Q (by L-D-b

or L-D-c). In all cases, there is no K′ such that a ∈ K′, so there is no observation-based argument for a in
any future setup. Also, there is no rule for a (c(a) = 0), so there is no rule-based argument for a either in
any future setup. Given that there is no argument for a in Arg(AS′), there also cannot be an argument for a
in G(AS′) for any AS′ in F(AS).

Induction hypothesis: If a literal a ∈ L with c(a) ≤ k is labelled ¬d(a), then for every future argu-
mentation setup AS′ in F(AS) there is no argument for a in the grounded extension G(AS′).

Induction step: Now suppose that c(a) = k+1. By Definition 9, ¬d(a) can be caused by three cases:
L-D-a, L-D-b or L-D-c.

• If ¬d(a) was caused by L-D-a, then −a ∈ K. So there is an observation-based argument for −a
in Arg(AS). By Lemma 5, this argument is also in Arg(AS′) for every future AS′ in F(AS). By
Definition 4, observation-based arguments cannot be attacked, so by Definition 5, the observation-
based argument for −a is in the grounded extension of every AS′. So for every AS′: if there exists
an argument for l in Arg(AS′), then it must be rule-based and is attacked by the observation-based
argument −a, which is in the grounded extension. Therefore there is no argument for a in G(AS′)
for any AS′ in F(AS).

• If ¬d(a) was caused by L-D-b, then a /∈ Q and for each rule r for a: ¬d(r). a /∈ Q implies that
there is no observation-based argument for a in Arg(AS′) for any AS′ ∈ F(AS). c(a) = k+1, so there
exists at least one rule for a. We take an arbitrary rule r for a. The fact that ¬d(r) for every rule r
for a implies that for every rule r for a, there is an ai in ants(r) with ¬d(ai) (R-D-a). c(ai) ≤ k,
so by the induction hypothesis, there is no argument for ai in the grounded extension of any future
argumentation setup AS′. By Lemma 3, each argument for ai in each Arg(AS′) in each AS′ ∈ G(AS)
is attacked and not each attacker of ai is attacked by an observation-based argument. Then every
rule-based argument A for a based on r in each Arg(AS′) in each AS′ ∈ F(AS) is attacked and not
each attacker of A is attacked by an observation-based argument. Since we chose r arbitrarily, we
know that there is no argument for a in G(AS′) for any AS′ in F(AS).

• Otherwise, ¬d(a) was caused by L-D-c. Then a /∈Q and there is a rule r′ for−a with¬u(r′)∧¬o(r′).
By Lemma 11, for each future setup AS′ in F(AS) there exists an argument for −a based on r′ that is
not attacked by any argument in G(AS′). So for every future setup AS′, if an argument for a exists,
then it cannot be in G(AS′).

To conclude, for each a ∈ L such that a is labelled ¬d(a): for each AS′ ∈ F(AS), there is no argument
for a in G(AS′).

Given that l is labelled ¬d(l), we have that for each AS′ ∈ F(AS), there is no argument for l in G(AS′).
In combination with our earlier conclusion that for each AS′ ∈ F(AS) there is an argument for l in Arg(AS′)
that is not attacked by an argument in G(AS′), we have that for each AS′ ∈ F(AS), l is blocked in AS′

(Definition 6), so l is stable in AS (Definition 8).
We have now shown for each of the four cases of stability as defined in Definition 8: if l is labelled

stable in AS, then l is stable in AS. In other words: STABILITY is sound.

3.4.2 Conditional completeness

Next, we consider the completeness of our algorithm. As we illustrate in Example 10, STABILITY is not
complete for all argumentation setups.

Example 10 (Example 4 continued). We return to our running example on fraud. Consider the argumen-
tation setup AS = (L,R,Q,K) where L, R and Q correspond to the language, rules and queryables in
Figure 1, but K= {¬sm,rm}. STABILITY does not label f stable: it expects a future argument for f based
on sd,¬rd,d⇒ f , where the argument for sd is based on sp,¬b⇒ sd and the argument for ¬rd is based
on ¬rp,b⇒ rd. However, this argument would require both b and ¬b to be in the knowledge base, which

24

violates the consistency criterion. In fact, for each AS′ in F(AS) there is no argument for f in Arg(AS′), so
f should be labelled 〈1,0,0,0〉.

Example 10 shows that there are argumentation setups where the STABILITY algorithm wrongfully
takes the possibility into account that there exists an argument for a literal in a future argumentation setup.
Specifically, this issue is caused by an inconsistency in potential arguments, which we define next.

Definition 10 (Potential argument). Let AS = (L,R,Q,K) be an argumentation setup. A potential argu-
ment Ap inferred from AS is:

• an observation-based potential argument c iff c ∈Q and −c /∈ K.
prem(Ap) = {c};
conc(Ap) = c;
sub(Ap) = {c};
def-rules(Ap) = /0;
h(Ap) = 0;
dirsub(Ap) = /0.

• a rule-based potential argument A1, . . . ,Am⇒ c iff there is a rule c1, . . . ,cm⇒ c inR and for each
i ∈ [1 . . m]: Ai is a potential argument inferred from AS and conc(Ai) = ci.
prem(Ap) = prem(A1)∪ . . .∪prem(Am);
conc(Ap) = c;
sub(Ap) = sub(A1)∪ . . .∪sub(Am)∪{A};
def-rules(Ap) = def-rules(A1)∪ . . .∪def-rules(Am);
h(Ap) = 1+max(h(A1), . . . ,h(Am));
dirsub(Ap) = {A1, . . . ,Am}.

We refer to a potential argument with conclusion c as “a potential argument for c”.
Given some Ap,Bp ∈ P(AS), Ap is inconsistent with Bp iff {a,−a} ∈ prem(Ap)∪ prem(Bp) for some
a ∈ L.
For two potential arguments Ap,Bp ∈ P(AS) we say that Ap p-attacks Bp iff Ap’s conclusion is c and either:

• attack on conclusion: −c is the conclusion of Bp and −c /∈ K.

• attack on subargument: −c is the conclusion of a subargument B′ of Bp such that B′ 6= Bp and
−c /∈ K.

We write that “Ap p-attacks Bp on B′” if Ap attacks Bp, B′ ∈ sub(Bp) and conc(Ap) =−conc(B′).

Just like arguments, potential arguments may be circular. Circularity of potential arguments is defined
next.

Definition 11 (Circularity of potential arguments). Let AS = (L,R,Q,K) be an argumentation setup and
let Ap be a potential argument in P(AS). Ap is circular iff there is a sequence 〈A1, . . . ,Am〉 such that
Am ∈ sub(Ap), conc(Am) = conc(A1) and for each i ∈ [1 . . m−1]: Ai ∈ dirsub(Ai+1) and Ai 6= Ai+1. Ap

is non-circular iff Ap is not circular.

Analogous to Lemmas 1 and 2, we have the following two lemmas:

Lemma 13 (Existence of non-circular potential arguments). Let AS = (L,R,Q,K) be an argumentation
setup and literal l ∈ L. There is a potential argument for l in P(AS) iff there is a non-circular potential
argument for l in P(AS).

Lemma 14 (Finite height and non-circularity of potential arguments). Given a potential argument Ap, if
Ap is non-circular, then h(Ap) is finite.

Next, we prove that PREPROCESS (Algorithm 2) labels literals/rules as 〈1,0,0,0〉 if and only if there
exists no potential argument for/based on them.

25

Lemma 15 (Soundness and completeness Algorithm 2 for potential arguments). Given an argumentation
setup AS = (L,R,Q,K) and labelling Lp after executing Algorithm 2. For each rule r ∈ R: Lp(r) =
〈1,0,0,0〉 iff there is no Ap ∈ P(AS) such that Ap is based on r. For each literal l ∈ L: Lp(l) = 〈1,0,0,0〉
iff there is no Ap ∈ P(AS) such that Ap is a potential argument for l.

Proof. We will show that Algorithm 2 is sound and complete for potential arguments, that is: for each rule
r ∈ R: Lp(r) = 〈1,0,0,0〉 iff there is no Ap ∈ P(AS) such that Ap is based on r; and for each literal l ∈ L:
Lp(l) = 〈1,0,0,0〉 iff there is no Ap ∈ P(AS) such that Ap is a potential argument for l. We will do this
using a loop invariant proof. Note that this approach is different from the induction proof in Lemma 8: that
was a soundness proof, whereas we prove both soundness and completeness in the current lemma.

First, we introduce some notation. Let x ∈ L∪R be a literal or rule and let Lp
0(x) be the label given to

x by the preprocessing algorithm (Algorithm 2) between line 4 and 5. Let Lp
k (x) be the label given to x by

the preprocessing algorithm just after the k’th iteration of the while loop (line 5–9).
Loop invariant: At iteration i of the while loop, each l ∈ L such that there is an Ap for l in P(AS)
with h(Ap) ≤ i is labelled Lp

i (l) = 〈1,1,1,1〉; otherwise, Lp
i (l) = 〈1,0,0,0〉. Furthermore, each r ∈ R

such that there is an Ap based on r in P(AS) with h(Ap) ≤ i is labelled Lp
i (r) = 〈1,1,1,1〉; otherwise,

Lp
i (r) = 〈1,0,0,0〉.

Initialisation: For each literal l ∈ L, there is an Ap for l in P(AS) with h(Ap) = 0 iff l ∈ Q and −l /∈ K
(Definition 10). By Algorithm 2 line 2, Lp

0(l) = 〈1,1,1,1〉 iff l ∈ Q and −l /∈ K and Lp
0(l) = 〈1,0,0,0〉

otherwise. So Lp
0(l) = 〈1,0,0,0〉 iff there is no Ap ∈ P(AS) with h(Ap) = 0 such that Ap is a potential

argument for l.
For each rule r∈R, there is no Ap based on r in P(AS) with h(Ap)= 0 (since rule-based arguments have

a height of at least 1). By Algorithm 2 line 4, all rules r ∈R are labelled Lp
0(r) = 〈1,0,0,0〉. Therefore, for

each rule r ∈ R, Lp
0(r) = 〈1,0,0,0〉 iff there is no Ap ∈ P(AS) with h(Ap) = 0 such that Ap is a potential

argument for l.
Maintenance: Assume that the loop invariant holds at the start of iteration i: At iteration i of the while
loop, each l ∈ L such that there is an Ap for l in P(AS) with h(Ap) ≤ i is labelled Lp

i (l) = 〈1,1,1,1〉;
otherwise, Lp

i (l) = 〈1,0,0,0〉. Furthermore, each r ∈ R such that there is an Ap based on r in P(AS) with
h(Ap)≤ i is labelled Lp

i (r) = 〈1,1,1,1〉; otherwise, Lp
i (r) = 〈1,0,0,0〉.

Now consider a l ∈ L such that there is no Ap for l in P(AS) with h(Ap) ≤ i but there is an Ap for l in
P(AS) with h(Ap) = i+1. So there is a rule r ∈R for l such that for each a ∈ ants(r) there is a potential
argument Ap′ for a with h(Ap′)≤ i. Then by the loop invariant, for each a ∈ ants(r): Lp

i (a) = 〈1,1,1,1〉.
If a literal or rule x ∈ L∪R is labelled Lp

i (x) = 〈1,1,1,1〉 then for each j ≥ i: Lp
j (x) = 〈1,1,1,1〉, so for

each a ∈ ants(r): Lp
i+1(a) = 〈1,1,1,1〉. Then Lp

i+1(r) = 〈1,1,1,1〉 (by Line 8) and Lp
i+1(l) = 〈1,1,1,1〉

(by Line 9).
Alternatively, consider a l ∈ L such that there is no Ap for l in P(AS) with h(Ap)≤ i+1. Then for each

rule r ∈ R for l, there is an antecedent a such that there is no Ap for a in P(AS) with h(Ap)≤ i. So by the
loop invariant, Lp

i (a) = 〈1,0,0,0〉. Then no rule r for l, nor l itself, is labelled 〈1,1,1,1〉 by Line 8/9. So
for each rule r for l: Lp

i+1(r) = 〈1,0,0,0〉 and for l: Lp
i+1(l) = 〈1,0,0,0〉.

Termination: From Lemma 7 we know that Algorithm 2 terminates (after polynomial runtime). So there is
some finite k such that k is the last iteration of the while loop and at iteration k of the while loop, each l ∈L
such that there is an Ap for l in P(AS) with h(Ap) ≤ k is labelled Lp

i (l) = 〈1,1,1,1〉; otherwise, Lp
k (l) =

〈1,0,0,0〉. There might be an Ap for l/based on r with h(Ap) > k, but then this Ap would be circular. By
Lemma 13 there is a non-circular Ap′ for l/based on r with finite h(Ap′). So then still Lp

k (l/r) = 〈1,1,1,1〉
and otherwise Lp

k (l/r) = 〈1,0,0,0〉.

Note that, for a given argumentation setup AS, each argument inferred from AS or some future setup is a
potential argument in P(AS). This means that we could also have proved Lemma 8 by using Lemma 15: if a
literal l is labelled Lp(l) = 〈1,0,0,0〉, then by Lemma 15 there is no potential argument for l in P(AS). This
implies that for each AS′ ∈ F(AS), there is no argument for l in Arg(AS′). In other words, l is unsatisfiable
in AS.

On the other hand, there may be a potential argument Ap ∈P(AS) such that there is no AS′ ∈F(AS) with
Ap ∈ Arg(AS′), but then Ap must be inconsistent with itself ; we encountered this situation in Example 10.

26

q1 q2 ¬q2

l1

q3

¬l1

D D/O D/U D

B/O D/B

D
D/O D/U D

Figure 6: For each AS′ ∈ F(AS): l1 and ¬l1 are blocked in AS′, but not labelled as such due to inconsistent
support (l1) and attack (¬l1).

q1D

¬q2D/O q2 D/U

tD/O

D

D/O D/U

Figure 7: t is inconsistently supported in AS. As a result, t is labelled u(t) or o(t) while for each AS′ =
(L,R,Q,K′) in F(AS), t is not unsatisfiable or out in AS′: if q2 ∈ K′ then there is an unattacked argument
for t based on q2⇒ t; otherwise there is an unattacked argument for t based on ¬q2⇒ t.

The next example reveals another issue, where stability is not detected due to an inconsistency of two
different potential arguments.

Example 11 (Mutual inconsistency issues). Given the argumentation setup AS illustrated in Figure 6, for
each AS′ = (L,R,Q,K′) in F(AS), l1 is blocked in AS′: if ¬q2 /∈ K′ then there is an argument for l1
based on q2 ⇒ l1; otherwise there is an argument for l1 based on ¬q2 ⇒ l1. However, l1 is not labelled
〈0,0,0,1〉 because STABILITY wrongfully anticipates a future setup AS′ in which each argument for l1 is
attacked by an argument in G(AS′) (thus o(l1)). For the same reason, ¬l1 is labelled d(¬l1) and therefore
L′(¬l1) 6= 〈0,0,0,1〉, although ¬l1 is blocked in each AS′ ∈ F(AS).

The issues illustrated in Examples 10 and 11 can be generalised to two situations of inconsistent support
or inconsistent attack, as defined next:

Definition 12 (Inconsistently supported/attacked). Given an argumentation setup AS = (L,R,Q,K) and a
literal l ∈ L:

• l is inconsistently supported in AS iff there are Ap,Bp ∈ P(AS) such that conc(Ap) = conc(Bp) = l
and Ap is inconsistent with Bp.

• l is inconsistently attacked in AS iff there is a potential argument Cp for l in P(AS) and there are
Ap,Bp ∈ P(AS) such that Ap p-attacks Cp, Bp p-attacks Cp and Ap is inconsistent with Bp.

If a potential argument is inconsistent with itself, its conclusion l can be incorrectly labelled d(l) or b(l)
(e.g. f in Example 10). Similarly, if two potential arguments with the same conclusion are inconsistent,
their conclusion l can be incorrectly labelled o(l) (e.g. l1 in Example 11). Moreover, if l is inconsistently
attacked, l may be incorrectly labelled d(l) (e.g. ¬l1 in Example 11) or b(l). We give additional examples
in Example 12–15.

Example 12 (Incorrect labelling u(l) or o(l) due to inconsistent support). Figure 7 shows an example of
an argumentation setup AS that is not labelled correctly due to inconsistent support.

27

q1U /D ¬q1 U /D

tU /B ¬t D/B

q2 D

U /D D

Figure 8: t is inconsistently supported in AS. As a result, t is labelled b(t) while for each AS′=(L,R,Q,K′)
in F(AS), t is not blocked in AS′: the only potential argument for t is q1,¬q2⇒ t, but this is not an argument
in any future argumentation setup.

In every AS′ = (L,R,Q,K′) in F(AS), t is not unsatisfiable or out in AS′: if q2 ∈ K′ then there is
an unattacked argument for t based on q2 ⇒ t; otherwise there is an unattacked argument for t based on
¬q2⇒ t. So in this example, for each AS′ ∈ F(AS), t is defended in AS′.

However, t is not labelled 〈0,1,0,0〉 by L′. q1 ∈K, so q1 is labelled L′(q1) = 〈0,1,0,0〉 by Definition 9
case L-U-a, L-O-a and L-B-a. L′(q1) = 〈0,1,0,0〉 by case R-U-a, R-O-a and R-B-a. q2 and ¬q2 are
observable but neither of them is observed. L′(¬q2) = 〈0,1,1,0〉 by case L-U-b and L-B-a; L′(q2) =
〈1,1,0,0〉 by case L-O-b and L-B-a. As a result, L′(¬q2⇒ t) = 〈0,1,1,0〉 by R-U-a and R-B-a; L′(q2⇒
t) = 〈1,1,0,0〉 by case R-O-a and R-B-a. Finally, L′(t) = 〈0,1,1,0〉 by case L-U-b and L-B-a.

This issue is caused by the fact that STABILITY wrongfully anticipates a future setup in which each
argument for t is attacked by an observation-based argument. But this is impossible: for each AS′ ∈ F(AS),
either there is an unattacked argument based on q2 ⇒ t in Arg(AS′) or there is an unattacked argument
based on ¬q2 ⇒ t in Arg(AS′). This issue only occurs when there are two potential arguments for t in
P(AS) having mutually inconsistent premises, i.e. if t is inconsistently supported in AS.

Example 13 (Incorrect labelling d(l) or b(l) due to inconsistent support). Figure 8 shows an argumentation
setup AS that is not labelled correctly due to inconsistent support. In every AS′ = (L,R,Q,K′) in F(AS), t
is not defended or blocked in AS′, since t is unsatisfiable in AS′. However, t is not labelled 〈1,0,0,0〉 by L′,
since there is a potential argument based on q1,¬q1⇒ t in P(AS) and STABILITY does not detect the fact
that this potential argument is not an argument in any future argumentation setup AS′ ∈ F(AS).

Example 14 (Incorrect labelling b(l) due to inconsistent attack). Figure 8 shows an argumentation setup
AS that is not labelled correctly due to inconsistent support. In every AS′ = (L,R,Q,K′) in F(AS), ¬t is
not blocked in AS′, since t is defended in AS′. However, ¬t is not labelled 〈0,1,0,0〉 by L′, since there
is a potential argument based on q1,¬q1 ⇒ t in P(AS) and STABILITY does not detect the fact that this
potential argument is not an argument in any future argumentation setup AS′ ∈ F(AS).

Example 15 (Incorrect labelling d(l) due to inconsistent attack). Figure 9 shows an argumentation setup
AS that is not labelled correctly due to inconsistent support. In every AS′ = (L,R,Q,K′) in F(AS), t is not
defended in AS′, since t is blocked in AS′. However, t is not labelled 〈0,0,0,1〉 by L′, since two mutually
inconsistent potential arguments p-attack the only argument for t.

In the remainder of this section, we will show that, given an argumentation setup AS = (L,R,Q,K) and
a literal l ∈ L, the situations where l is inconsistently supported or attacked in AS are the only situations
in which L′ does not detect l’s stability. In order to prove this, we first need Lemma 16, which shows in
which situations STABILITY turns one or more booleans (u, d, o and/or b) of the labelling L′ to False. This
will help us in Proposition 3 to prove in which situations STABILITY turns exactly three booleans of the
labelling L′ to false. This way we can show in which situations STABILITY is complete.

Lemma 16 (Conditions for labellings). Given an argumentation setup AS = (L,R,Q,K), let L′ be the
labelling function from Definition 9 and let l ∈ L be a literal. Then:

1. If there is an argument for l in Arg(AS), then ¬u(l).

2. If each potential argument for l in P(AS) is p-attacked by an observation-based argument in Arg(AS),
then ¬d(l) and ¬b(l).

28

q1D

q2D/O ¬q2 U /D q3 D

l1
U /B

¬l1 D/B

¬tB/O t D/B

D

D/O

U /D D

D/B

Figure 9: t is inconsistently attacked in AS. As a result, t is labelled d(t) while for each AS′ = (L,R,Q,K′)
in F(AS), t is not defended (but blocked) in AS′: if ¬q2 ∈ K′ then the argument for t is attacked by the
argument based on ¬q2 ⇒ l1; if ¬q2 /∈ K′ then the argument for t is attacked by the argument based on
q2⇒¬t.

3. If there is an argument A for l in Arg(AS) and there is no observation-based potential argument in
P(AS) that p-attacks A, then ¬u(l) and ¬o(l).

4. If each potential argument Ap for l in P(AS) is p-attacked by an argument B in Arg(AS) and there is
no observation-based potential argument in P(AS) that p-attacks B, then ¬d(l).

5. If there is an argument A for l in Arg(AS) and each potential argument Bp in P(AS) that p-attacks A
is p-attacked by an observation-based argument in Arg(AS), then L′(l) = 〈0,1,0,0〉.

Proof. Next we prove the five parts of the lemma individually:

1. If there is an argument for l in Arg(AS), then ¬u(l).
Suppose that there is an argument for l in Arg(AS). Then by Lemma 1, there is a non-circular
argument for l in Arg(AS). Let A be a non-circular argument for l in Arg(AS). A is non-circular, so
by Lemma 2, h(A) is finite. Next, we prove that l is labelled ¬u(l) by induction on the height of A.

Base case: If h(A) = 0, then l ∈ K and l is labelled ¬u(l) by Definition 9 case L-U-a.

Induction hypothesis: If h(A)≤ k, then l is labelled ¬u(l) by L′.

Induction step: If h(A) = k+1, then there is a rule r for l such that for each a ∈ ants(r), there is an
argument Ai for a in Arg(AS) with h(Ai)≤ k. By the induction hypothesis, there is a rule r for l such
that for each a ∈ ants(r), a is labelled ¬u(a) by L′. Then by case R-U-a, r is labelled ¬u(r) and by
case L-U-b, l is labelled ¬u(l) by L′.

2. If each potential argument for l in P(AS) is p-attacked by an observation-based argument in
Arg(AS), then ¬d(l) and ¬b(l).
Suppose that each potential argument for l in P(AS) is p-attacked by an observation-based argument
in Arg(AS). If there is no potential argument for l in P(AS), then by Lemma 15, Lp(l) = 〈1,0,0,0〉,
which implies that L′(l) = 〈1,0,0,0〉, so l is labelled ¬d(l) and ¬b(l).

Alternatively, there is a potential argument for l in P(AS). Then by Lemma 13, there is a non-
circular potential argument for l in P(AS). Let Ap be an arbitrary non-circular potential argument for
l in P(AS). Ap is non-circular, so by Lemma 14 h(Ap) is finite. By assumption, Ap is p-attacked by
an observation-based argument in Arg(AS). We prove that l is labelled ¬d(l) and ¬b(l) by induction
on the height of l. We take h(Ap) = 1 as base case: if h(Ap) = 0, then Ap cannot be p-attacked
on any other subargument than its conclusion. So Ap must be attacked by an argument for −l. We
assumed that Ap is attacked by an observation-based argument, so−l ∈K. However, this contradicts

29

the assumption that Ap is a potential argument with h(Ap) = 0: by Definition 10, this would require
that −l /∈ K.

Base case: Suppose that h(Ap) = 1.

First suppose that l 6∈ Q. This means that Ap cannot be p-attacked by an observation-based argument
in Arg(AS) on its conclusion. Therefore Ap must be p-attacked by an observation-based argument
in Arg(AS) on a subargument. Ap has the form A1, . . . ,Am⇒ c and for each i ∈ [1 . . m]: h(Ai) = 0,
so for each a ∈ ants(r): a ∈ Q and −a 6∈ K. Given that for each a ∈ ants(r): −a 6∈ K, Ap cannot
be p-attacked by observation-based argument in Arg(AS); this contradicts the assumption that Ap is
p-attacked by an observation-based argument in Arg(AS).

As a result, l must be inQ. We prove by contradiction that−l ∈K. If l ∈Q and−l /∈K then there is
an observation-based potential argument for l in P(AS), which is not p-attacked by any observation-
based argument in Arg(AS) since −l /∈ K, a contradiction. Given that −l ∈ K, l is labelled ¬d(l) by
L-D-a and ¬b(l) by L-B-a.

Induction hypothesis: If h(Ap)≤ k, then l is labelled ¬d(l) and ¬b(l) by L′.

Induction step: Suppose that h(Ap) = k+1. If l ∈Q, then −l ∈ K. We prove this by contradiction:
if l ∈ Q and −l /∈ K then there is an observation-based potential argument for l in P(AS), which is
not p-attacked by any observation-based argument in Arg(AS) since −l /∈ K. Given that −l ∈ K, l is
labelled ¬d(l) by L-D-a and ¬b(l) by L-B-a.

Alternatively, suppose that l /∈ Q. Then each potential argument for l in P(AS) must be rule-based.
Let r be an arbitrary rule for l. Then each potential argument based on r in P(AS) is p-attacked by
an observation-based argument in Arg(AS). Let Ap be an arbitrary argument based on r in P(AS).
Ap must be p-attacked by an observation-based argument in Arg(AS) on a subargument, since l /∈Q.
So there is some a ∈ ants(r) such that each potential argument for a in P(AS) is p-attacked by
an observation-based argument in Arg(AS). Then by the induction hypothesis, this antecedent a is
labelled ¬d(a) and ¬b(a). Then by Definition 9 case R-D-a and R-B-b, r is labelled ¬d(r) and ¬b(r)
by L′. We chose r as an arbitrary rule for l, so each rule r for l is labelled ¬d(r) and ¬b(r) by L′.
Then by Definition 9 case L-D-b and L-B-b, l is labelled ¬d(l) and ¬b(l) by L′.

3. If there is an argument A for l in Arg(AS) and there is no observation-based potential argument
in P(AS) that p-attacks A, then ¬u(l) and ¬o(l).
Suppose that there is an argument Acirc for l in Arg(AS) that is not p-attacked by any observation-
based potential argument in P(AS).

Following the proof of Lemma 1, a non-circular argument A for l can be constructed from Acirc

such that if A is attacked then Acirc is attacked. Hence A is not p-attacked by any observation-based
potential argument in P(AS) either.

A is non-circular, so by Lemma 2, h(A) is finite. Next, we prove that l is labelled ¬u(l) and ¬o(l) by
induction on the height of A.

Base case: If h(A) = 0, then l ∈ K and l is labelled ¬u(l) by Definition 9 case L-U-a and ¬o(l) by
case L-O-a.

Induction hypothesis: If h(A) = k, then l is labelled ¬u(l) and ¬o(l) by L′.

Induction step: If h(A) = k+1, then there is a rule r for l such that for each antecedent a∈ ants(r),
there is an argument Ai for a in Arg(AS), such that Ai is not p-attacked by any observation-based
potential argument in P(AS) and h(Ai) ≤ k. Then by the induction hypothesis, each a ∈ ants(r) is
labelled ¬u(a) and ¬o(a) by L′. Then by Definition 9 case R-U-a and R-O-a, r is labelled ¬u(r) and
¬o(r) by L′. Given that there is a rule r for l that is labelled ¬u(r), l is labelled ¬u(l) by case L-U-b.
If l /∈Q, then l is labelled ¬o(l) by case L-O-d. Alternatively, if l ∈Q, then l ∈K. We prove this by
contradiction: if l /∈ K, then there is an observation-based potential argument for −l in P(AS) which
p-attacks A and that would contradict our assumption on l. Since l ∈ K, l is labelled ¬o(l) by case
L-O-a.

30

4. If each potential argument Ap for l in P(AS) is p-attacked by an argument B in Arg(AS) and
there is no observation-based potential argument in P(AS) that p-attacks B, then ¬d(l).
Suppose that each potential argument Ap for l in P(AS) is p-attacked by an argument in Arg(AS) that
is not p-attacked by any observation-based potential argument in P(AS).

If there is no potential argument for l in P(AS), then by Lemma 15, Lp(l) = 〈1,0,0,0〉. This implies
that L′(l) = 〈1,0,0,0〉, so l is labelled ¬d(l) by L′.

Alternatively, there is a potential argument for l in P(AS). We distinguish two situations: either l ∈Q
or l /∈Q.

• If l ∈ Q then −l ∈ K: we prove this by contradiction. Suppose that l ∈ Q and −l /∈ K. Then
there is an observation-based potential argument for l. This argument can only be p-attacked
by an observation-based potential argument for −l, but given that −l /∈ K, this observation-
based potential argument is p-attacked by the observation-based potential argument for l, which
contradicts our assumption. So −l ∈ K. Then l is labelled ¬d(l) by Definition 9 case L-D-a.

• Alternatively, l /∈Q.

– First suppose that there is an argument B for −l in Arg(AS) that is not p-attacked by
any observation-based potential argument in P(AS). B cannot be observation-based, since
−l /∈ Q, so there is a rule r′ for −l such that for each a′ ∈ ants(r′): there is an argument
for a′ in Arg(AS) that is not p-attacked by any observation-based potential argument in
P(AS). Then by item 3 of this lemma, for each a′ ∈ ants(r′), a′ is labelled ¬u(a′) and
¬o(a′). This implies that r′ is labelled ¬u(r′) by Definition 9 case R-U-a and ¬o(r′) by
case R-O-a. Given that −l /∈ Q and there is a rule r′ for −l that is labelled ¬u(r′) and
¬o(r′), we derive that l is labelled ¬d(l) by case L-D-c.

– Alternatively, there is no argument for −l in Arg(AS) that is not p-attacked by any obser-
vation-based potential argument in P(AS). Still there must be some argument in Arg(AS)
that attacks Ap and is not attacked by any observation-based potential argument in P(AS).
Given that l 6∈ Q, we derive that each potential argument for l in P(AS) must be rule-based
and p-attacked on a subargument by an argument in Arg(AS) that is not p-attacked by any
observation-based potential argument in P(AS). To show this, we will first show that each
rule r for l inR is labelled ¬d(r).
Let r be an arbitrary rule for l inR. We consider two cases:
∗ First suppose that there is no potential argument based on r in P(AS). Then by

Lemma 15, r is labelled 〈1,0,0,0〉 in the preprocessing step. Hence r is labelled
¬d(r).
∗ Alternatively, suppose that there is a potential argument based on r in P(AS). By

Definition 10 of potential arguments, this means that for each a ∈ ants(r), there is a
potential argument for a in P(AS). Then by Lemma 13, for each a ∈ ants(r), there
is a non-circular potential argument for a in P(AS); as a result, there is a non-circular
potential argument based on r in P(AS). Let Ap be an arbitrary non-circular potential
argument based on r in P(AS). Ap is non-circular, so by Lemma 14, h(Ap) is finite.
We prove by induction on the height of Ap that r (its top rule) is labelled ¬d(r). Note
that the height of Ap must be at least 1 since we assumed that Ap is based on r.
Base case: If h(Ap) = 1, then Ap has the form A1, . . . ,Am⇒ l and for each i ∈ [1 . . m]:
h(Ai) = 0. By Definition 10 of potential arguments, this implies that for each a ∈
ants(r): a ∈Q.
Remember Ap is p-attacked by an argument in Arg(AS) that is not p-attacked by any
observation-based potential argument in P(AS), and that this argument is not an argu-
ment for −l. This means that Ap must be p-attacked on a subargument by an argu-
ment in Arg(AS) that is not p-attacked by any observation-based potential argument
in P(AS). As a result, there must be some a ∈ ants(r) such that there is an argument
for −a in Arg(AS) that is not p-attacked by any observation-based potential argument
in P(AS). Since h(Ap) = 1, we know that for each i ∈ [1 . . m]: h(Ai) = 0, so for each

31

a ∈ ants(r): a ∈ Q. Now let a be the antecedent of ants(r) such that there is an
argument for −a in Arg(AS) that is not p-attacked by any observation-based potential
argument in P(AS). If −a 6∈ K, then each argument for −a would be p-attacked by
an observation-based potential argument for a in P(AS) which would contradict our
earlier assumption, so −a ∈ K. Then a is labelled ¬d(a) by Definition 9 case L-D-a.
Given that a is an antecedent of r, r must have been labelled ¬d(r) by Definition 9
case R-D-a.
Induction hypothesis: If h(Ap)≤ k then r is labelled ¬d(r).
Induction step: Suppose that h(Ap) = k+1. Then Ap has the form A1, . . . ,Am⇒ l and
for each i ∈ [1 . . m]: Ai ∈ P(AS) and h(A1)≤ k. Furthermore, there is some i∈ [1 . . m]
such that Ai is p-attacked by an argument in Arg(AS) that is not p-attacked by any
observation-based potential argument in P(AS). Then there is at least one a ∈ ants(r)
such that each potential argument for a is p-attacked by an argument B in Arg(AS) and
there is no observation-based potential argument in P(AS) that p-attacks B. So by the
induction hypothesis, this a is labelled ¬d(a). Then by Definition 9 case R-D-a, r is
labelled ¬d(r).

We just showed that r is labelled ¬d(r) in both cases.

Finally, since we picked r as an arbitrary rule for l, this implies that each rule r for l is labelled
¬d(r) so by Definition 9 case L-D-b, l is labelled ¬d(l).

To conclude, we have shown that for each l (both if l ∈ Q and if l /∈ Q): if each potential argument
Ap for l in P(AS) is p-attacked by an argument B in Arg(()AS) and there is no observation-based
potential argument in P(AS) that p-attacks B, then l is labelled ¬d(l).

5. If there is an argument A for l in Arg(AS) and each potential argument Bp in P(AS) that p-
attacks A is p-attacked by an observation-based argument in Arg(AS), then L′(l) = 〈0,1,0,0〉.
Suppose that there is an argument Acirc for l in Arg(AS) such that each potential argument p-attacking
Acirc is p-attacked by an observation-based argument in Arg(AS).

Following the proof of Lemma 1, a non-circular argument A for l can be constructed from Acirc such
that if A is attacked then Acirc is attacked. Hence any potential argument that p-attacks A p-attacks
Acirc as well and is therefore p-attacked by an observation-based argument in Arg(AS).

A is non-circular, so by Lemma 2, h(A) is finite. Next, we prove that L′(l) = 〈0,1,0,0〉 by induction
on the height of A.

Base case: If h(A) = 0, then l ∈ K. Then l is labelled L′(l) = 〈0,1,0,0〉 by case L-U-a, L-O-a and
L-B-a.

Induction hypothesis: If h(A)≤ k, then L′(l) = 〈0,1,0,0〉.
Induction step: Suppose that h(A) = k+1. We consider two cases: either l ∈Q or l 6∈ Q.

• Suppose that l ∈ Q. We now show that l ∈ K. Suppose, towards a contradiction, that l /∈
K. Then there is an observation-based potential argument for −l in P(AS). The potential
argument −l p-attacks each argument for l in Arg(AS) (including A), but is not attacked by any
observation-based argument in Arg(AS) since l /∈K. This contradicts our initial assumption, so
if l ∈Q then l ∈ K. Then l is labelled L′(l) = 〈0,1,0,0〉 by case L-U-a, L-O-a and L-B-a.

• Alternatively, suppose that l /∈ Q. First we show that each rule r′ for −l (if any) is labelled
¬d(r′) and ¬b(r′). Let r′ ∈R be an arbitrary rule for −l.

– If there is no potential argument based on r′ in P(AS), then by Lemma 15 L′(r′)= 〈1,0,0,0〉.
This means that r′ is labelled ¬d(r′) and ¬b(r′).

– Otherwise, there is a potential argument based on r′ in P(AS). Then by Definition 10: for
each a′ ∈ ants(r′): there is a potential argument for a′ in P(AS).
Next, we prove by contradiction that there must be some antecedent a′ ∈ ants(r′) such
that each potential argument for a′ is p-attacked by an observation-based argument in

32

Arg(AS). Suppose that for each a′ ∈ ants(r′): there is a potential argument for a′ in
P(AS) that is not p-attacked by any observation-based argument. Then we could construct
from these potential arguments a potential argument Bp based on r′ (hence p-attacking
A: conc(r′) = −conc(A)) that is not p-attacked by any observation-based argument in
Arg(AS). Remember our assumption that l /∈ Q; this implies that −l 6∈ Q, so Bp cannot
be p-attacked on its conclusion by an observation-based argument in Arg(AS). However,
this contradicts our assumption that each potential argument in P(AS) that p-attacks A
is p-attacked by an observation-based argument in Arg(AS). To conclude, there must be
some antecedent a′ ∈ ants(r′) such that each potential argument for a′ is p-attacked by an
observation-based argument in Arg(AS).
Then by item 2 of this lemma, there must be some antecedent a′ ∈ ants(r′) that is la-
belled ¬d(a′) and ¬b(a′) by L′. This implies that r′ is labelled ¬d(r′) and ¬b(r′) by L′

(Definition 9 case R-D-a and R-B-b).

We chose r′ as an arbitrary rule for −l, so we can conclude that each rule r′ for −l in R is
labelled ¬d(r′) and ¬b(r′).
Next, we will prove that for at least one rule r for l in R, each antecedent a ∈ ants(r) should
be labelled L′(a) = 〈0,1,0,0〉. We will prove this by contradiction. Suppose that for each rule
r for l there is an antecedent a ∈ ants(r) such that L′(a) 6= 〈0,1,0,0〉. Let r be an arbitrary rule
for l and let a be an arbitrary antecedent in ants(r) such that L′(a) 6= 〈0,1,0,0〉. Then by the
induction hypothesis, there is no argument A′ for a such that each potential argument in P(AS)
that p-attacks A′ is p-attacked by an observation-based argument in P(AS). This implies that
there is no argument A based on r such that each potential argument in P(AS) that p-attacks A is
p-attacked by an observation-based argument in P(AS). Since we chose r as an arbitrary rule for
l, there is no rule-based argument A for l in Arg(AS) such that each potential argument in P(AS)
that p-attacks A is p-attacked by an observation-based argument in P(AS). Note that there is no
observation-based argument for l either (l /∈ Q), so there is no argument A for l such that each
potential argument in P(AS) that p-attacks A′ is p-attacked by an observation-based argument
in P(AS). This contradicts our initial assumption, so for at least one rule r for l in R, each
antecedent a ∈ ants(r) should be labelled L′(a) = 〈0,1,0,0〉. Then by Definition 9 case R-U-
a, R-O-b and R-B-b, there is a rule r for l inR that is labelled L′(r) = 〈0,1,0,0〉.
In summary, we have that if l /∈ Q: each rule r′ for −l in R is labelled ¬d(r′) and ¬b(r′) and
there is a rule r for l in R that is labelled L′(r) = 〈0,1,0,0〉. Then by Definition 9 case L-U-b,
L-O-b and L-B-d, l is labelled L′(l) = 〈0,1,0,0〉.

To conclude: if there is an argument A for l and each potential argument in P(AS) that p-attacks A is
p-attacked by an observation-based argument in Arg(AS), then l is labelled L′(l) = 〈0,1,0,0〉.

In Example 12 we saw an argumentation setup AS = (L,R,Q,K) in which STABILITY did not detect
that a literal l ∈ L was not out or unsatisfiable in each future AS′ ∈ F(AS). The next lemma shows that this
issue only occurs if l is inconsistently supported in AS.

Lemma 17 (Incorrect labelling u(l) or o(l) due to inconsistent support). Given an argumentation setup
AS = (L,R,Q,K) and labelling L′ after executing the STABILITY algorithm. Given a literal l ∈ L, if
for each AS′ ∈ F(AS), l is not unsatisfiable or out in AS′, but l is labelled u(l)∨ o(l) by L′, then l is
inconsistently supported in AS.

Proof. Let l ∈ L be a literal such that for each AS′ ∈ F(AS), l is not unsatisfiable or out in AS′. Suppose
that l is labelled u(l) or o(l) by L′. Then l is not labelled (¬u(l) and ¬o(l)), so by Lemma 16.3 there is no
argument for l in Arg(AS) that is not p-attacked by an observation-based potential argument in P(AS). In
other words, each argument for l in Arg(AS) is p-attacked by an observation-based potential argument in
P(AS).

We assumed that l is not unsatisfiable or out in any AS′ ∈ F(AS), so l is not unsatisfiable or out in
AS itself. That means that there must be at least one argument for l in Arg(AS) that is not attacked by an
argument in the grounded extension. Let S be the set of arguments for l in Arg(AS) that are not attacked by

33

an argument in the grounded extension G(AS) - intuitively, each argument A ∈ S justifies the assumption
that l is not unsatisfiable or out in AS. By Lemma 4, for each A ∈ S: A is not attacked by an argument in
G(AS) iff for each A′ ∈ sub(A): −conc(A′) 6∈ K. Then:

S = {A | A ∈ Arg(AS), conc(A) = l, for each A′ ∈ sub(A) :−sub(A′) 6∈ K}

In combination with our earlier conclusion that each argument for l in Arg(AS) is p-attacked by an
observation-based potential argument in P(AS), we now have that for each A ∈ S, there is a subargument
A′ ∈ sub(A) such that conc(A′) ∈Q, conc(A′) /∈ K and −conc(A′) /∈ K.

Now construct the set consisting of all observation-based potential arguments attacking an argument A
for l in S:

KAtt = {−a | A ∈ S, A′ ∈ sub(A),conc(A′) = a,a ∈Q, a /∈ K, −a /∈ K}

Suppose that l is not inconsistently supported in AS. Then by Definition 12 of inconsistent support,
there is no Ap,Bp ∈ P(AS) such that conc(Ap) = conc(Bp) = l and Ap is inconsistent with Bp. As a result,
the set of all premises of all potential arguments for l KSup must be consistent, where:

KSup = {p | Ap ∈ P(AS),conc(Ap) = l, p ∈ prem(Ap)}

We will use this consistency property to construct a future argumentation setup ASAtt.
Given that KSup is consistent, the set KNegSup = {−p | Ap ∈ P(AS),conc(Ap) = l, p ∈ prem(Ap)} must

be consistent as well.
We now show that KAtt is a subset of KNegSup: for each A ∈ S: A is an argument for l, so A also is a

potential argument for l. This implies that each element in KAtt is the negation of a premise of a potential
argument for l; KNegSup contains the negation of each premise of a potential argument for l. Therefore
KAtt ⊆KNegSup. Given that KAtt ⊆KNegSup and KNegSup is consistent, KAtt must be consistent as well.

Furthermore, KAtt is defined in such a way that it is consistent with K (because a /∈ K and Definition 1
states that K is consistent itself). As a result, K∪KAtt must be consistent. Furthermore, K ⊆KAtt ⊆Q, so
the argumentation setup ASAtt = (L,R,Q,K∪KAtt) is in F(AS). Note that, because of the way we defined
ASAtt, each potential argument in P(AS) attacking an A ∈ S is an argument in Arg(ASAtt). As a result, each
argument in Arg(ASAtt) that was already in S is attacked by an observation-based argument in Arg(ASAtt).

Remember that we assumed that for each AS′ ∈ F(AS), l is not unsatisfiable or out in AS′. ASAtt ∈
F(AS), so l is not unsatisfiable or out in ASAtt. By Definition 6, there is an argument for l in Arg(ASAtt) that
is not attacked by an argument in the grounded extension G(ASAtt). By Lemma 4, there is an argument B for
l in Arg(ASAtt) that is not attacked by an observation-based argument in Arg(ASAtt). However, B /∈Arg(AS),
as we show next. B is not attacked by an observation-based argument in Arg(ASAtt), so B was not attacked
by an observation-based potential argument in Arg(AS). If B would have been in Arg(AS), then B would
have been part of S; we just derived that each argument in Arg(ASAtt) that was already in S is attacked by
an observation-based argument in Arg(ASAtt) (which is not the case for B).

Given that B 6∈ Arg(AS), there must be some b∈ prem(B) that is not inK (but inKAtt). So there is some
b ∈ prem(B) such that there is some argument A for l in S that has a subargument A′ with conc(A′) = b,
b ∈ Q, b /∈ K and −b /∈ K. But then there also must be a potential argument Ap ∈ P(AS) which equals
A, except for the fact that the subargument A′ is replaced by the observation-based potential argument −b.
However, this means that B is a potential argument for l in P(AS) with b ∈ prem(B) and Ap is a potential
argument for l in P(AS) with −b ∈ prem(Ap). In other words: l is inconsistently supported in AS.

In Example 13 we saw an argumentation setup AS = (L,R,Q,K) in which STABILITY did not detect
that a literal l ∈ L was not defended or blocked in each future AS′ ∈ F(AS). The next lemma shows that
this issue only occurs if l is inconsistently supported in AS.

Lemma 18 (Incorrect labelling d(l) or b(l) due to inconsistent support). Given an argumentation setup
AS = (L,R,Q,K) and labelling L′ after executing the STABILITY algorithm. Given a literal l ∈ L, if
for each AS′ ∈ F(AS), l is not defended or blocked in AS′, but l is labelled d(l)∨ b(l) by L′, then l is
inconsistently supported in AS.

34

Proof. Let l ∈L be a literal and suppose that for each AS′ ∈ F(AS), l is not defended or blocked in AS′ and
l is labelled d(l)∨b(l) by L′. By Lemma 16.2, if l is labelled d(l)∨b(l) then there is a potential argument
Ap for l in P(AS) that is not p-attacked by an observation-based argument B in Arg(AS).

Let Ap ∈ P(AS) be an arbitrary potential argument for l such that Ap is not attacked by an observation-
based B in Arg(AS). Suppose that l is not inconsistently supported in AS; then prem(Ap) must be consistent:
if a ∈ prem(Ap) then −a /∈ prem(Ap). Since Ap ∈ P(AS), we have that if a ∈ prem(Ap) then −a /∈ K. Let
KSup = K∪ prem(Ap). For each a ∈ KSup : −a /∈ KSup, so ASSup = (L,R,Q,KSup) is an argumentation
setup. Since K ⊆KSup ⊆Q, ASSup ∈ F(AS).

We assumed that for each AS′ ∈ F(AS), l is not defended or blocked in AS′ and ASSup ∈ F(AS), so l is
not defended or blocked in ASSup. However, for each a ∈ prem(Ap), a ∈ KSup so Ap is an argument for l
in Arg(ASSup). Then by Definition 6, l is not unsatisfiable either in ASSup. So l must be out in ASSup; by
Lemma 4 each argument for l must be attacked by an observation-based argument in Arg(ASSup). We know
that Ap is not attacked by an observation-based argument B in Arg(AS). Formally: for each A′ ∈ sub(Ap) :
−conc(A′) /∈K. So there must be some A′′ ∈ sub(Ap) such that −conc(A′′) ∈KSup−K= prem(Ap). Let
a= conc(A′′). But then−a∈Q and−a /∈K, so there must be some potential argument A⊥ ∈P(AS), where
A⊥ is the same as Ap but A′′ is replaced by the observation a. However, this implies that a ∈ prem(A⊥) and
−a ∈ prem(A⊥), so A⊥ is inconsistent with A⊥. To conclude, l is inconsistently supported in AS (so l is
inconsistently supported or attacked in AS).

Finally, we use Lemma 16–18 to show that, given an argumentation setup AS = (L,R,Q,K) and a
literal l ∈ L such that l is stable in AS, L′ labels l as being stable, unless l is inconsistently supported or
attacked in AS.

Proposition 3 (Conditional completeness stability labelling). Given an argumentation setup AS = (L,R,
Q,K) and labelling L′ after executing the STABILITY algorithm. Given a literal l ∈ L, if l is stable in AS
but l is not labelled stable by L′, then l is inconsistently supported or attacked in AS.

Proof. Given an argumentation setup AS = (L,R,Q,K) and labelling L′ after executing the STABILITY
algorithm. Let l ∈ L be a literal.

Unsatisfiable Suppose that for each AS′ ∈ F(AS), l is unsatisfiable in AS′ and L′(l) 6= 〈1,0,0,0〉. Then the
preprocessessing step must have been labelled Lp(l) 6= 〈1,0,0,0〉. So by Lemma 15, there is a poten-
tial argument Ap ∈ P(AS) with conc(Ap) = l. We will now prove by contradiction that prem(Ap) is
inconsistent. Suppose that prem(Ap) is consistent (that is: for each a ∈ prem(Ap) :−a /∈ prem(Ap)).
This would imply that the setKA =K∪prem(Ap) is consistent, since prem(Ap) is required to be con-
sistent with K by Definition 10. Then ASA = (L,R,Q,KA) is an argumentation setup. K⊆KA ⊆Q,
so ASA ∈ F(AS). We supposed that for each AS′ ∈ F(AS), l is unsatisfiable in AS′, but this contra-
dicts with the fact that Ap ∈ Arg(ASA). Therefore we have to retract our assumption that prem(Ap) is
consistent. To conclude, Ap is inconsistent with itself, hence l is inconsistently supported in AS (so l
is inconsistently supported or attacked in AS).

Out Suppose that for each AS′ ∈ F(AS), l is out in AS′ and L′(l) 6= 〈0,0,1,0〉. AS ∈ F(AS), so l is out in
F(AS) and l is not unsatisfiable in F(AS). Then by Lemma 16.1, l is labelled ¬u(l) by L′. So l must
be labelled d(l)∨ b(l) by L′, although for each AS′ ∈ F(AS), l is not defended or blocked in AS′.
Then by Lemma 18, l is inconsistently supported or attacked in AS.

Defended Suppose that for each AS′ ∈ F(AS), l is defended in AS′ and L′(l) 6= 〈0,1,0,0〉. We consider
both the case that l is labelled u(l)∨o(l) and the alternative case that l is labelled ¬u(l)∧¬o(l) by
L′.

• First suppose that l is labelled u(l)∨o(l) by L′. Since l is defended in AS′ for each AS′ ∈F(AS),
we know that for each AS′ ∈ F(AS), l is not unsatisfiable or out in AS′. Then by Lemma 17, l
is inconsistently supported in AS.

• Alternatively, l is labelled ¬u(l)∧¬o(l) by L′ but still L′ 6= 〈0,1,0,0〉.

35

By Lemma 16.5, the fact that L′(l) 6= 〈0,1,0,0〉 implies that for each argument A for l in
Arg(AS), there is some potential argument in P(AS) that p-attacks A but is not p-attacked by
any observation-based argument in Arg(AS).
We assumed that l is labelled ¬u(l), so by Definition 9 case L-U-a/b, either l ∈ K or there is a
rule r for l that is labelled ¬u(r). However, if l ∈ K, then l ∈ Q, so l would be labelled ¬b(l)
by Definition 9 case L-B-a. That would mean that L′(l) = 〈0,1,0,0〉, which contradicts our
assumption. So we need to retract our assumption that l ∈ K and derive that there is a rule r
for l that is labelled ¬u(r). Then by Lemma 9, there is a rule-based argument for l in Arg(AS).
Let A be an arbitrary argument for l in Arg(AS). Then there is some potential argument in
P(AS) that p-attacks A but is not p-attacked by any observation-based argument in Arg(AS).
Let Bp be an arbitrary potential argument in P(AS) that p-attacks A but is not p-attacked by any
observation-based argument in Arg(AS).
We now prove by contradiction that l is inconsistently attacked in AS. Suppose that l is not
inconsistently attacked in AS. Then Bp must be consistent with itself, so there is an argu-
mentation setup ASB = (L,R,Q,KB) where KB = K∪ prem(Bp). Note that Bp ∈ Arg(ASB)
and ASB ∈ F(AS). Bp is not attacked by an observation-based argument in Arg(AS), so for
each B′′ ∈ sub(Bp): −conc(B′′) /∈ K. Given that l is defended in ASB, there must be some
B′ ∈ sub(Bp) such that −conc(B′) ∈ prem(Bp). Let b = conc(B′). But that would imply that
there is some potential argument B⊥ ∈ P(AS), where B⊥ is the same as Bp but B′ is replaced
by the observation b. However, this implies that b ∈ prem(B⊥) and −b ∈ prem(B⊥), so B⊥ is
inconsistent with B⊥. In other words, l is inconsistently attacked in AS.

To conclude, in all cases, l is inconsistently supported or attacked in AS.

Blocked Suppose that for each AS′ ∈ F(AS), l is blocked in AS′ and L′(l) 6= 〈0,0,0,1〉. We consider both
the case that l is labelled u(l)∨o(l) and the alternative case that l is labelled ¬u(l)∧¬o(l) by L′.

• First suppose that l is labelled u(l)∨o(l) by L′. Since l is blocked in AS′ for each AS′ ∈ F(AS),
we know that for each AS′ ∈ F(AS), l is not unsatisfiable or out in AS′. Then by Lemma 17, l
is inconsistently supported in AS.

• Alternatively, l is labelled ¬u(l)∧¬o(l) by L′ but still L′ 6= 〈0,0,0,1〉. Then l should be labelled
d(l)∧ b(l) (if ¬b(l) then soundness of the defended case, proven in Proposition 2, would be
violated).
So we have that l is labelled d(l). By Lemma 16.4 there is a potential argument Ap ∈ P(AS) for
l such that each argument B in Arg(AS) that p-attacks Ap is p-attacked by some observation-
based potential argument Cp ∈ P(AS). Let Ap be an arbitrary potential argument for l in P(AS)
with these properties. So each argument B in Arg(AS) that p-attacks Ap is p-attacked by some
observation-based potential argument Cp ∈ P(AS).
Next, we show that each potential argument Bp ∈P(AS) that p-attacks Ap is p-attacked by some
observation-based potential argument Cp ∈ P(AS): suppose that there is some Bp ∈ P(AS) that
p-attacks Ap and is not attacked by any observation-based potential argument in P(AS). Then
Bp /∈ Arg(AS). So there is a p ∈ prem(Bp) such that p ∈ Q and p /∈ K. Then there is an
observation-based potential argument −p in P(AS), which p-attacks Bp; contradiction. So
each potential argument Bp ∈ P(AS) that p-attacks Ap is p-attacked by some observation-based
potential argument Cp ∈ P(AS).
Now construct the set consisting of all observation-based potential arguments that attack po-
tential arguments that attack Ap:

KDef = {−b | Bp ∈ P(AS), Bp p-attacks Ap, B′ ∈ sub(Bp),conc(B′) = b

b ∈Q, b /∈ K, −b /∈ K}

Next, we will prove by contradiction that l is inconsistently attacked in AS. Suppose that l is
not inconsistently attacked in AS.

36

KDef could be either consistent or inconsistent. If KDef is inconsistent, then there is some Bp,
Cp in P(AS) such that both Bp and Cp p-attack Ap and Bp is inconsistent with Cp. Ap is a
potential argument for l in P(AS), so by Definition 12, l would be inconsistently attacked in
AS. This contradicts our assumption, so we derive that KDef is consistent.
We next show by contradiction that prem(Ap)∪KDef is consistent. Suppose that prem(Ap)∪
KDef is inconsistent. Then there is some p ∈ prem(Ap) such that −p ∈ KDef. By definition of
KDef, there must be some potential argument Bp attacking Ap and there is some B′ ∈ sub(Bp)
with p ∈ prem(B′), p ∈ Q, p /∈ K and −p /∈ K. Given that −p ∈ Q and p /∈ K there is an
observation-based potential argument Cp = −p ∈ P(AS). p ∈ prem(Ap), so Cp p-attacks Ap.
Then p ∈ KDef. Since both p and −p are in KDef, KDef is inconsistent; contradiction. So
prem(Ap)∪KDef is consistent.
Furthermore,K⊆K∪KDef∪prem(Ap)⊆Q. So ASDef = (L,R,Q,K∪KDef∪prem(Ap)) must
be an argumentation setup in F(AS).
Then l is defended in ASDef: since prem(Ap) ⊆ K∪KDef ∪ prem(Ap), we have that Ap ∈
Arg(ASDef). Let B an arbitrary argument in Arg(ASDef) that attacks Ap. If B ∈ Arg(ASDef), then
B ∈ P(AS). But we concluded earlier that each potential argument Bp ∈ P(AS) that p-attacks
Ap is p-attacked by some observation-based potential argument Cp ∈ P(AS). Thanks to the way
we defined KDef, each premise of Cp is in KDef, so Cp ∈ Arg(ASDef). Since we picked B as an
arbitrary attacker of Ap in Arg(ASDef), we have that each argument attacking Ap in Arg(ASDef)
is attacked by an observation-based argument Cp in Arg(ASDef). Then by Lemma 3, Ap is in
the grounded extension G(ASDef). Then by Definition 6, l is defended in ASDef, which (to-
gether with our earlier conclusion that ASDef ∈ F(AS)) contradicts our assumption that for each
AS′ ∈ F(AS), l is blocked in AS′.
So we have to retract our assumption that l is not inconsistently attacked in AS. In other words,
l is inconsistently attacked in AS.

To conclude, in all cases that l is stable in AS but l is not labelled stable by L′, l is inconsistently
supported or attacked in AS.

3.4.3 Time complexity

Finally, the proposed algorithm runs in polynomial time, which makes it suitable for practical applications
such as human-computer inquiry dialogues.

Proposition 4 (Time complexity stability labelling). The time complexity of STABILITY is O(|L|2 · |R|+
|L| · |R|2).

Proof. As shown in Lemma 7, the time complexity of the preprocessing step isO(|L| · |R|2). In Lemma 6,
we show that the time complexity of the labelling step is O(|L|2 · |R|+ |R|2) time. To conclude, the total
time complexity of the STABILITY algorithm is O(|L|2 · |R|+ |L| · |R|2).

References
[1] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-

soning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[2] Daphne Odekerken, AnneMarie Borg, and Floris Bex. Estimating stability for efficient argument-based
inquiry. In Computational Models of Argument: Proceedings of COMMA 2020, 2020. under review.

[3] Henry Prakken. An abstract framework for argumentation with structured arguments. Argument &
Computation, 1(2):93–124, 2010.

[4] Bas Testerink, Daphne Odekerken, and Floris Bex. AI-assisted message processing for the Netherlands
National Police. In Proceedings of the 1st Workshop on Artificial Intelligence and the Administrative
State, 2019.

37

[5] Bas Testerink, Daphne Odekerken, and Floris Bex. A method for efficient argument-based inquiry. In
Proceedings of the 13th International Conference on Flexible Query Answering Systems, 2019.

38

	Preliminaries
	Stability
	Approximating stability
	Examples of incompleteness basic algorithm
	Reasoning with possible future labels
	Preprocessing
	Properties of the proposed algorithm
	Soundness
	Conditional completeness
	Time complexity

