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1 Preliminaries
We will study the problem of labelling justification status in the context of abstract argumentation frameworks [Dung,
1995] where arguments are constructed by an instantiation of the ASPIC+ framework [Prakken, 2010]. In this section,
we first recall ASPIC+ definitions and specify how arguments are constructed from an argumentation system and a
knowledge base. Subsequently, we define abstract argumentation frameworks based on ASPIC+ arguments and the
attacks between them. Based on these abstract argumentation frameworks, we can derive which arguments should be
accepted under grounded semantics [Dung, 1995]. Finally, we define a justification status for statements based on the
existence and/or acceptability status of arguments for and against them.

1.1 ASPIC+
ASPIC+ is a general framework for structured argumentation. As a result of various revisions and extensions in the
development of the framework over the years, it is not a single framework, but rather a family of frameworks varying
on several elements [Modgil and Prakken, 2018]. In this paper, we define a light-weight ASPIC+ instantiation that
suffices for our purpose.

The basic notion of ASPIC+ is that of an argumentation system, which consists of a logical language L, a set of
rulesR and a contradiction function . An argumentation system is defined as follows.

Definition 1 (Argumentation system). An argumentation system is a tuple AS = (L,R, ) where:

• L is a finite logical language consisting of propositional literals.

• R is a finite set of defeasible rules of the form a1, . . . , am ⇒ c such that {a1, . . . , am, c} ⊆ L, where
{a1, . . . , am} are the antecedents and c is the consequent of the rule. For any rule r, the antecedents and
consequent are denoted by ants(r) and cons(r), respectively.

• is a contradiction function from L to 2L. l is a contradictory of m iff m ∈ l and l ∈ m. Each l ∈ L has at
least one contradictory. For each l ∈ L : l 6∈ l.

In our examples we often use classical negation (¬) as contradiction function: for each l ∈ L : l = ¬l and ¬l = l.
An argumentation theory is a combination of an argumentation system AS and a knowledge base K ⊆ L.

Definition 2 (Knowledge base). A knowledge base K ⊆ L over an argumentation system AS = (L,R, ) is a set of
literals that is consistent (i.e., for each pair l,m ∈ K : l 6∈ m).

Definition 3 (Argumentation theory). An argumentation theory AT = (AS,K) is a pair consisting of an argumen-
tation system AS and a knowledge base K.

Given an argumentation theory, we can derive two types of arguments: observation-based arguments are based
on elements from the knowledge base, whereas rule-based arguments are constructed by chaining applications of
defeasible rules.
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Definition 4 (Arguments). Let AT = (AS,K) be an argumentation theory. An argument A on the basis of an
argumentation theory AT is a structure obtainable by applying one or more of the following steps finitely many times:

• c if c ∈ K. Then A is an observation-based argument.
The set of premises prem(A) of A is {c}.
The conclusion conc(A) of A is c.
The set of subarguments sub(A) of A is {c}.
The set of direct subarguments dirsub(A) of A is ∅.
The height h(A) of A is 0.

• A1, . . . , Am ⇒ c if for each i ∈ [1 . . m]: there is an argument Ai on the basis of AT with conclusion ci and
there is a rule r : c1, . . . , cm ⇒ c inR. Then A is a rule-based argument.
The set of premises prem(A) of A is prem(A1) ∪ . . . ∪ prem(Am).
The conclusion conc(A) of A is c.
The set of subarguments sub(A) of A is sub(A1) ∪ . . . ∪ sub(Am) ∪ {A}.
The top rule top-rule(A) is r.
The set of subarguments sub(A) of A is {A1, . . . , Am}.
The height h(A) of A is h(A) = 1 +max(h(A1), . . . , h(Am)).

We denote by Arg(AT ) the set of arguments on the basis of AT . An argument with conclusion c is referred to as “an
argument for c” and an argument with top rule r by “an argument based on r”.

Apart from the standard properties of arguments as defined in ASPIC+, the definition above also defines the no-
tions of argument height and direct subarguments. Intuitively, the height of an argument is the maximum number of
inferences between a premise and the conclusion of the argument. Given a rule-based argument, the arguments for
the antecedents of the rule on which the arguments is based are the direct subarguments. In the proofs that follow, we
will repeatedly use the notion of argument height and direct subarguments to prove a certain property of an argument
by induction, in the following way. As a base case, we prove the property for arguments with height of 0 or 1; con-
sequently, we assume that the property holds for (direct) subarguments A′ with h(A′) ≤ k and prove the property for
argument A with height h(A) = k + 1. Note that Definition 4 on arguments enforces that all arguments have finite
height, since the number of steps for constructing an argument is finite.

Arguments can be in conflict. In ASPIC+, attacks between arguments are based on the arguments’ structure. In
this paper, we only consider rebuttal attacks, where arguments attack each other on the conclusion of a defeasible
inference, as defined next.

Definition 5 (Attack). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ). For two arguments
A,B ∈ Arg(AT ) we say that A attacks B (on B′) iff conc(A) ∈ l for some B′ ∈ sub(B) of the form B′′

1 , . . . , B
′′
n ⇒

l.

Given an argumentation theory AT = (AS,K) we can define an argumentation framework [Dung, 1995] consist-
ing of a set of arguments A and a set of attacks C.

Definition 6 (Argumentation framework). Let AT be an argumentation theory AT = (AS,K). An argumentation
framework AF defined by AT , is a pair AF = 〈A, C〉 where A = Arg(AT ) and (X,Y ) ∈ C iff X attacks Y in AT .

1.2 Argumentation semantics
The evaluation of arguments is done using the semantics of Dung [1995]. In this paper, we focus on grounded
semantics, where the grounded extension is the set of arguments that should be accepted according to the grounded
semantics.

Definition 7 (Grounded Extension). Let AF = 〈A, C〉 be an argumentation framework and S ⊆ A. Then:

• S is conflict free iff for each X,Y ∈ S : (X,Y ) 6∈ C.

• X ∈ A is acceptable with respect to S iff for each Y ∈ A such that (Y,X) ∈ C, there is a Z ∈ S such that
(Z, Y ) ∈ C.
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• S is an admissible set iff S is conflict free and X ∈ S implies that X is acceptable with respect to S.

• S is a complete extension iff S is admissible and for each X: if X ∈ A is acceptable with respect to S then
X ∈ S.

• S is the grounded extension of AF iff it is the set inclusion minimal complete extension.

For an argumentation theory AT that defines an argumentation framework AF , we refer to the grounded extension of
AF with G(AT ).

1.3 Justification status of statements
Based on the presence or absence of arguments for a literal in the grounded extension, we distinguish four justification
statuses for literals, in which we have a special status unsatisfiable for literals for which there is no argument, in
contrast to Prakken and Vreeswijk [2001] and Wu and Caminada [2010]. Our four justification statuses are similar to
the UNSUP, INdef , OUTdef and AMBIG statement labels by Hecham et al. [2018].

Definition 8 (Multi-valued statement justification status). Let AT = (AS,K) be an argumentation theory where
AS = (L,R, ) and let AF = 〈A, C〉 be the argumentation framework defined by AT . Then the justification status
of l ∈ L in AT is:

• unsatisfiable iff there is no argument for l in A;

• defended iff there exists an argument for l in A, which is also in the grounded extension G(AT );

• out iff there exists an argument for l in A, but each argument for l in A is attacked by an argument in the
grounded extension G(AT );

• blocked iff there exists an argument for l in A, but no argument for l is in the grounded extension G(AT ) and
at least one argument for l is not attacked by an argument in the grounded extension G(AT ).

The defended status that we defined here corresponds to the justified status of conclusions of arguments in Modgil
and Prakken [2013, Definition 15]. Conclusions of arguments that are not justified can be either out or blocked, where
intuitively a literal that is blocked can be accepted by a credulous reasoner, under different semantics [Baroni et al.,
2011].

Note that the four statement justification statuses are mutually exclusive and complementary, so each literal in each
argumentation theory has exactly one justification status.

2 Labelling algorithm
In this section, we propose our algorithm for computing the justification status of literals. Subsequently, we show
soundness and completeness and study the computational complexity of this algorithm.

2.1 Justification status algorithm
2.1.1 Preprocessing

Our algorithm starts with a preprocessing step (Algorithm 1. In this step, the literals l for which there is an argument
in Arg(AT ) are labelled L[l] = 〈0, 1, 1, 1〉, while all other literals are labelled 〈1, 0, 0, 0〉 by L. The algorithm has a
time complexity of O(|L| · |R|2) (Lemma 1) and is sound and complete (Lemma 2 and 3). In this section, we only
provide proof sketches; for full proofs, we refer to Section 3.2.

Lemma 1 (Time complexity PREPROCESS). The time complexity of PREPROCESS is O(|L| · |R|2).

Proof sketch. The runtime of PREPROCESS is dominated by line 11, which needs to check all (at most |L|) antecedents
in each of the (|R|) iterations of the for loop in lines 10–14 in each of the iterations of the while loop in lines 8–14.
Thanks to the Change condition in line 8, the while loop has at most |R| iterations, since each rule label can change at
most once from 〈1, 0, 0, 0〉 to 〈0, 1, 1, 1〉.
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Algorithm 1 Preprocessing step

1: procedure PREPROCESS(L,R, ,K)
2: for Literal l in L do
3: if l ∈ K then L[l] = 〈0, 1, 1, 1〉
4: else L[l] = 〈1, 0, 0, 0〉
5: for Rule r inR do
6: L[r] = 〈1, 0, 0, 0〉
7: Change = True
8: while Change do
9: Change = False

10: for Rule r inR do
11: if L[r] = 〈1, 0, 0, 0〉 and for each l ∈ ants(r): L[l] 6= 〈1, 0, 0, 0〉 then
12: L[r] = 〈0, 1, 1, 1〉
13: L[cons(r)] = 〈0, 1, 1, 1〉
14: Change = True
15: return L

Lemma 2 (Soundness preprocessing step). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ).
Furthermore let Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, and K. For each l ∈ L: if
Lp[l] = 〈1, 0, 0, 0〉, then there is no argument for l in AT . For each r ∈ R: if Lp[r] = 〈1, 0, 0, 0〉, then there is no
argument based on r in AT .

Proof sketch. This can be shown by contraposition: if there is some argument A for some l ∈ L or based on some
r ∈ R in AT , then l or r is labelled 〈0, 1, 1, 1〉. If A is observation-based, then Lp[l] = 〈0, 1, 1, 1〉 is assigned
in Algorithm 1 line 3; if A is rule-based, then there is some rule r for l such that all a ∈ ants(r) are labelled
Lp[a] = 〈0, 1, 1, 1〉, hence the label Lp[r] = 〈0, 1, 1, 1〉 is assigned by line 13 and Lp[l] = 〈0, 1, 1, 1〉 is assigned by
line 14. In both cases, l or r is not labelled 〈1, 0, 0, 0〉 by Lp.

Lemma 3 (Completeness preprocessing step). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ).
Furthermore let Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, and K. For each l ∈ L: if
there is no argument for l in AT , then Lp[l] = 〈1, 0, 0, 0〉. For each r ∈ R: if there is no argument based on r in AT ,
then Lp[r] = 〈1, 0, 0, 0〉.

Proof sketch. This can be shown by contraposition: if some l ∈ L is labelled Lp[l] = 〈0, 1, 1, 1〉 then there is an
argument for l in Arg(AT ); if some r ∈ R is labelled Lp[r] = 〈0, 1, 1, 1〉 then there is an argument based on r in
Arg(AT ). For those l ∈ L that are labelled 〈0, 1, 1, 1〉 before the first iteration of the for loop, hence in line 3, there is
an observation-based argument for l since l ∈ K. For all r ∈ R labelled 〈0, 1, 1, 1〉, each a ∈ ants(r) must be labelled
Lp[a] = 〈0, 1, 1, 1〉 in an earlier iteration of the for loop (line 10–14), so there is an argument for each a ∈ ants(r),
so there is an argument based on r in Arg(AT ). For those l ∈ L that are labelled 〈0, 1, 1, 1〉 in the for loop, there is
some rule r with cons(r) = l such that there is an argument based on r, so there is an argument for l in Arg(AT ).

2.1.2 Quadruple labelling procedure

The result of the preprocessing procedure is an initial labelling Lp for each of the literals and rules in our argumentation
system. After preprocessing, we apply a bottom-up labelling procedure that updates the quadruple of four booleans
〈u, d, o, b〉 for each literal and rule, resulting in the final labelling L. Algorithm 4 specifies how literals and rules are
visited in the labelling procedure, where literals and rules are labelled according to the labelling rules specified in
Algorithm 2 and Algorithm 3.

Proposition 1 (Time complexity JUSTIFICATION-LABEL). The time complexity of JUSTIFICATION-LABEL isO(|L|3 ·
|R|+ |L|2 · |R|2).

Proof sketch. The runtime of JUSTIFICATION-LABEL is particularly dominated by line 15, which relabels all contra-
dictories of the conclusion of a rule that is relabelled. A single execution of this line requires labelling a literal, which
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Algorithm 2 RELABEL-LITERAL procedure

1: procedure RELABEL-LITERAL(L,R, ,K, L, l)
2: . Labelling rules turning L[l].d to False
3: if some l′ ∈ l is in K then L[l].d = False . L-D-a
4: if l /∈ K then
5: if for each rule r for l: ¬L[r].d then L[l].d = False . L-D-b
6: if there is some l′ ∈ l for which there is a rule r′ with ¬L[r′].u and ¬L[r′].o then L[l].d = False . L-D-c

7: . Labelling rules turning L[l].o to False
8: if l ∈ K then L[l].o = False . L-O-a
9: if for each l′ ∈ l, l /∈ K then

10: if for each rule r for l: ¬L[r].o then L[l].o = False . L-O-b
11: if there is a rule r for l with ¬L[r].u and ¬L[r].o then L[l].o = False . L-O-c

12: . Labelling rules turning L[l].b to False
13: if l ∈ K then L[l].b = False . L-B-a
14: if some l′ ∈ l is in K then L[l].b = False . L-B-b
15: if for each rule r for l: ¬L[r].d and ¬L[r].b then L[l].b = False . L-B-c
16: if for each l′ ∈ l: for each rule r′ for l′: ¬L[r′].d and ¬L[r′].b then
17: if for each rule r for l: ¬L[r].b then L[l].b = False . L-B-d
18: if there is a rule r for l with ¬L[r].u and ¬L[r].o and ¬L[r].b then L[l].b = False . L-B-e
19: return L

Algorithm 3 RELABEL-RULE procedure

1: procedure RELABEL-RULE(L,R, ,K, L, r)
2: if there is an antecedent l of r with ¬L[l].d then L[r].d = False . R-D-a
3: if for each antecedent l of r: ¬L[l].o then L[r].o = False . R-O-a
4: if for each antecedent l of r: ¬L[l].b then L[r].b = False . R-B-a
5: if there is an antecedent l of r with ¬L[l].d and ¬L[l].b then L[r].b = False . R-B-b
6: return L

in the worst case requires checking the presence of that literal and all of its (at most |L|) contradictories in K, as well
as the labels of all (max |R|) rules for that literal or any of its contradictories. Line 15 is executed at most |L| times
for each iteration of the while loop. The total number of iterations of the while loop equals the number of times a rule
is added to TODO-SET. A rule is only added to TODO-SET if it was not yet visited (line 6) or if the label of one of its
antecedents changed after a relabelling (line 13 or line 17). Since the label of a literal can change at most three times
(i.e. at most three booleans can be turned to False), each rule r ∈ R is recolored at most 4 · |ants(r)| times. This
means that line 15 is executed at most 4 · |L|2 · |R| times. Then the total time required for all iterations of line 15 is at
most 4 · c · (|L|3 · |R|+ |L|2 · |R|2), where c is a positive constant.

Given that the preprocessing step is sound, we now need to show that the remainder of the JUSTIFICATION-LABEL
algorithm is sound as well.

Proposition 2 (Soundness justification labelling). Let AT = (AS,K) be an argumentation theory where AS =
(L,R, ) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R,
and K. For each l ∈ L: if L[l] = 〈1, 0, 0, 0〉 (resp. 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉) then l is unsatisfiable (resp.
defended, out, blocked) in AT .

Proof sketch. The following items will be used in the soundness proof sketch and can be shown by induction:

1. For each r ∈ R labelled ¬L[r].d and ¬L[r].b: each argument based on r in Arg(AT ) is attacked by some
argument in G(AT ) (cf. Lemma 8);
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Algorithm 4 Labelling procedure JUSTIFICATION-LABEL

1: procedure JUSTIFICATION-LABEL(L,R, ,K)
2: L = PREPROCESS(L,R, ,K)
3: TODO-SET = empty set
4: for Literal l in L do
5: L = RELABEL-LITERAL(L,R, ,K, L, l)
6: Add all rules having l as antecedent to TODO-SET

7: while TODO-SET is not empty do
8: Pop a rule r from TODO-SET
9: L = RELABEL-RULE(L,R, ,Q,K, L, r)

10: if r’s label changed then
11: L = RELABEL-LITERAL(L,R, ,K, L, cons(r))
12: if cons(r)’s label changed then
13: Add all rules having cons(r) as antecedent to TODO-SET

14: for l′ ∈ cons(r) do
15: L = RELABEL-LITERAL(L,R, ,K, L, l′)
16: if l′’s label changed then
17: Add all rules having l′ as antecedent to TODO-SET

18: return L

2. For each r ∈ R labelled ¬L[r].u and ¬L[r].o: there is an argument based on r in Arg(AT ) that is not attacked
by any argument in G(AT ) (cf. Lemma 7);

3. For each l ∈ L labelled ¬L[l].d: there is no argument for l in G(AT ) (cf. Lemma 12).

We consider all four justification statuses:

• If L[l] = 〈1,0,0,0〉 then it was already labelled as such by PREPROCESS (Lp[l] = 〈1, 0, 0, 0〉) given L[l].u;
then by Lemma 2 l is unsatisfiable in AT (cf. Lemma 9).

• Suppose L[l] = 〈0,1,0,0〉; if l’s label was assigned in the (k + 1)’th iteration then there is a rule r for l that
is labelled L[r] = 〈0, 1, 0, 0〉 and for each r′ for l′ where l′ ∈ l, r′ is labelled ¬L[r′].d and ¬L[r′].b. Each
a ∈ ants(r) is labelled 〈0, 1, 0, 0〉 in or before the k’th iteration; hence by induction each a ∈ ants(r) is
defended in AT . Furthermore, by Item 1 above, each rule-based argument for each l′ ∈ l is attacked by an
argument in G(AT ). Consequently, there is an argument for l, based on r, in G(AT ). So l is defended in AT
(cf. Lemma 10).

• Suppose L[l] = 〈0,0,1,0〉. Given that ¬L[l].u, there is some argument for l in Arg(AT ). We distinguish two
cases. If some l′ ∈ l is in K then each argument for l is attacked on its conclusion by an argument in G(AT ).
Alternatively, all rules r for l are labelled ¬L[r].d and ¬L[r].b. By Item 1 above all arguments based on rules
for l must be attacked by an argument in G(AT ). To conclude, l is out in AT (cf. Lemma 11).

• If L[l] = 〈0,0,0,1〉 then l /∈ K and there is some rule r for l that is labelled ¬L[r].u and ¬L[r].o. By Item 2
above, there is an argument based on r in Arg(AT ) that is not attacked by any argument in G(AT ). Furthermore,
by Item 3 above there is no argument for l in G(AT ). As a result, l is blocked in AT (cf. Lemma 13).

Finally, JUSTIFICATION-LABEL is complete, as we show in the next proposition.

Proposition 3 (Completeness justification labelling). Let AT = (AS,K) be an argumentation theory where AS =
(L,R, ) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R,
and K. For each l ∈ L: if L[l] = 〈1, 0, 0, 0〉 (resp. 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, 〈0, 0, 0, 1〉) then l is unsatisfiable (resp.
defended, out, blocked) in AT .

Proof sketch. The following items will be used in the soundness proof sketch and can be shown by induction:

1. Each r ∈ R such that each argument based on r in Arg(AT ) is attacked on a subargument by some argument in
G(AT ) is labelled ¬L[r].d and ¬L[r].b (cf. Lemma 16);
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2. Each r ∈ R based on which there is an argument in Arg(AT ) that is not attacked on a subargument by any
argument in G(AT ) is labelled ¬L[r].u and ¬L[r].o (cf. Lemma 15);

3. Each l ∈ L for which there is no argument in G(AT ) is labelled ¬L[l].d (cf. Lemma 19).

We consider all four justification statuses:

• If l is unsatisfiable in AT , then there is no argument for l in Arg(AT ), so Lp[l] = 〈1, 0, 0, 0〉 (Lemma 3) so
L[l] = 〈1,0,0,0〉 (cf. Lemma 14).

• Alternatively, there is an argument for l in Arg(AT ), so by Lemma 2, Lp[l] = 〈0, 1, 1, 1〉.

– If l is defended in AT , then there is an argument for l in Arg(AT ) that is not attacked by any observation-
based argument in Arg(AT ). Either l ∈ K (then L[l] = 〈0, 1, 0, 0〉) or there is a rule r for l such that
there is an argument based on r that is not attacked by any observation-based argument in Arg(AT ). In
the latter case, for each l′ ∈ l, l′ /∈ K and for each rule r′ for l′, each argument based on r′ in Arg(AT )
is attacked by some argument in G(AT ); additionally, for each a ∈ ants(r), a is defended in AT . Then
by induction, for each a ∈ ants(r): L[a] = 〈0, 1, 0, 0〉. By Item 1 above, for each l′ ∈ l, each r′ for
l′ is labelled ¬L[r′].d and ¬L[r′].b. Then L[l] = 〈0, 1, 0, 0〉 by case L-O-c and L-B-e. So in both cases,
L[l] = 〈0,1,0,0〉 (cf. Lemma 17).

– If l is out in AT , then each argument for l is attacked by an observation-based argument in Arg(AT ).
Either some l′ ∈ l is in K, which means that L[l] = 〈0, 0, 1, 0〉 by case L-D-a and L-B-b. Otherwise,
for each r for l, each argument for l in Arg(AT ) is attacked on a subargument by an observation-based
argument in Arg(AT ), so by Item 1 above, each rule r for l is labelled ¬L[r].d and ¬L[r].b. Then L[l] =
〈0, 0, 1, 0〉 by case L-D-b and L-B-c. So in both cases, L[l] = 〈0,0,1,0〉 (cf. Lemma 18).

– If l is blocked in AT , then no argument for l is in G(AT ), so by Item 3, l is labelled ¬L[l].d and l /∈ K.
In addition, at least one argument for l is not attacked by an argument in G(AT ). Since this argument must
be rule-based, there is some r for l such that some argument based on r in Arg(AT ) is not attacked by an
argument in G(AT ); neither on its conclusion (so no l′ ∈ l is in K), nor on a subargument. By Item 2
above, this rule must be labelled ¬L[r].u and ¬L[r].o. Then by case L-O-c, l is labelled ¬L[l].o, which
implies that L[l] = 〈0,0,0,1〉 (cf. Lemma 20).

3 Proofs
In this section, we prove the lemmas required for completing the proofs of Propositions 1, 2 and 3 on time complexity,
soundness and completeness of JUSTIFICATION-LABEL. In order to do this, we give a more precise specification of
which arguments are either in the grounded extension or attacked by an argument in the grounded extension in our
ASPIC+ instantiation, as presented in Section 1, in Section 3.1. Then we give proofs of time complexity, soundness
and completeness of PREPROCESS in Section 3.2. The proofs for the JUSTIFICATION-LABEL algorithm follow in
Section 3.3.

3.1 Specification “in” and “out” the grounded extension
In Lemmas 4 and 5, we give a more precise specification of which arguments are either in the grounded extension
(Lemma 4) or attacked by an argument in the grounded extension (Lemma 5). These specifications will be useful for
many proofs in this paper.

Lemma 4 (Specification “in” grounded extension). Let AT = (AS,K) be an argumentation theory with argumen-
tation system AS = (L,R, ). An argument A ∈ Arg(AT ) is in the grounded extension G(AT ) iff each argument
attacking A is attacked by an observation-based argument.

Proof. The proof from right to left is trivial: observation-based arguments cannot be attacked (Definition 5), so each
observation-based argument is in G(AT ). If each argument attacking A is attacked by an observation-based argument,
then A is defended by G(AT ), so A ∈ G(AT ).

We now prove the left to right part by contradiction. Suppose that A ∈ G(AT ) and that there is an argument B
attacking A, and B is not attacked by an observation-based argument. We will prove that there is a strict subset of
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G(AT ) that is complete, which contradicts the assumption that G(AT ) is a grounded extension. We construct this set
S as follows: S = {C ∈ G(AT ) | there is no C′ ∈ sub(C) s.t. C′ attacks B}.

First, we show that S is a strict subset of G(AT ). Since A is attacked by B, there must be some A′ ∈ sub(A)
such that conc(B) ∈ conc(A′) and conc(A′) /∈ K. Given that B cannot be observation-based (otherwise B would
be in G(AT ), which contradicts the conflict-freeness of G(AT )) and conc(A′) ∈ conc(B) (by the symmetry of ),
A′ attacks B. This implies that A cannot be in S, hence S ⊂ G(AT ). Next, we prove that S is complete.

• S ⊂ G(AT ) and G(AT ) is conflict-free, so S is conflict-free.

• S is an admissible set: suppose, towards a contradiction, that there is some D ∈ S such that some argument
E attacks D and each argument attacking E is not in S. E attacks D, so there is an argument D′ ∈ sub(D)
such that conc(E) ∈ conc(D′). Since D ∈ G(AT ), which is complete, there must be some argument in
Arg(AT ) that attacks E, which means that conc(E) /∈ K. Furthermore, since the contradiction is symmetric,
conc(D′) ∈ conc(E). This implies that D′ attacks E and therefore D′ /∈ S. However note that D′ ∈ G(AT ):
D ∈ G(AT ), so each argument attacking D is attacked by some argument in G(AT ); each argument attacking
D′ also attacks D and therefore must be attacked by some argument in G(AT ) so D′ ∈ G(AT ). By definition
of S, D′ has a subargument that attacks B. But then D must have the same subargument attacking B, so D /∈ S;
a contradiction. As a consequence, S must be an admissible set.

• Each argument that is acceptable w.r.t. S is in S: suppose, towards a contradiction, that there exists an
argument D ∈ Arg(AT ) that is acceptable w.r.t. S and D /∈ S. If D is acceptable w.r.t. S, then D is acceptable
w.r.t. G(AT ); therefore D ∈ G(AT ). D /∈ S, so by definition of S there is a subargument D′ ∈ sub(D) such
that D′ attacks B. Let B′ ∈ sub(B) be the subargument on which D′ attacks B: conc(D′) ∈ conc(B′). By
an earlier assumption, B is not attacked by an observation-based argument, so conc(D′) /∈ K. Furthermore, by
symmetry of contradiction, conc(B′) ∈ conc(D′), which means that B′ attacks D′ and therefore also attacks
D. Since D is acceptable w.r.t. S, there must be an argument E in S attacking B′. But then E would attack B
as well, hence E /∈ S, a contradiction. As a result, each argument that is acceptable w.r.t. S is in S.

To conclude, there is a set S ⊂ G(AT ) such that S is complete. This contradicts our assumption that G(AT )
is the grounded extension since the grounded extension is minimal w.r.t. set inclusion. So if A ∈ G(AT ), then each
argument attacking A is attacked by an observation-based argument.

Lemma 5 (Specification “out” arguments). Let AT = (AS,K) be an argumentation theory with argumentation
system AS = (L,R, ). An argument A ∈ Arg(AT ) is attacked by an argument in the grounded extension G(AT )
(A is “out”), iff A is attacked by an observation-based argument.

Proof. Right to left: if an argument A ∈ Arg(AT ) is attacked by an observation-based argument B, then B ∈ G(AT ),
since B cannot be attacked. So A is attacked by an argument in the grounded extension.

Left to right: let A ∈ Arg(AT ) be an argument that is attacked by some B ∈ G(AT ) and suppose, towards a
contradiction, that A is not attacked by any observation-based argument. Then there is a subargument A′ ∈ sub(A)
such that conc(B) ∈ conc(A′) and therefore, by the symmetry of , conc(A′) ∈ conc(B), conc(A′) /∈ K and
conc(B) /∈ K, hence A′ attacks B. B ∈ G(AT ), so by Lemma 4, A′ must be attacked by an observation-based
argument. However, this observation-based argument would attack A as well; a contradiction. To conclude, A is
attacked by an observation-based argument.

3.2 Proofs w.r.t. preprocessing
In this section, we prove that PREPROCESS (Algorithm 1 has a time complexity of O(|L| · |R|2) (Lemma 1) and is
sound and complete (Lemma 2 and 3).

Lemma 1 (Time complexity PREPROCESS). The time complexity of PREPROCESS is O(|L| · |R|2).

Proof. In the following, c2 . . . c15 are positive constants. We consider each iteration of each line of Algorithm 1:

• Line 2–4 take constant time (c2+c3+c4) for each of the |L| iterations, so this requires at most (c2+c3+c4)·|L|
operations in total;

• Line 5–6 require (c5 + c6) · |R| iterations;
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• Line 7 can be done in constant time c7;

• The while loop (line 8–14) iterates until no label changed in the previous loop. Thanks to the check L[r] =
〈1, 0, 0, 0〉 in line 11, each rule can change label at most once, hence the while-loop iterates at most |R| times.

– All iterations of line 8 and 9 in total take at most (c8 + c9) · |R| time;

– The for loop iterates |R| times for each iteration of the while loop, so lines 10–14 are executed at most
|R|2 times in total.

* A single execution of line 10 takes constant time c10, hence all executions take at most c10 · |R|2 time;

* Line 11 checks all antecedents of each rule, which requires at most c11 · |L| checks per execution – or
c11 · |L| · |R|2 operations in total;

* All iterations of line 12–14 take at most (c12 + c13 + c14) · |R|2 operations in total;

• Line 15 takes constant time c15.

The total time required for Algorithm 1 is (c7 + c15) + (c2 + c3 + c4) · |L|+ (c5 + c6 + c8 + c9) · |R|+ (c10 +
c12 + c13 + c14) · |R|2 + c11 · |L| · |R|2 time. As a result, the time complexity of the preprocessing step must be
O(|L| · |R|2).

Lemma 2 (Soundness preprocessing step). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ).
Furthermore let Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, and K. For each l ∈ L: if
Lp[l] = 〈1, 0, 0, 0〉, then there is no argument for l in AT . For each r ∈ R: if Lp[r] = 〈1, 0, 0, 0〉, then there is no
argument based on r in AT .

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let Lp be the labelling after the
preprocessing step. We prove this lemma by contraposition and induction on argument height.
Proposition (P (n)): For each l ∈ L: if there is an argument A for l in Arg(AT ) with h(A) ≤ n then Lp[l] =
〈0, 1, 1, 1〉; and for each r ∈ R: if there is an argument A based on r in Arg(AT ) with h(A) ≤ n + 1 then Lp[r] =
〈0, 1, 1, 1〉.
Base case (P (0)):

• For each l ∈ L such that there is an argument A for l in Arg(AT ) with h(A) = 0, then l ∈ K, so l is labelled
〈0, 1, 1, 1〉 in Algorithm 1 line 3. Since no operation in Algorithm 1 labels literals from 〈0, 1, 1, 1〉 to 〈1, 0, 0, 0〉,
we have that Lp[l] = 〈0, 1, 1, 1〉.

• For each l ∈ R such that there is an argument A based on r in Arg(AT ) with h(A) = 1, there must be some argu-
ment A′ with h(A′) for each of the antecedents of r, which are labelled Lp[l] = 〈0, 1, 1, 1〉 in Algorithm 1 line 3
(see above). This means that line 11 applies for r, so line 12 was executed: Lp[r] = 〈0, 1, 1, 1〉.

Induction hypothesis (P (k)): For each l ∈ L: if there is an argument A for l in Arg(AT ) with h(A) ≤ k then
Lp[l] = 〈0, 1, 1, 1〉; and for each r ∈ R: if there is an argument A based on r in Arg(AT ) with h(A) ≤ k + 1 then
Lp[r] = 〈0, 1, 1, 1〉.
Induction step:

• For each l ∈ L such that there is an argument A for l in Arg(AT ) with h(A) = k+1, A must be based on some
rule r which is labelled Lp[r] = 〈0, 1, 1, 1〉 by the induction hypothesis. This must have happened in line 12,
after which l was labelled Lp[l] = 〈0, 1, 1, 1〉 in line 13.

• For each l ∈ R such that there is an argument A based on r in Arg(AT ) with h(A) = k + 1, there must
be some argument A′ with h(A′) for each of the antecedents of r, which are labelled Lp[l] = 〈0, 1, 1, 1〉 in
Algorithm 1 line 3 or 13 (see above). This means that line 11 applies for r, so line 12 was executed: Lp[r] =
〈0, 1, 1, 1〉.

Since each argument A in Arg(AT ) has a finite h(A), we can generalise this to each l ∈ L and each r ∈ R. As
there is no operation that labels literals or rules from 〈0, 1, 1, 1〉 to 〈1, 0, 0, 0〉, we have that for each x ∈ L ∪ R: if
Lp[x] = 〈0, 1, 1, 1〉 then Lp[x] 6= 〈1, 0, 0, 0〉. By contraposition: if Lp[x] = 〈1, 0, 0, 0〉, then there is no argument
for/based on x in Arg(AT ).
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Lemma 3 (Completeness preprocessing step). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ).
Furthermore let Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, and K. For each l ∈ L: if
there is no argument for l in AT , then Lp[l] = 〈1, 0, 0, 0〉. For each r ∈ R: if there is no argument based on r in AT ,
then Lp[r] = 〈1, 0, 0, 0〉.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let Lp be the labelling after the
preprocessing step. First, we introduce some notation. Let x ∈ L∪R be a literal or rule; we denote by Lp

0[x] the label
given to x by the preprocessing algorithm (Algorithm 1) between line 7 and 8. Furthermore, Lp

k[x] is the label given
to x by the preprocessing algorithm just after the k’th iteration of the for loop (line 10–14). Using this notation, we
proceed by induction.
Proposition (P (n)): For each l ∈ L such that Lp

n[l] = 〈0, 1, 1, 1〉, there is an argument for l in Arg(AT ); for each
r ∈ R such that Lp

n[r] = 〈0, 1, 1, 1〉, there is an argument based on r in Arg(AT ).
Base case (P (0)):

• For each l ∈ L such that Lp
0[l] = 〈0, 1, 1, 1〉, the condition in Algorithm 1 line 2 must have applied (l ∈ K), so

by Definition 4, there is an observation-based argument for l in Arg(AT ).

• No rule r ∈ R is labelled Lp
n[r] = 〈0, 1, 1, 1〉, so for each r ∈ R such that Lp

n[r] = 〈0, 1, 1, 1〉, there is an
argument based on r in Arg(AT ).

Induction hypothesis (P (k)): For each l ∈ L such that Lp
k[l] = 〈0, 1, 1, 1〉, there is an argument for l in Arg(AT );

for each r ∈ R such that Lp
k[r] = 〈0, 1, 1, 1〉, there is an argument based on r in Arg(AT ).

Induction step (P (k + 1)):

• For each r ∈ R such that Lp
k+1[r] = 〈0, 1, 1, 1〉, it must be that for each a ∈ ants(r): Lp

k[a] = 〈0, 1, 1, 1〉.
Then by the induction hypothesis, for each a ∈ ants(r), there is an argument for a in Arg(AT ), which by
Definition 4 implies that there is an argument based on r in Arg(AT ).

• For each l ∈ L such that Lp
k+1[l] = 〈0, 1, 1, 1〉, it must be that there is some rule based on which there is an

argument in Arg(AT ). Consequently, there is an argument for l in Arg(AT ).

Finally note that Algorithm 1 terminates, given the running time is polynomial in the input (Lemma 1) and the
language and rule set are finite. Consequently, for each l ∈ L: if Lp[l] = 〈0, 1, 1, 1〉 then there is an argument for l
in Arg(AT ). Then by contraposition: if there is no argument for l in Arg(AT ), then Lp[l] 6= 〈0, 1, 1, 1〉, so Lp[l] =
〈1, 0, 0, 0〉. Similarly, each r ∈ R based on which there is no argument in Arg(AT ) is labelled Lp[r] = 〈1, 0, 0, 0〉.

3.3 Proofs w.r.t. JUSTIFICATION-LABEL algorithm
In this section, we prove the lemmas and propositions concerning JUSTIFICATION-LABEL. We discuss the time com-
plexity (Section 3.3.1), soundness (Section 3.3.3) and completeness (Section 3.3.4) of our approximation algorithm.
For the soundness proofs, we need the notions of interim labelling and last boolean flip iteration, which we will
introduce in Section 3.3.2.

3.3.1 Time complexity

Proposition 1 (Time complexity JUSTIFICATION-LABEL). The time complexity of JUSTIFICATION-LABEL isO(|L|3 ·
|R|+ |L|2 · |R|2).

Proof. We will prove this by first showing the amount of time that is required for a single execution of a given line
(also given in the second column of the table below). Next, we will consider the number of iterations of each line
(third column), multiply them to get the total time required for each line (fourth column) and combine this into the
big-O notation (final row).
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Line Time single execution Max nr. of executions Total time

2

(c7 + c15)
+ (c2 + c3 + c4) · |L|
+ (c5 + c6 + c8 + c9) · |R|
+ (c10 + c12 + c13 + c14) · |R|2
+ c11 · |L| · |R|2

1

(c7 + c15)
+ (c2 + c3 + c4) · |L|
+ (c5 + c6 + c8 + c9) · |R|
+ (c10 + c12 + c13 + c14) · |R|2
+ c11 · |L| · |R|2

3 c16 1 c16
4 c17 |L| c17 · |L|
5 c18 · (|L|+ |R|) |L| c18 · (|L|2 + |L| · |R|)
6 c19 · |R| |L| c19 · |L| · |R|
7 c20 3 · |L| · |R| 3 · c20 · |L| · |R|
8 c21 3 · |L| · |R| 3 · c21 · |L| · |R|
9 c22 · |L| 3 · |L| · |R| 3 · c22 · |L|2 · |R|
10 c23 3 · |L| · |R| 3 · c23 · |L| · |R|
11 c24 · (|L|+ |R|) 2 · |R| 2 · c24 · (|L| · |R|+ |R|2)
12 c25 2 · |R| 2 · c25 · |R|
13 c26 · |R| 2 · |L| 2 · c26 · |L| · |R|
14 c27 3 · |L|2 · |R| 3 · c27 · |L|2 · |R|
15 c28 · (|L|+ |R|) 3 · |L|2 · |R| 3 · c28 · (|L|3 · |R|+ |L|2 · |R|2)
16 c29 3 · |L|2 · |R| 3 · c29 · |L|2 · |R|
17 c30 · |R| 2 · |L| 2 · c30 · |L| · |R|
18 c31 1 c31
Total time required for all lines O(|L|3 · |R|+ |L|2 · |R|2)

In the following, we will denote positive constants by ci (with i ∈ [1 . . 31]). Also, we assume that for each literal
l ∈ L, the list of rules for that literal can be obtained in constant time, as well as the list of rules having that literal as
an antecedent. As a result, checking if there are rules for this literal can be done in constant time, since we can check
in constant time if the list of rules for the literal is empty. For any literal l ∈ L, we can check in constant time if l ∈ K.

First we show which amount of time is required for a single execution of a given line.

• Line 2 requires running PREPROCESS(L,R, ,K), which takes (c7 + c15) + (c2 + c3 + c4) · |L|+ (c5 + c6 +
c8 + c9) · |R|+ (c10 + c12 + c13 + c14) · |R|2 + c11 · |L| · |R|2 steps, as shown in Lemma 1.

• Line 3 takes constant time c16.

• Line 4 takes a new literal l from L, which takes constant time c17.

• A single execution of line 5 requires labelling a literal, which can be done in c18 · (|L|+ |R|) time: in the worst
case, it requires checking the presence of l and all its contradictories (|l| ≤ |L|) in K, as well as the labels of all
(max |R|) rules for that literal or a contradictory. Therefore, line 5 requires c18 · (|L|+ |R|) time per execution.

• In a single execution of line 6, all rules having l as an antecedent are added to TODO-SET. There are at most R
rules having l as an antecedent, so this takes at most c19 · |R| time.

• Line 7 only needs to check if a set is empty, which can be done in constant time c20. The next line only needs to
pop an element from a set, which can be done in constant time as well, so line 8 needs c21 time.

• Line 9 relabels a rule, which requires checking the labels of all antecedents of this rule. Since a rule has at most
|L| antecedents, this takes at most c22 · |L| time per execution of line 9.

• Lines 10, 12 and 16 only check if the label of a rule or literal changed; this can be done in constant time c23, c25
and c29 respectively.

• Lines 11 and 15 relabel a literal. As explained before (for line 5), this requires checking the presence of a literal
and all its contraries in K, as well as checking the labels of all rules for that literal or one of its contraries. A
single execution therefore takes c24 · (|L|+ |R|) time for line 11 and c28 · (|L|+ |R|) time for line 15.

• Lines 13 and 17 both add at most |R| rules to TODO-SET, so a single execution of line 13 needs at most c26 · |R|
time and a single execution of line 17 needs at most c30 · |R| time.
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• A single execution of line 14 takes a literal from a list of contraries, which can be done in constant time c27.

• Finally, a single execution of line 18 takes constant time c31.

Now we consider the number of iterations of each line; this is also represented in the third column of the table
above.

• Lines 2, 3 and 18 are executed just once.

• Lines 4–6 are repeated for each literal in L. This implies that lines 4–6 are executed at most |L| times.

• The lines 7–10 are executed once in every iteration of the while loop. The total number of iterations of the while
loop equals the number of times a rule is added to TODO-SET. A rule is only added to TODO-SET if it was not yet
visited (line 6) or if the label of one of its antecedents changed after a relabelling (line 13 or line 17). Since the
label of a literal can change at most two times (i.e. at most four booleans can be turned to False, see Lemma 6),
each rule r ∈ R is recolored at most 3 · |ants(r)| times. There are |R| rules, so lines 7–10 are executed at most
3 · |L| · |R| times.

• Next, we consider lines 11 and 12. These lines are only executed if the label of a rule changed. A label can only
be changed by turning one of the four booleans to False. Therefore, for each rule, its label can be changed at
most two times. There are |R| rules in total, so lines 11 and 12 are executed at most 2 · |R| times.

• Lines 13 and 17 are only executed just after the label of a literal changed. This can happen at most two times
for each literal, because at most four booleans can be turned to False. There are |L| literals in total; therefore
lines 13 and 17 are executed at most 2 · |L| times.

• Finally, lines 14–16 are executed at most |L| times (i.e. once for each l′ ∈ conc(r)) for each of the maximal
3 · |L| · |R| iterations of the while loop. This means that lines 14–16 are executed at most 3 · |L|2 · |R| times.

An upper bound on the total amount of time that is needed for all executions of a single line can now be
obtained by multiplying the maximum time required for a single execution by the number of executions of each line.
We do this in the fourth column of our table. From these results, it becomes clear that the total running time of
Algorithm 4 is dominated by the lines for relabeling, in particular of line 15. To conclude, the total time complexity
of JUSTIFICATION-LABEL (Algorithm 4) is O(|L|3 · |R|+ |L|2 · |R|2).

3.3.2 Interim labelling

In order to prove the soundness of the JUSTIFICATION-LABEL algorithm (Section 3.3.3), we will repeatedly use the
notion of interim label, that is: the label at some point before the labelling is finished.

Definition 9 (Interim labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let
L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For any literal
or rule x ∈ L ∪R, we denote the interim labelling state of x immediately after the i’th iteration of the while loop as
Li(x).

Given that the interim labelling Li is the labelling state immediately after the i’th iteration of the while loop, L0

is the labelling state just before the start of the first iteration of the while loop; to be precise: between line 6 and 7 of
Algorithm 4. At this point, the preprocessing step has finished (line 2) and literals are relabelled for the first time.

Another new concept that is related to the interim labelling is the number of the iteration of the while loop in which
one or more booleans from u, d, o and b is turned from True to False. We will repeatedly use this in our induction
proofs; for example, if we know that the d-boolean of literal l was relabelled for the last time in iteration i, then we
know that l is labelled ¬Li[l].d, ¬Li+1[l].d, etc. This means for example that each rule r that has l as an antecedent
will be considered for relabelling in some iteration j > i and can be labelled ¬L[r].d at that point, because we know
that l is an antecedent of r and l is labelled ¬Lj [l].d.

Definition 10 (Last boolean flip iteration). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let J = 2{u,d,o,b} be the set of all subsets of the labelling booleans u, d, o and b. For each J ∈ J and for each
literal or rule x ∈ L ∪ R, we denote by cJ(x) the number of the iteration of the while loop in Algorithm 4 (executed
on L,R, and K) in which the last boolean j ∈ J was turned from True to False – provided that each boolean j ∈ J
is False in the final labelling L = 〈u, d, o, b〉. In case there is some j ∈ J such that j is True in the final labelling L,
cJ(x) =∞.
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3.3.3 Soundness of the algorithm

In this section, we will prove that JUSTIFICATION-LABEL is sound. As we have shown in the proof sketch of Propo-
sition 2, this requires proving Lemmas 7–13. In addition, we need to apply Lemma 6, which states that no literal or
rule can have the label 〈0, 0, 0, 0〉 and is proven next. Since this lemma is required very frequently in the proofs that
follow, we sometimes use it implicitly.

Lemma 6 (No 4x False label). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let
L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For each
x ∈ L ∪R: L[x] 6= 〈0, 0, 0, 0〉.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ). Let Lp be the labelling obtained by
PREPROCESS (Algorithm 1) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4)
on L,R, and K. We proceed by induction on the interim labelling of literals and rules.
Proposition (P (n)): For each x ∈ L ∪R and for each non-negative integer i < n: Li(l) 6= 〈0, 0, 0, 0〉.
Base case (P (1)): For each x ∈ L∪R: if Lp[x] = 〈1, 0, 0, 0〉, then L0(x) 6= 〈0, 0, 0, 0〉 because there is no operation
that labels the u-boolean to False.

• For each r ∈ R such that Lp[r] = 〈0, 1, 1, 1〉, L0(r) = Lp[r] = 〈0, 1, 1, 1〉 because rules are not relabelled
between preprocessing and the first iteration of the while loop, hence L0(r) 6= 〈0,0,0,0〉.

• For each l ∈ L such that Lp[l] = 〈0, 1, 1, 1〉, it must be that l ∈ K or there is a rule r for l that is labelled
Lp[r] = L0(r) = 〈0, 1, 1, 1〉. If l ∈ K then none of the defended-cases of Algorithm 2 applies. Alternatively,
l /∈ K, so there is a rule r for l that is labelled Lp[r] = L0(r) = 〈0, 1, 1, 1〉. If some l′ ∈ l is in K, then none
of the out-cases of Algorithm 2 applies; if there is no l′ ∈ l in K, then none of the blocked-cases applies. This
means that in all cases, L0(l) 6= 〈0,0,0,0〉.

Induction hypothesis (P (k)): For each x ∈ L ∪R and for each non-negative integer i < k: Li 6= 〈0, 0, 0, 0〉.
Induction step (P (k + 1)): We will show that for each x ∈ L ∪ R: Lk(x) 6= 〈0, 0, 0, 0〉. Again, we separately
consider rules and literals.

• Let r ∈ R be an arbitrary rule. Suppose, towards a contradiction, that Lk(r) = 〈0, 0, 0, 0〉. Then Lp[r] =
〈0, 1, 1, 1〉 (because of ¬L[r].u), so for each a ∈ ants(r): Lp[a] = 〈0, 1, 1, 1〉. The fact that ¬L[r].d must be
caused by Algorithm 3 case R-D-a, so there is an antecedent a ∈ ants(r) that is labelled ¬L[a].d. Furthermore,
¬L[r].b can be caused by either R-B-a or R-B-b, but in both cases, there is an antecedent a ∈ ants(r) such
that ¬L[a].d and ¬L[a].b. Since ¬L[r].o must be caused by R-O-a, there is an antecedent a ∈ ants(r) such
that ¬L[a].d and ¬L[a].o and ¬L[a].b. In addition, a is labelled ¬L[a].u because Lp[a] = 〈0, 1, 1, 1〉 This
contradicts the induction hypothesis, so Lk(r) 6= 〈0, 0, 0, 0〉. Since we chose r arbitrarily from R, there is no
rule r ∈ R such that Lk(r) = 〈0,0,0,0〉.

• Now let l ∈ L be an arbitrary literal. Suppose, towards a contradiction, that Lk(l) = 〈0, 0, 0, 0〉.
First note that l /∈ K: if l ∈ K, then none of the defended-cases from Algorithm 2 would apply. Given that
Lk(l) = 〈0, 0, 0, 0〉, it must be that Lp[l] = 〈0, 1, 1, 1〉, so there is a rule r for l such that Lp[r] = 〈0, 1, 1, 1〉,
which means that ¬L[r].u. The label ¬L[l].o must be caused by L-O-b or L-O-c, but in both cases for each
l′ ∈ l: l′ /∈ K and there is a rule r for l with ¬L[r].u and ¬L[r].o. Since there is no rule labelled 〈0, 0, 0, 0〉
by Lk, ¬L[l].b must have been caused by L-B-d or L-B-e. In both cases, there is a rule r for l with ¬L[r].u,
¬L[r].o and ¬L[r].b and for each l′ ∈ l: for each rule r′ for l′: ¬L[r′].d and ¬L[r′].b. Finally, ¬L[l].d can
be caused by either L-D-b or L-D-c. However, both cases contradict our earlier conclusion that there is no rule
labelled 〈0, 0, 0, 0〉 by Lk. So we need to retract our assumption and conclude that Lk(l) 6= 〈0, 0, 0, 0〉.
Recall that we picked l arbitrarily from L; therefore we have that for each l ∈ L: Lk(l) 6= 〈0,0,0,0〉.

At this point we have proven our proposition P (n) for all natural numbers n ∈ N: for each x ∈ L ∪ R and for
each non-negative integer i < n: Li(x) 6= 〈0, 0, 0, 0〉. Given that Algorithm 4 terminates, there is some finite i such
that Li(x) = L[x] for all x ∈ L ∪R. Therefore for each x ∈ L∪R: L[x] 6= 〈0,0,0,0〉.
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Lemma 7 (Labelled not unsatisfiable or out). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For
each r ∈ R: if r is labelled ¬L[r].u and ¬L[r].o, then there is an argument based on r in Arg(AT ) that is not attacked
on a subargument by any argument in G(AT ).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K. We proceed by induction on c{u,o}.
Proposition (P (n)): For each rule r ∈ R such that c{u,o}(r) ≤ n: if r is labelled ¬L[r].u and ¬L[r].o, then there is
an argument based on r in Arg(AT ) that is not attacked on a subargument by any argument in G(AT ).
Base case (P (1)): Let r be an arbitrary rule in R such that c{u,o}(r) ≤ 1 and ¬L[r].u and ¬L[r].o. Given ¬L[r].u it
must be that Lp[r] = 〈0, 1, 1, 1〉, so for each a ∈ ants(r): Lp[a] = 〈0, 1, 1, 1〉. ¬L[r].o must have been caused by case
R-O-a: each a ∈ ants(r) is labelled ¬L[a].o and c{u,o}(a) = 0. Then each a in ants(r) must be in K: if there would
be some a ∈ ants(r) that is not in K, then there is some rule r′ for a labelled Lp[r

′] = L0(r
′) = 〈0, 1, 1, 1〉 and there

is no rule r′′ for a that is labelled ¬L[r′′].u and ¬L[r′′].o by Lp or L0, so none of the out-cases of Algorithm 2 would
apply. Consequently, there is an observation-based argument for each of r’s antecedents, hence there is an argument
based on r in Arg(AT ) that, by Definition 5 and Lemma 4, is not attacked on a subargument by any argument in
G(AT ).
Induction hypothesis (P (k)): For each r ∈ R such that c{u,o}(r) ≤ k: if r is labelled ¬L[r].u and ¬L[r].o, then
there is an argument based on r in Arg(AT ) that is not attacked on a subargument by any argument in G(AT ).
Induction step (P (k+1)): Now let r be an arbitrary rule inR such that c{u,o}(r) ≤ k+1 and ¬L[r].u and ¬L[r].o.
¬L[r].u implies that Lp[r] = 〈0, 1, 1, 1〉, so by Lemma 3 there is an argument based on r in Arg(AT ). By Algorithm 3
case R-O-a, for each a ∈ ants(r): ¬L[a].o and c{u,o}(a) ≤ k. Now let a be an arbitrary antecedent in ants(r).
We consider two cases:

• If a ∈ K, then there is an observation-based argument for a in Arg(AT ) that, by Lemma 5, is not attacked by
any argument in G(AT ).

• Alternatively, a /∈ K. Then there must be some rule r′ for a that was labelled Lp[r] = 〈0, 1, 1, 1〉 by Algorithm 1.
This implies that the label ¬L[a].o can only be caused by case L-O-b or L-O-c. In any case: (1) there is a rule r′

for a that is labelled ¬L[r′].u and ¬L[r′].o and (2) no a′ ∈ a is in K. Given that c{u,o}(a) ≤ k, it follows that
c{u,o}(r

′) ≤ k. So by the induction hypothesis and (1): there is an argument for a (based on r′ in Arg(AT )) that
is not attacked on a subargument by an argument in G(AT ). Furthermore, by (2) there is no observation-based
argument for any a′ ∈ a in Arg(AT ), so by Lemma 5 no argument for a in Arg(AT ) can be attacked on its
conclusion by an argument in G(AT ).

Since we chose a arbitrarily, for each a ∈ ants(r) there is an argument for a in Arg(AT ) that is not attacked by
any argument in G(AT ). Then we can construct from these arguments for a an argument based on r in Arg(AT ) that
is not attacked on a subargument by any argument in G(AT ).
Finally, recall that c{u,o}(r) is finite for each r ∈ R that is labelled ¬L[r].u and ¬L[r].o (Definition 10), which means
that the proposition is valid for each r ∈ R in general.

Lemma 8 (Labelled not defended or blocked). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) and Lp be the labelling
obtained by PREPROCESS (Algorithm 1) on L, R, and K. If r ∈ R is labelled ¬L[r].d and ¬L[r].b then each
argument based on r in Arg(AT ) is attacked by an argument in G(AT ).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) and Lp be the labelling obtained by PREPROCESS (Algorithm 1)
on L,R, and K. We proceed by induction on c{d,b}.
Proposition (P (n)): For each r ∈ R such that c{d,b}(r) ≤ n: if r is labelled ¬L[r].d and ¬L[r].b, then each argument
based on r in Arg(AT ) is attacked by an argument in G(AT ).
Base case (P (1)): Let r be an arbitrary rule such that c{d,b}(r) ≤ 1 and suppose that r is labelled ¬L[r].d and ¬L[r].b.

If Lp[r] = 〈1, 0, 0, 0〉 then by Lemma 2 there is no argument based on r in Arg(AT ) so each argument based on r
in Arg(AT ) is attacked by an argument in G(AT ). Alternatively, Lp[r] = 〈0, 1, 1, 1〉, so r must be labelled ¬L[r].d
and ¬L[r].b by Algorithm 4 and c{d,b}(r) = 1.
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The labelling of r as ¬L[r].d and ¬L[r].b must have happened in line 9, caused by Algorithm 3. Then by case R-
D-a and case R-B-a or R-B-b, some a ∈ ants(r) must have been labelled¬L[a].d and¬L[a].b and c{d,b}(a) = 0.

Given that c{d,b}(a) = 0, a must have been relabelled in Algorithm 4 line 5: if a was labelled ¬L[a].d and ¬L[a].b
in the preprocessing step, then Lp[a] = 〈1, 0, 0, 0〉, which means that Lp[r] = 〈1, 0, 0, 0〉 (since Algorithm 1 line 7
would not have applied for r), which would contradict our assumption that Lp[r] = 〈0, 1, 1, 1〉.

Given that a is labelled ¬L[a].d by one of the defended-cases of Algorithm 2, a /∈ K. Then there is a rule r for a
labelled Lp[r

′] = L0(a
′) = 〈0, 1, 1, 1〉 and there is no rule r′′ ∈ R that is labelled ¬L[r′′].u and ¬L[r′′].o by Lp or

L0. This means that case L-D-a must have applied: there is some a′ ∈ a in K. So by Lemma 5, each argument for a
in Arg(AT ) is attacked by an argument in G(AT ). Given that a is an antecedent of r, each argument based on r in
Arg(AT ) is attacked by an argument in G(AT ).
Induction hypothesis (P (k)): For each r ∈ R such that c{d,b}(r) ≤ k: if r is labelled ¬L[r].d and ¬L[r].b, then each
argument based on r ∈ Arg(AT ) is attacked by an argument in G(AT ).
Induction step (P (k + 1)): Let r be an arbitrary rule in R such that c{d,b}(r) = k + 1 and r is labelled ¬L[r].d and
¬L[r].b; then Lp[r] = 〈0, 1, 1, 1〉.

By Algorithm 3 case R-D-a and either R-B-a or R-B-b, there is an antecedent a of r that is labelled ¬L[a].d and
¬L[a].b and c{d,b}(a) ≤ k. We distinguish two cases:

• If there is some a′ ∈ a such that a′ ∈ K, then there is an observation-based argument for a′ in Arg(AT ), so by
Lemma 4, each argument for a in Arg(AT ) is attacked by an argument in G(AT ).

• Alternatively, each rule r′ for a is labelled ¬L[r′].d and ¬L[r′].b and c{d,b}(r
′) ≤ k: if L-D-c caused ¬L[a].d,

then by Lemma 6, a must have been labelled ¬L[a].b by case L-B-c; if, alternatively, L-D-b caused ¬L[a].d,
then either L-B-c or L-B-d caused ¬L[a].b.
Consider an arbitrary rule r′ for a. Either Lp[r

′] = 〈1, 0, 0, 0〉 or Lp[r
′] = 〈0, 1, 1, 1〉. If Lp[r

′] = 〈1, 0, 0, 0〉,
then by Lemma 2 there is no argument based on r′ in any Arg(AT ). If, alternatively, Lp[r

′] = 〈0, 1, 1, 1〉 (which
must be the case for at least one rule for a, since Lp[a] = 〈0, 1, 1, 1〉), we apply the induction hypothesis: each
argument based on r′ in Arg(AT ) is attacked by an argument in G(AT ). Since a /∈ K (by case L-D-b or L-D-c),
there are no observation-based arguments for a either, so: each argument for a in Arg(AT ) is attacked by
an argument in G(AT ).

By generalising r, we can now derive that for each rule r ∈ R such that c{d,b} ≤ k + 1: if r is labelled ¬L[r].d
and ¬L[r].b, then each argument based on r in Arg(AT ) is attacked by an argument in G(AT ). Finally, remember that
for each rule r ∈ R that is labelled ¬L[r].d and ¬L[r].b, c{d,b}(r) is finite (Definition 10). Therefore each argument
based on r in Arg(AT ) is attacked by an argument in G(AT ) for each r ∈ R that is labelled ¬L[r].d and
¬L[r].b.

Lemma 9 (Soundness unsatisfiable labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For
each l ∈ L: if L[l] = 〈1, 0, 0, 0〉 then l is unsatisfiable in AT .

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K. For each l ∈ L such that L[l] = 〈1, 0, 0, 0〉, the
fact that L[l].u implies that l was already labelled unsatisfiable in the preprocessing step: Lp[l] = 〈1, 0, 0, 0〉, so l is
unsatisfiable in AT (Lemma 2).

Lemma 10 (Soundness defended labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For
each literal l ∈ L: if L[l] = 〈0, 1, 0, 0〉 then l is defended in AT .

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K. We proceed by induction on c{u,o,b}(l).
Proposition (P (n)): For each l ∈ L such that c{u,o,b}(l) ≤ n: if L[l] = 〈0, 1, 0, 0〉 then l is defended in AT .
Base case (P (0)): Let l be an arbitrary literal in L such that c{u,o,b}(l) ≤ 0 and suppose that L[l] = 〈0, 1, 0, 0〉. Note
that this implies that Lp[l] = 〈0, 1, 1, 1〉. It follows that l must have been relabelled to 〈0, 1, 0, 0〉 by Algorithm 4
line 5. This implies that l ∈ K: if l /∈ K, then there is some rule r for l that is labelled Lp[r] = L0(r) = 〈0, 1, 1, 1〉
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(since Lp[l] = 〈0, 1, 1, 1〉) and there is no rule r′′ for l that is labelled ¬L[r′′].u and ¬L[r′′].o by Lp or L0, so none
of the out-cases of Algorithm 2 would apply. Given that l ∈ K, there is an observation-based argument for l in each
Arg(AT ) that cannot be attacked and therefore is in the grounded extension. Consequently, l is defended in AT .
Induction hypothesis (P (k)): For each l ∈ L such that c{u,o,b}(l) ≤ k: if L[l] = 〈0, 1, 0, 0〉 then l is defended in AT .
Induction step (P (k + 1)): Now consider an arbitrary literal l ∈ L such that c{u,o,b}(l) = k + 1 and suppose that
L[l] = 〈0, 1, 0, 0〉. If l ∈ K, then l would be labelled defended before the start of the while loop, which contradicts
our assumption that c{u,o,b}(l) = k + 1 for positive k. Consequently, l /∈ K.

Given that l /∈ K and Lp[l] = 〈0, 1, 1, 1〉, there is some rule r for l that was labelled Lp[r] = 〈0, 1, 1, 1〉 in the
preprocessing step, so ¬L[r].u. Then ¬L[r].o must have been caused by Algorithm 3 case L-O-b or L-O-c, but in both
cases (1) for each l′ ∈ l: l′ /∈ K and (2) there is a rule r for l labelled ¬L[r].u and ¬L[r].o. Then by Lemma 6, ¬L[r].b
must have been caused by case L-B-d or L-B-e, but in both cases (3) there is a rule r for l labelled L[r] = 〈0, 1, 0, 0〉
and (4) each rule r′ for some l′ ∈ l is labelled ¬L[r′].d and ¬L[r′].b. Then by (3) Lp[r] was 〈0, 1, 1, 1〉, which
means that for each a ∈ ants(r): Lp[a] = 〈0, 1, 1, 1〉. Furthermore, ¬L[r].o and ¬L[r].b must have been caused by
Algorithm 3 case R-O-a and R-B-a, so for each a ∈ ants(r): L[a] = 〈0, 1, 0, 0〉. By the induction hypothesis, there
is an argument in G(AT ) for each a ∈ ants(r), so by Lemma 4, there is an argument A based on r in Arg(AT ) such
that each argument B attacking A on a subargument in AT is attacked by an observation-based argument in G(AT ).

Finally recall (4): each rule r′ for some l′ ∈ l is labelled ¬L[r′].d and ¬L[r′].b. By Lemma 8, this implies that for
each rule r′ for some l′ ∈ l, each argument based on r′ in Arg(AT ) is attacked by an argument in G(AT ), hence each
argument attacking an argument for l on its conclusion in AT is attacked by an argument in G(AT ).

To summarize, there is some argument A (based on r, for l) in Arg(AT ) such that each argument in Arg(AT ) at-
tacking A (either on a subargument or on its conclusion l) is attacked by an argument in G(AT ). Then by Definitions 7
and 8, l is defended in AT . Since we chose l arbitrarily, this concludes the induction step.

At this point, we have shown that for each n ∈ N: for each l ∈ L: if c{u,o,b}(l) ≤ n and L[l] = 〈0, 1, 0, 0〉 then l is
defended in AT . Given that for each l ∈ L such that L[l] = 〈0, 1, 0, 0〉, c{u,o,b}(l) is finite (Definition 10), we derive:
for each l ∈ L: if L[l] = 〈0,1,0,0〉 then l is defended in AT .

Lemma 11 (Soundness out labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and
let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For each
l ∈ L: if L[l] = 〈0, 0, 1, 0〉 then l is out in AT .

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, andK. Suppose that l ∈ L is labelled L[l] = 〈0, 0, 1, 0〉
by JUSTIFICATION-LABEL (Algorithm 4). Then Lp[l] = 〈0, 1, 1, 1〉, so by Lemma 3 there is an argument for l in
Arg(AT ). Given that ¬L[l].d, l /∈ K, so there is a rule r for l that is labelled Lp[r] = 〈0, 1, 1, 1〉.

• If there is some l′ ∈ l such that l′ ∈ K; then each argument for l in Arg(AT ) is attacked by the observation-based
argument for l′. Hence, by Lemma 5, l is out in AT .

• Alternatively, for each rule r for l: ¬L[r].d and ¬L[r].b: if ¬L[l].d is caused by case L-D-b then this follows
from case L-B-c/L-B-d and Lemma 6; alternatively, it follows from case L-D-c and case L-B-c together with
Lemma 6. Now, by Lemma 8: each argument for l in Arg(AT ) is attacked by some argument in G(AT ).
Therefore, by Definition 8, l is out in AT .

Lemma 12 (Labelled not defended). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let
L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, andK. For each l ∈ L:
if l is labelled ¬L[l].d then there is no argument for l in G(AT ).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K.

For literals l ∈ L such that Lp[l] = 〈1, 0, 0, 0〉, there is no argument for l in Arg(AT ) by Lemma 2. For literals
l ∈ L such that Lp[l] = 〈0, 1, 1, 1〉, there is an argument for l in Arg(AT ). Given that ¬L[l].d, l /∈ K, so there must
be a rule-based argument for l in Arg(AT ): there is some rule r for l such that Lp[r] = 〈0, 1, 1, 1〉 (Lemma 2). We
proceed by induction on c{d}(l).
Proposition (P (n)): For each l ∈ L such that c{d}(l) ≤ n: if l is labelled ¬L[l].d and Lp[l] = 〈0, 1, 1, 1〉, then there
is no argument for l in G(AT ).
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Base case (P (0)): Let l be an arbitrary literal from L such that c{d}(l) ≤ 0. At that point, there is a rule r for l that
is labelled Lp[r] = L0(r) = 〈0, 1, 1, 1〉 and there is no rule r′′ ∈ R that is labelled ¬L[r′′].u and ¬L[r′′].o by Lp or
L0. This implies that ¬L[l].d must have been caused by Algorithm 2 L-D-a: there is some l′ ∈ l such that l′ ∈ K.
This means that there is an observation-based argument for l′ in Arg(AT ) which, by Definitions 5 and 7, is in G(AT ).
Consequently, there is no argument for l in G(AT ).
Induction hypothesis (P (k)): For each l ∈ L such that c{d}(l) ≤ k: if l is labelled ¬L[l].d and Lp[l] = 〈0, 1, 1, 1〉,
then there is no argument for l in G(AT ).
Induction step: Let l be an arbitrary literal in L such that c{d}(l) = k + 1 and Lp[l] = 〈0, 1, 1, 1〉. Then there is no
l′ ∈ l in K: that would imply that c{d}(l) = 0, which contradicts our assumption that c{d}(l) = k + 1 for positive k.

Then ¬L[l].d must have been caused by case L-D-b or L-D-c. Next, we consider these two cases:

• Suppose that each rule r for l is labelled ¬L[r].d (L-D-b is applied). Then, by R-D-a, each rule r for l has some
a ∈ ants(r) with ¬L[a].d and c{d}(a) ≤ k. By the induction hypothesis, there is no argument for a in the
grounded extension G(AT ). As a result, each argument for a would be attacked by some argument that is not
attacked by any argument in G(AT ), which implies that each argument based on r would be attacked by some
argument that is not attacked by any argument in G(AT ). Consequently, there is no argument based on any rule
for l in G(AT ). Furthermore, the fact that l /∈ K implies that there is no observation-based argument either, so
there is no argument for l in G(AT ).

• Now suppose that there is a rule r for l that is labelled L[r].d (L-D-c is applied). Then there is some l′ ∈ l such
that there is a rule r′ for l′ with ¬L[r′].u and ¬L[r′].o. By Lemma 7, there exists an argument for l′ based on r′

that is not attacked by any argument in G(AT ). So no argument for l is in G(AT ).

At this point, we have shown for each non-negative integer n ∈ N: for each l ∈ L such that c{d}(l) ≤ k: if l is
labelled ¬L[l].d, then there is no argument for l in G(AT ). Given that for each l ∈ L such that l is labelled ¬L[l].d:
c{d}(l) is finite, we derive: for each l ∈ L that is labelled¬L[l].d, then there is no argument for l in G(AT ).

Lemma 13 (Soundness blocked labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For
each l ∈ L: if L[l] = 〈0, 0, 0, 1〉 then l is blocked in AT .

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. Let l ∈ L be an arbitrary literal that is labelled
L[l] = 〈0, 0, 0, 1〉 by JUSTIFICATION-LABEL (Algorithm 4). Note that this implies that Lp[l] = 〈0, 1, 1, 1〉, so the fact
that l is labelled ¬L[l].u, ¬L[l].d and ¬L[l].o must have been caused by Algorithm 4, based on Algorithm 2.

The fact that l is labelled L[l].b, although l is considered for labelling by Algorithm 2, implies that l /∈ K (case
L-B-a did not apply). Then fact that Lp[l] = 〈0, 1, 1, 1〉 must have been caused by some rule r for l such that
Lp[r] = 〈0, 1, 1, 1〉, so ¬L[r].u The fact that l is labelled ¬L[l].o must be caused by either L-O-b or L-O-c. In both
cases, there is a rule r for l that is labelled ¬L[r].u and ¬L[r].o. By Lemma 7, there is an argument based on r in
Arg(AT ) that is not attacked by an argument in G(AT ). Furthermore, the fact that l is labelled ¬L[l].d implies that
there is no argument for l in G(AT ) (Lemma 12). To conclude, l is blocked in AT (Definition 8).

3.3.4 Completeness of the algorithm

In this section, we will prove that JUSTIFICATION-LABEL is sound. As we have shown in the proof sketch of Propo-
sition 3, this requires proving Lemmas 14–20.

Lemma 14 (Completeness unsatisfiable labelling). Let AT = (AS,K) be an argumentation theory where AS =
(L,R, ) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and
K. Each literal l ∈ L that is unsatisfiable in AT is labelled L[l] = 〈1, 0, 0, 0〉.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K. Each literal l ∈ L that is unsatisfiable in AT is
labelled Lp[l] = 〈1, 0, 0, 0〉 by Lemma 3, which by Lemma 6 implies that L[l] = 〈1, 0, 0, 0〉.
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Lemma 15 (Labelled not unsatisfiable or out). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. For
each r ∈ R: if there is an argument based on r in Arg(AT ) that is not attacked on a subargument by any argument in
G(AT ) then r is labelled ¬L[r].u and ¬L[r].o.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. We proceed by induction on the height of
arguments based on a rule.
Proposition (P (n)): If there is an argument A based on r in Arg(AT ) with h(A) ≤ n that is not attacked on a
subargument by any argument in G(AT ) then r is labelled ¬L[r].u and ¬L[r].o.
Base case (P (0)): Suppose that there is an argument A based on r in Arg(AT ) such that h(A) ≤ 1. Then by Lemma 2,
Lp[r] = 〈0, 1, 1, 1〉, so ¬L[r].u. Furthermore, for each a ∈ ants(r): a ∈ K, so a is relabelled in Algorithm 4 line 5
as ¬L[l].o by Algorithm 2 case L-O-a. Subsequently, r is added to TODO-SET and, when popped, relabelled in line 9
as ¬L[r].o by case R-O-a.
Induction hypothesis (P (k)): If there is an argument A based on r in Arg(AT ) with h(A) ≤ k that is not attacked on
a subargument by any argument in G(AT ) then r is labelled ¬L[r].u and ¬L[r].o.
Induction step (P (k+ 1)): Now suppose that there is an argument A based on r in Arg(AT ) with h(A) = k+ 1 that
is not attacked on a subargument by any argument in G(AT ). Then ¬L[r].u by Lemma 2.

Furthermore, for each antecedent a ∈ ants(r), there is an argument Ai for a in Arg(AT ), such that Ai is not
attacked by any observation-based argument in Arg(AT ) and h(Ai) ≤ k.

• If there is an observation-based argument for a in Arg(AT ), then a ∈ K, which means that a relabelled in
Algorithm 4 as ¬L[l].o by case L-O-a;

• Alternatively, there is a rule-based argument A′ for a based on some rule r′ for a in Arg(AT ) with h(A′) ≤ k
that is not attacked (1) on a subargument or (2) on its conclusion. By the induction hypothesis and (1), some
rule r′ for a is labelled ¬L[r′].u and ¬L[r′].o. By (2), no a′ ∈ a can be in K. The label ¬L[r′].o must have
been assigned in Algorithm 4 line 9, after which a is considered for relabelling in line 11 and labelled ¬L[a].o
by case L-O-c.

After relabelling the last antecedent a ∈ ants(r) as ¬L[a].u and ¬L[a].o, r is added to TODO-SET (line 6/13) and
considered for relabelling in line 9 of a later iteration of the while loop, where it is labelled ¬L[r].o by case R-O-a.

We have proved P (n) for each n ∈ N. Since each argument has a finite height, this concludes the proof.

Lemma 16 (Labelled not defended or blocked). Let AT = (AS,K) be an argumentation theory where AS =
(L,R, ) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) and Lp be the
labelling obtained by PREPROCESS (Algorithm 1) on L, R, and K. If each argument based on r ∈ R in Arg(AT )
is attacked by an argument in G(AT ) then r is labelled ¬L[r].d and ¬L[r].b.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) Let AT = (AS,K) be an argumen-
tation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL
(Algorithm 4) and Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, and K. We proceed by
induction on the height of arguments.
Proposition (P (n)): For each r ∈ R: if each argument A based on r in Arg(AT ) has h(A) ≤ n and is attacked on a
subargument by some argument in G(AT ) then r is labelled ¬L[r].d and ¬L[r].b.
Base case (P (2)): Let r ∈ R be an arbitrary rule such that argument A based on r in Arg(AT ) has h(A) ≤ 2 and is
attacked on a subargument by some argument in G(AT ).

Note that there is no argument A based on r in Arg(AT ) such that h(A) = 1: if such an argument would exist,
each of r’s antecedents would be in K, which means that it cannot be attacked by an observation-based argument in
Arg(AT ), hence cannot be attacked by an argument in G(AT ) (Lemma 5).

This implies that there is a rule-based argument for each of the antecedents of r in Arg(AT ). Furthermore, there
is at least one a ∈ ants(r) such that each argument for a is attacked by an argument in G(AT ) (otherwise we could
reconstruct an argument based on r that is not attacked by any argument in G(AT ) on a subargument). Given that
h(A) = 2, each argument A′ for a has h(A′) ≤ 1, so by Lemma 5, A′ cannot be attacked on a subargument by an
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argument in G(AT ). Consequently, it must be attacked on its conclusion: some a′ ∈ a must be in K. Then a is
considered for relabelling in Algorithm 4 line 5 and labelled ¬L[a].d and ¬L[a].b by case L-D-a and L-B-b. After
this, r is added to TODO-SET and considered for relabelling in a later iteration of line 9, where it is labelled ¬L[r].d
and ¬L[r].b by case R-D-a and R-B-b.
Induction hypothesis (P (k)): For each r ∈ R: if each argument A based on r in Arg(AT ) has h(A) ≤ k and is
attacked on a subargument by some argument in G(AT ) then r is labelled ¬L[r].d and ¬L[r].b.
Induction step (P (k + 1)): Now let r ∈ R be an arbitrary rule such that each argument A for l has h(A) ≤ k + 1
and is attacked on a subargument by some argument in G(AT ). Then there is at least one a ∈ ants(r) such that
each argument for a in Arg(AT ) is attacked by an argument in G(AT ) (otherwise we could reconstruct an argument
based on r that is not attacked by any argument in G(AT ) on a subargument). By Lemma 5, each argument for a in
Arg(AT ) is attacked by an observation-based argument in Arg(AT ).

• If this is an attack on its conclusion, then some a′ ∈ a is in K, which would imply that a is considered for
relabelling in Algorithm 4 line 5 and labelled ¬L[a].d and ¬L[a].b by case L-D-a and L-B-b.

• Alternatively, a /∈ K and for each rule r′ for a, each argument A′ based on r′ in Arg(AT ) has h(A′) ≤ k and is
attacked on a subargument by some argument in G(AT ). Then by the induction hypothesis, each rule r′ for a is
labelled ¬L[r′].d and ¬L[r′].b. This must have happened in Algorithm 4 line 9, after which a was reconsidered
for relabelling in line 11 and labelled ¬L[a].d and ¬L[a].b by Algorithm 2 case L-D-b and L-B-c.

After relabelling a in line 5 or 11, r is added to TODO-SET in line 6 or 13. In a later iteration of the while loop, it will
be popped and relabelled in line 9 as ¬L[r].d and ¬L[r].b by case R-D-a and R-B-b. Since each argument (based on
r) has finite height, this concludes our proof.

Lemma 17 (Completeness defended labelling). Let AT = (AS,K) be an argumentation theory where AS =
(L,R, ) and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R,
and K. Each literal l ∈ L that is defended in AT is labelled L[l] = 〈0, 1, 0, 0〉.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K. We proceed by induction.
Proposition (P (n)): For each l ∈ L for which there is an argument A ∈ G(AT ) with h(A) ≤ n, L[l] = 〈0, 1, 0, 0〉.
Base case (P (0)): For each l ∈ L for which there is an argument A ∈ G(AT ) with h(A) ≤ 0, l ∈ K. By Lemma 2,
Lp[l] = 〈0, 1, 1, 1〉. After preprocessing, l is labelled in Algorithm 4 line 5 as L[l] = 〈0, 1, 0, 0〉 by Algorithm 2 case
L-O-a and L-B-a.
Induction hypothesis (P (k)): For each l ∈ L for which there is an argument A ∈ G(AT ) with h(A) ≤ k, L[l] =
〈0, 1, 0, 0〉.
Induction step (P (k + 1)): Let l ∈ L be an arbitrary literal such that there is an argument A ∈ G(AT ) with
h(A) ≤ k + 1. Then l is labelled Lp[l] = 〈0, 1, 1, 1〉 in preprocessing by Lemma 2.

If l ∈ K, then l is labelled in Algorithm 4 line 5 as L[l] = 〈0, 1, 0, 0〉 by Algorithm 2 case L-O-a and L-B-a.
Alternatively, A must be rule-based; let r = top-rule(A). By Lemma 2, Lp[r] = 〈0, 1, 1, 1〉. By Lemma 4,

the fact that A ∈ G(AT ) implies that each argument attacking A is attacked by an observation-based argument in
Arg(AT ). So for each A′ ∈ dirsub(A): each argument attacking A′ is attacked by an observation-based argument
in Arg(AT ) (hence A′ ∈ G(AT )) and h(A′) ≤ k. Then by the induction hypothesis, each a ∈ ants(r) is labelled
L[a] = 〈0, 1, 0, 0〉. This must have happened in Algorithm 4 line 5, 11 or 15; in any case, r is added to TODO-SET
afterwards (in line 6, 13 or 17). In a later iteration of the while loop, r is popped from TODO-SET and labelled
L[r] = 〈0, 1, 0, 0〉 by Algorithm 3 case R-O-a and R-B-a.

Given that each argument attacking A is attacked by an observation-based argument in Arg(AT ), no l′ ∈ l can be
in K (since K is consistent) and each argument based on some rule r′ for some l′ ∈ l must be attacked by an argument
in G(AT ). Then by Lemma 16 each rule r′ for each l′ ∈ l is labelled ¬L[r′].d and ¬L[r′].b.

After labelling one rule r for l as L[r] = 〈0, 1, 0, 0〉 and all rules r′ for all l′ ∈ l as ¬L[r′].d and ¬L[r′].b, l is
considered for relabelling in either line 11 or 15. At that point, l is labelled L[l] = 〈0, 1, 0, 0〉 by case L-O-c and
L-B-e.

At this point, we have proved P (n) for each non-negative integer n ∈ N. Finally, note that each argument has a
finite height, which concludes our proof.
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Lemma 18 (Completeness out labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and
let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K. Each literal
l ∈ L that is out in AT is labelled L[l] = 〈0, 0, 1, 0〉.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. Let l ∈ L be an arbitrary literal that is out in
AT : there is an argument for l in Arg(AT ) but each argument is attacked by an argument in the grounded extension.
Given that each argument for l is attacked, l /∈ K, so there must be a rule-based argument for l based on some r ∈ R.
By Lemma 2, Lp[r] = 〈0, 1, 1, 1〉.

• If some l′ ∈ l is in K, then l is relabelled in Algorithm 4 line 5 as L[l] = 〈0, 0, 1, 0〉 by Algorithm 2 case L-D-a
and L-B-b.

• Alternatively, l /∈ K and for each rule r for l, each argument based on r in Arg(AT ) is attacked by an argument
in G(AT ). Then by Lemma 16, each rule r for l is labelled ¬L[r].d and ¬L[r].b. This must have happened in
Algorithm 4 line 9, after which l is relabelled in line 11 as L[l] = 〈0, 0, 1, 0〉 by case L-D-b and R-B-b.

Lemma 19 (Labelled not defended). Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let
L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, andK. For each l ∈ L:
if there is no argument for l in G(AT ) then l is labelled ¬L[l].d.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L,R, and K.

For each l ∈ L such that there is no argument for l at all in Arg(AT ), l is labelled Lp[l] = L[l] = 〈1, 0, 0, 0〉
(hence ¬L[l].d) by Lemma 3.

Alternatively, suppose that there is an argument for l in Arg(AT ): Lp[l] = 〈0, 1, 1, 1〉. However, no argument for
l is in G(AT ), so by Lemma 4, each argument for l in Arg(AT ) is attacked by an argument that is not attacked by an
observation-based argument. We proceed by induction on the height of arguments.
Proposition (P (n)): For each l ∈ L: if there is an argument for l in Arg(AT ), but each argument A for l has a height
h(A) ≤ n and is attacked by an argument in Arg(AT ) that is not attacked by any observation-based argument in
Arg(AT ), then l is labelled ¬L[l].d.
Base case (P (1)): Let l be an arbitrary literal in L such that there is an argument for l in Arg(AT ), but each argument
A for l has a height h(A) ≤ 1 and is attacked by an argument in Arg(AT ) that is not attacked by any observation-based
argument in Arg(AT ). Note that there is no observation-based argument for l (l /∈ K), since these cannot be attacked.
There must hence be some rule-based argument that is attacked on its conclusion by an argument for some l′ ∈ l. If
this argument is rule-based, then l′ ∈ K, l is considered for relabelling in Algorithm 4 line 9 and labelled ¬L[l].d by
Algorithm 2 case L-D-a. Alternatively, the argument for l′ is rule-based: there is some rule r′ for l′ inR such that there
is an argument based on r′ that is not attacked by an observation-based argument. Then by Lemma 15, r′ is labelled
¬L[r′].u and ¬L[r′].o. This must have happened in Algorithm 4 line 9, after which l is considered for relabelling in
line 11 and labelled ¬L[l].d by Algorithm 2 case L-D-c.
Induction hypothesis (P (k)): For each l ∈ L: if there is an argument for l in Arg(AT ), but each argument A for l has
a height h(A) ≤ k and is attacked by an argument in Arg(AT ) that is not attacked by any observation-based argument
in Arg(AT ), then l is labelled ¬L[l].d.
Induction step (P (k+1)): Let l ∈ L be an arbitrary literal such that each argument A for l has a height h(A) ≤ k+1
and is attacked by an argument in Arg(AT ) that is not attacked by any observation-based argument in Arg(AT ).

• If there is some l′ ∈ l for which there is an argument in Arg(AT ) that is not-attacked by an observation-based
argument, then l is labelled ¬L[l].d by L-D-a or L-D-c (see base case).

• Alternatively, l /∈ K and each rule-based argument for l in Arg(AT ) is attacked on a subargument by some
argument that is not attacked by an argument that is not attacked by an observation-based argument. So for each
rule r for l in R, there must be some antecedent a ∈ ants(r) such that each argument A′ for a has a height
h(A) ≤ k and is attacked by an argument in Arg(AT ) that is not attacked by any observation-based argument
in Arg(AT ). By the induction hypothesis, a is labelled ¬L[a].d; this must have happened in Algorithm 4 line 5,
11 or 15; in any case, r is added to TODO-SET afterwards (in line 6, 13 or 17). When popped from TODO-SET,
r is relabelled in line 9 as ¬L[r].d by case R-D-a. After all rules for l have been relabelled, l is labelled ¬L[l].d
in line 11 by case L-D-b.
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Lemma 20 (Completeness blocked labelling). Let AT = (AS,K) be an argumentation theory where AS = (L,R, )
and let L = 〈u, d, o, b〉 be the labelling obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. Each
l ∈ L that is blocked in AT is labelled L[l] = 〈0, 0, 0, 1〉.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R, ) and let L = 〈u, d, o, b〉 be the labelling
obtained by JUSTIFICATION-LABEL (Algorithm 4) on L, R, and K. Let l ∈ L be an arbitrary literal that is blocked
in AT . There is an A argument for l in Arg(AT ) not in G(AT ) (so l /∈ K), but not attacked by an argument in
G(AT ) either. Then A is based on some rule r, no l′ ∈ l is in K and r is not attacked by an argument in G(AT ).
By Lemma 15, r is labelled ¬L[r].u and ¬L[r].o. This must have happened in Algorithm 4 line 9, after which l is
considered for relabelling in line 11 and labelled ¬L[l].o by case L-O-c. In addition, l is labelled ¬L[l].d because there
is no argument for l in G(AT ) (Lemma 19). To conclude, L[l] = 〈0, 0, 0, 1〉.
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