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PATHOGENESIS-RELATED PROTEINS

ASSOCIATED WITH PLANT DEFENSE

In incompatible host-pathogen interactions, damage

caused by the pathogen remains restricted as a result of

the plant’s defensive response. Most effective is the

hypersensitive reaction, in which the cells around the

infection site rapidly necrose. This response is associated

with a coordinated and integrated set of metabolic

alterations that are instrumental in impeding further

pathogen ingress, as well as in enhancing the capacity of

the host to limit subsequent infection by different types of

pathogens [27, 77]. Altered ion fluxes across the plant cell

membrane, generation of active oxygen species, changes

in the phosphorylation state of regulatory proteins and

transcriptional activation of plant defense systems cul-

minate in cell death at the site of infection, local

accumulation of phytoalexins and cell wall rigidification

as a result of callose, lignin and suberin deposition [31, 89].

In addition, various novel proteins are induced which are

collectively referred to as ‘‘pathogenesis-related proteins ’’

(PRs). These PRs, defined as proteins coded for by the

host plant but induced specifically in pathological or

related situations [4, 81], do not only accumulate locally

in the infected leaf, but are also induced systemically,

associated with the development of systemic acquired

resistance (SAR) against further infection by fungi,

bacteria and viruses. Induction of PRs has been found in

many plant species belonging to various families [78],

suggestive of a general role for these proteins in adaptation

to biotic stress conditions. SAR, likewise, is a generally

occurring phenomenon, that engenders an enhancement

of the defensive capacity of plants in response to
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necrotizing infections [70]. Since some of the tobacco PRs

were identified as chitinases [45] and β-1,3-glucanases

[38] with potential antifungal activity, it has often been

suggested that the collective set of PRs may be effective in

inhibiting pathogen growth, multiplication and}or

spread, and be responsible for the state of SAR [42, 65].

Originally, five main classes of PRs (PR-1–5) were

characterized by both biochemical and molecular-bio-

logical techniques in tobacco [9, 80]. Thereupon, in 1994

a unifying nomenclature for PRs was proposed based on

their grouping into families sharing amino acid sequences,

serological relationship, and}or enzymatic or biological

activity. By then 11 families (PR-1–11) were recognized

and classified for tobacco and tomato [81] (cf. Table 1).

Criteria used for the inclusion of new families of PRs were

that (i) protein(s) must be induced by a pathogen in

tissues that do not normally express the protein(s), and

(ii) induced expression must have been shown to occur in

at least two different plant-pathogen combinations, or

expression in a single plant-pathogen combination must

have been confirmed independently in different labora-

tories.

Individual family members are named by lower case

letters in the order in which they are described. In the

literature, besides proteins, newly defined mRNAs

(cDNAs) are often considered as additional members of

the existing families when shown to be induced by

pathogens or specific elicitors. However, because PRs are

generally defined by their occurrence as protein bands on

gels, and classified within each family once the protein has

been characterized, cDNA or genomic sequences without

information on the corresponding protein cannot be fitted

into the adopted nomenclature. Thus, for naming, it is

necessary to gather information at both the nucleic acid

and the protein level when dealing with a stress-related

sequence falling within the definition of PRs. Conversely,

homologies at the cDNA or genomic level may be

encountered without information on the expression or
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T 1. The families of pathogenesis-related proteinsa

Family Type member Properties Gene symbols

PR-1 Tobacco PR-1a unknown Ypr1
PR-2 Tobacco PR-2 β-1,3-glucanase Ypr2, [Gns2 (‘Glb ’)]
PR-3 Tobacco P, Q chitinase type I, II Ypr3, Chia

IV, V, VI, VII
PR-4 Tobacco ‘R’ chitinase type I, II Ypr4, Chid
PR-5 Tobacco S thaumatin-like Ypr5
PR-6 Tomato Inhibitor I proteinase-inhibitor Ypr6, Pis (‘Pin ’)
PR-7 Tomato P

'*
endoproteinase Ypr7

PR-8 Cucumber chitinase chitinase type III Ypr8, Chib
PR-9 Tobacco ‘ lignin-forming peroxidase’ peroxidase Ypr9, Prx
PR-10 Parsley ‘PR1’ ‘ribonuclease-like ’ Ypr10
PR-11 Tobacco class V chitinase chitinase, type I Ypr11, Chic
PR-12 Radish Rs-AFP3 defensin Ypr12
PR-13 Arabidopsis THI2.1 thionin Ypr13, Thi
PR-14 Barley LTP4 lipid-transfer protein Ypr14, Ltp

a For references to PR-1 to -11 see [81], for PR-12 [74], for PR-13 [20], and for PR-14 [25].

characteristics of the encoded protein. Such sequences

obviously belong to the PR-type families, but cannot (yet)

be considered to correspond to pathogen-induced PRs

and named accordingly. In several situations it is difficult

to distinguish PRs from related proteins}mRNAs that are

present in some organs or appear during specific de-

velopmental stages. Homologous proteins}mRNAs in

healthy tissues in which no induction by pathogen

infection has (yet) been demonstrated, are to be termed

PR-like proteins (PRLs) [81].

Although PRs are most common in hypersensitive

responses and appear to contribute to SAR, their

definition excludes a necessary role in resistance. Findings

that an induced systemic resistance (ISR), phenotypically

similar to SAR, can be induced by non-pathogenic

rhizobacteria have considerably modified our views on

the relationships between necrotic lesion formation, PRs

and SAR. Not only is ISR induced in the absence of any

symptoms in plants treated with these rhizobacteria but,

unlike SAR, induction of this type of resistance is

independent of the production of salicylic acid (SA) by

the plant and is not associated with the accumulation of

PRs [61, 82]. This implies that plants, when appropriately

stimulated, are able to substantially enhance their

defensive capacity in either an SA-dependent or SA-

independent manner, both leading to an increased

protection against various types of pathogens [60]. SA has

been taken to be the signal in potentiating defense

responses during SAR [65, 68]. This mechanism does not

operate in SA-independent ISR. Up to now no defense-

related compounds responsible for ISR have been

identified and the mechanism involved remains to be

clarified. However, at least in Arabidopsis, ISR requires

perception of both jasmonic acid (JA) and ethylene by the

plant [62]. Rhizobacterially-mediated ISR in Arabidopsis

shares with SAR the dependence on the functioning of the

npr1 gene. The latter, in turn, distinguishes ISR from the

JA- and ethylene-dependent inducible defense response

pathway effective against Alternaria brassicicola, which is

independent of npr1 [58]. Thus, at least three types of

microbially-induced resistance, characterized by different

signalling pathways, appear to exist in plants.

The level of protection afforded by ISR is usually less

than that attainable during SAR [62, 77], in agreement

with findings that pathogen-induced hypersensitive

necrosis contributes to the level of resistance achieved

[14]. The association of PRs with SAR, but not with ISR,

has led to the hypothesis that accumulation of PRs is not

a prerequisite for the induction of resistance, but that PRs

contribute to the protective state [77]. Indeed, the different

signalling pathways of SAR and ISR converging at the

level of npr1 appear complementary: higher levels of

protection are achieved by combining induction by a

necrotizing pathogen on the leaves and a non-pathogenic

rhizobacterium on the roots, without SAR-associated PR-

gene expression being stimulated [83]. SAR is dependent

on the accumulation of SA, but not JA or ethylene. ISR

requires perception of JA and ethylene but is not associated

with significant increases in the levels of these regulatory

compounds. In contrast, the JA- and ethylene-dependent

pathway induced by, and effective against, A. brassicicola

involves increases in SA, JA and ethylene. It appears that

only when increases in the levels of any of these signals

occur, PRs become detectable in the infected plants. The

observations indicate that individual PRs are induced to

various extents by these different signals. Consequently,

the mixture of signals released or produced upon microbial

stimulation appears to determine the magnitude of the

plant’s response and its effectiveness to inhibit further

infection.
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Recent evidence indicates that in Arabidopsis SA-

dependent expression of PR-1, PR-2 and PR-5 is required

for increased protection against the biotrophic fungus

Peronospora parasitica, whereas SA-independent but JA-

dependent induction of the plant defensin gene pdf1±2, as

well as of PR-3 and PR-4, is associated with the induced

resistance against the necrotrophic fungi A. brassicicola

[58], Botrytis cinerea [75] and Fusarium oxysporum f.sp.

matthiolae (Fom) [8]. Moreover, overexpression of the JA-

inducible thionin gene thi2±1 increased SA-independent

resistance against Fom [21, 22]. These results suggest

that the SA- and JA-dependent defense pathways in

Arabidopsis contribute to resistance against distinct

microbial pathogens. As a result, PRs and similarly

induced antimicrobial proteins appear to contribute

differentially to the induced resistance against different

pathogens. This can explain why in PR-overexpressing

transgenic plants only some of these proteins are effective

in reducing infection by only some selected fungi and

bacteria [77].

CURRENT STATUS OF THE FAMILIES OF

PATHOGENESIS-RELATED PROTEINS

PDF1±2 is a member of the group of plant defensins, which

together with the thionins, lipid transfer proteins (LPTs),

hevein-type, knottin-type and Impatiens antimicrobial

peptides are families of peptides with antimicrobial

activities that are present in many, and perhaps all, plant

species [10]. In a number of plant species, a strong

induction of genes encoding either thionins, plant defensins

or LPTs has been observed upon infection of the leaves by

pathogens. Hence, at least some of these antimicrobial

peptides must be considered PRs and can also take part in

the inducible defense response of plants. Therefore,

following discussion at the 5th International Workshop on

Pathogenesis-related Proteins in Plants, held in 1998 at

Aussois, France, we now wish to propose inclusion of three

additional families of PRs. These comprise the pathogen-

induced plant defensins (PR-12), thionins (PR-13) and

LTPs (PR-14) (Table 1).

Within each PR-family a type member has been

defined, the nucleotide sequence of the mRNA of which

may be used in the search for homologues in the same or

in different plant species. The type member of PR-12 is

Rs-AFP3 from radish, shown to be induced upon infection

with A. brassicicola [74]. THI2±1, highly inducible in

Arabidopsis seedlings by Fom [20], constitutes the type

member of PR-13. The situation for the LTPs is somewhat

less unequivocal. Several LTP genes in barley are

upregulated in response to infection by Erysiphe graminis or

Rhynchosporium secalis [25, 51]. LTPs are present in relatively

high concentrations in vascular tissue and in the outer cell

layers of the expressed surface of the plant, and share with

defensins and thionins their ability to inhibit bacterial and

fungal pathogens. However, LTPs appear to be regulated

differently in that their expression is reduced upon

treatment with MeJA. From barley, four LTPs have been

purified to homogeneity and characterized [52]. Of these,

LTP4 (cw21) is induced at the mRNA level to the same

extent as barley PR-1 upon fungal infection [25]. Although

protein levels were not quantified under these conditions,

the situation appears sufficiently similar to that of other

PR-proteins to include LTPs as PR-14, with the tentative

designation of barley LTP4 as the type member. Two

members of a novel family from barley, which are

similarly induced by E. graminis and have benzo-

thiadiazole-inducible homologs in wheat [15], may qualify

for future addition as PR-15 when more details become

available.

For the majority of the PR families, activities are

known or can be inferred [42, 46]. Thus, the PR-2 family

consists of endo-β-1,3-glucanases, and PR-3, -4, -8 and

-11 are all classified as endochitinases, even though their

specific activities on colloidal chitin vary over 100-fold

[12]. A different way of distinguishing these types of

chitinases is by class, based on their different specific

activities on a range of substrates, with class III (PR-8)

basic isoforms possessing substantial lysozyme activity.

Substrate preferences of ten tobacco chitinases purified to

homogeneity from tobacco leaves reacting hyper-

sensitively to tobacco mosaic virus (TMV) and belonging

to five distinct structural classes, were suggested to

represent complementary enzymes which may have

synergistic effects on their substrates [12]. Several

glucanases and chitinases have been shown to have

antifungal properties, although these appear to be

restricted to certain fungi [42].

PR-6 are proteinase inhibitors implicated in defense

against insects and other herbivores, micro-organisms, and

nematodes [41, 64]. PR-7 has so far been characterized

only in tomato, where it is a major PR and acts as an

endoproteinase. Because lysis of fungal cell walls often

requires degradation of cell wall proteins in addition to

hydrolysis of chitin and glucan [26, 32], it seems reasonable

to assume that PR-7 serves as an accessory to antifungal

action. The PR-9 family of peroxidases is likely to

function in strengthening plant cell walls by catalyzing

lignin deposition in reaction to microbial attack. The PR-

5 family belongs to the thaumatin-like proteins with

homology to permatins, that permeabilize fungal mem-

branes [84]. Some members of this family have been

shown to possess antifungal activity, particularly against

oomycetes. Recently, a 22 kDa potato PR-5 was shown to

bind actin together with a 32 kDa basic chitinase, and it

was suggested that the actin-binding complex might

be involved in cytoplasmic aggregation, thereby parti-

cipating in the potato cell’s defense against Phytophthora

infestans [73].

The PR-10 family is structurally related to ribonucleases
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[50] and although it is tempting to suppose that these

intracellular PRs may be active against viruses, a

capability to cleave viral RNA remains to be dem-

onstrated. The PR-12 type defensins, PR-13 type thionins

and PR-14 type LTPs all exhibit antifungal and anti-

bacterial activity, exerting their effect at the level of the

plasma membrane of the target micro-organism [7, 10,

25]. The only PR family for which no function or

relationship is known, consists of the PR-1 proteins.

Specific members of the tobacco and tomato PR-1 families

have antifungal activity against oomycete fungi, but their

mechanism of action is not known. Alexander et al. [1]

provided indirect evidence by showing that transgenic

tobacco plants which constitutively expressed the PR-1a

gene exhibited increased tolerance to Phytophthora parasitica

var. nicotianae and Peronospora tabacina. Direct antifungal

activity of tomato PR-1 was demonstrated by Niderman

et al. [56], both in �itro as an inhibition of germination of

P. infestans zoospores, and in �i�o as a reduction in the

surface area of leaf discs infected with this fungus.

Differential activity was found between the acidic tobacco

PR-1a and -1b and the basic tomato PR-1c and tobacco

PR-1g proteins, with the basic proteins having the highest

antifungal activities.

Not all families of PRs have been identified in each

plant species examined. In tobacco for example, no PR-7,

-10, -12, -13 and -14 are known, suggesting that plant

species differ in the types of PRs present or, at least,

expressed upon infection. Yet, members of several families

of PRs have been described for Arabidopsis, barley, bean,

maize, potato, tobacco and tomato [81, and in prep-

aration]. In tobacco, the major PRs are acidic, located

extracellularly, and coordinately expressed upon infection,

whereas basic vacuolar counterparts with different stress

expression patterns are also present in healthy plants

where their expression is temporally and spatially con-

trolled in a cell-type and organ-dependent manner. The

presence of PR-type proteins in healthy plant tissues, such

as glucanases and chitinases in dicotyledons and thio-

nins and LTPs in monocotyledons, appears to be fairly

common.

The occurrence of homologous PRs as small multigene

families in various species belonging to different plant

families, their tissue-specific expression during devel-

opment and consistent localization in the apoplast as well

as in the vacuolar compartment, and their differential

induction by endogenous and exogenous signalling com-

pounds, suggest that PRs have important functions

extending beyond a role in adaptation to biotic stress

conditions. Indeed, the basic tobacco glucanase PR-2d

functions developmentally in seed germination by

weakening the endosperm, thus allowing the radicle to

protrude [85]. Chitinases homologous to PR-3 and PR-4

act as morphogenetic factors in carrot somatic embryo-

genesis [16, 43]. Several PRs are expressed in cultured cells

[6, 72] or upon the transition of plants to flowering [e.g.

55], also suggestive of a developmental role. PR-2-like,

PR-3-like and PR-5-like proteins accumulate in the

apoplast of winter rye tissues during cold acclimation and

exhibit antifreeze activity [3]. Basic PR-5 proteins

(osmotin) are induced in e.g. tobacco and tomato in

response to osmotic stress [69]. PR-10 proteins are

homologous to a large family of food and tree pollen

allergens from both monocotyledonous and dicotyledon-

ous plant species [86].

Some PRLs contain a PR-type sequence as part of a

longer protein. Thus, the tobacco stigma- and style-

specific glucanases Sp41a and Sp41b [57] and a 39 kDa

thaumatin-like protein that is secreted from stigmas [44]

both contain a C-terminal glycosylated extension with

affinity for concanavalin A, suggestive of a role in

carbohydrate-mediated cell signalling. From Arabidopsis,

a gene encoding a PR-type receptor protein kinase

(PR5K) was isolated comprising an extracellular domain

related to the PR-5 proteins, a central transmembrane-

spanning domain, and a functional intracellular serine}
threonine protein kinase domain. Infection with turnip

crinckle virus or treatment with SA induced PR-5 but not

PR5K. It was suggested that the PR-5 domain might bind

a polypeptide ligand, raising the possibility that authentic

PR-5 proteins may also interact with polypeptides [87]. A

similar receptor-like kinase (CHRK1) containing a class

V chitinase-related domain in its N-terminus, was

identified in a cDNA library from tobacco flowers.

CHRK1 mRNA was induced by TMV but the protein

lacked chitinase activity, suggesting that it functions as a

chitin-binding receptor [39]. Such observations raise the

question whether PR genes evolved primarily to limit

damage inflicted by invading pathogens, or were adapted

from other functions to serve an accessory protective role.

COMPARATIVE ANALYSIS OF PR-1 TYPE

PROTEINS

PR-1 is a dominant group of PRs induced by pathogens

or SA, and is commonly used as a marker for SAR. Since

their discovery in 1970, numerous researchers have

attempted to assess the function of PR-1 proteins in

plants, but without much success [13]. Their limited

antifungal activity suggests a function in plant defense,

but its mode of action or relationship to other proteins is

unknown. In tobacco and tomato, PR-1 proteins belong

to small multigene families. Properties of the known PR-

1 proteins from these species are listed in Table 2. The

acidic N. tabacum PR-1a was the first to be purified and

characterized [4], and has been taken as the type member

of the PR-1 proteins [81]. The basic tomato PR-1a and

-1b are more similar to the basic PR-1g of tobacco than

to the acidic tobacco PR-1a and -1b. The structure of

tomato PR-1b (P14a) was solved recently by nuclear
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T 2. Properties of PR-1 proteins from tobacco and tomatoa

Member

Molecular
weight
(kDA)

Isoelectric
point

Percentage
homology
at protein

level Serogroup

Nt.a 15 4±0 100 I
Nt.b 15 4±4 94 II
Nt.c 15 4±5 91 III
Nt.d 15
Ns.e 15 I
Ng.f 14 II
Nt.g 17 10±7 67 IV
Nl.h 15

Le.a 14 10±7 60 IV
Le.b 14 10±9 IV
Le.c 14 IV

a For references see [81]. For Nt.g see also [56]. Nl.h is the less
acidic PR-1 from Nicotiana langsdorfii [28]. Le.a¯ tomato PR-1a
¯P4 [17]¯ c

%
[29]¯PR-1b2 [76]¯P14b [56] ; Le.b¯ tomato

PR-1b¯P6 [17]¯ c
#
[29]¯PR-1b1 [76]¯P14a [56] ; Le.c¯

tomato PR-1c¯P14c [56].

F. 1. Ribbon drawing of the three-dimensional structure of
tomato PR-1b. The α-helices I to IV are shown in red and
yellow, the β-strands A to D in green, other polypeptide
segments in gray, and the polypeptide termini are marked N and

C. From Ferna! ndez et al. [24].

magnetic resonance and found to represent a unique

molecular architecture [24]. The protein contains four α-

helices (I–IV) and four β-strands (A–D) arranged anti-

parallel between helices I, III and IV and II, respectively

(Fig. 1). The tight packing of the α-helices on both sides

of the central β-sheet results in a compact, bipartite

molecular core, which is stabilized by hydrophobic

interactions and multiple hydrogen bonds. This compact

structure reflects the high stability of PR-1 proteins and

their insensitivity to several proteases [79].

Because the function of the PR-1 family is still unclear,

these considerations prompted us to search the databases

for homologues of PR-1 proteins. Homology searches

were performed using the NCBI Blast [2] network service,

on the Genbank, PDB, Swiss-Prot, PIR and PRF

databases. Protein sequences were aligned with the Pileup

program from UWGCG 8±0 [18] and adapted where

required. Figure 2 shows the aligned amino acid sequences

of 36 PR-1 type proteins from different plant species,

including several PRLs, a probably partial sequence of a

protein found in a tumourous tobacco hybrid (N-tum)

and the derived sequence of a putative pseudogene from

tobacco (NtPR1-Y). Not included are PR-1a, -1b and -1c

sequences from different tobacco (N. tabacum) cultivars

that differ in only one or a few nucleotides (resulting in at

most, a single amino acid difference) from the sequences

presented. The primary translation products contain a

hydrophobic signal sequence, which is cleaved off upon

entry in the endoplasmic reticulum. The mature proteins

are mostly about 135 amino acids long, contain six

conserved cysteine residues forming disulphide bridges,

and show a high level of sequence conservation throughout

different plant families, including both mono- and

dicotyledons, with 31% sequence identity among all PR-

1 type proteins (Table 3) and pairwise sequence identity

up to 96%. Percentage similarity to the type member,

tobacco PR-1a, ranges from 97% to 46% (Table 3). No

consistent amino acid sequence differences are apparent

between acidic and basic isoforms. The structural elements

comprising the four α-helices and β-strands appear to be

highly conserved (Fig. 2), suggesting that all proteins

share the same α-β-α sandwich structure with tomato PR-

1a. The PR-1 type proteins exhibiting short C-terminal

extensions have mostly been characterized as basic

proteins, and these sequence additions reflect their slightly

higher molecular weights.

Related sequences have been found in proteins from

yeasts (Fig. 3), insects (Fig. 4) and vertebrates (Fig. 5).

Figure 3 compares the sequence of tobacco PR-1a with

five partial sequences from the yeasts. At the protein level,

the yeast sequences show 25–39% identity and up to 51%

similarity with the PR-1 type member (Table 3). The

yeast proteins lack two Cys residues that are conserved in

the plant species and, consequently, have only two

disulphide bridges. The Sc7 and Sc14 genes from

Schizophyllum commune are specifically expressed in the

dikaryon during fruiting. The Sc7p protein appears to be

secreted and has been suggested to play a role in

interaction between the dikaryotic hyphae leading to

formation of pseudo-parenchymous tissue [67]. Sequences

from Saccharomyces cere�isiae were determined in the

framework of the EU BIOTECH project for sequencing

the yeast genome. It was noted that the proteins share a

weak similarity with the serine}threonine-rich protein

Aga1p, which mediates cell surface attachment of the

yeast cell adhesion glycoprotein a-agglutinin [48].
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F. 2. Aligned amino acid sequences of 36 PR-1 type proteins from plants, including signal sequences. Identical amino acid residues
are highlighted in black if present in all sequences and in gray if present in at least 50% of all sequences. A ‘‘consensus sequence’’
is depicted above the sequence of the PR-1 type member tobacco PR-1a (NtPR1a). The cleavage site between the signal peptide
and mature protein is indicated by the arrowhead. The positions of the three disulphide bonds (C-C), the four helices αI to αIV and
the four parallel strands βA to βD are marked. Residue numbers are indicated to the right. AtPR1–1: Arabidopsis thaliana PR-1 type
(pr1–1) (Accession number M59196) ; AtPR1–2: A. thaliana PR-1 type (pr1–2) (X96600); AtPR1–3: A. thaliana PR-1 type (pr1–3)
(X96600); AtPR1–4: A. thaliana PR-1 (pr1–4) (M90508); BnPR1–1: Brassica napus PR-1a (pr1–1) (U21849}U70666) ; BnPR1–2:
B. napus PR-1 (pr1–2) (U64806); CaPR1: Capsicum annuum basic PR-1 (AF053343) ; CsPRL1: Camellia sinensis PRL-1 (AB015047) ;
HvPR1–1: Hordeum �ulgare PR-1 type (pr1–1) (Z21494) ; HvPR1–2: H. �ulgare PR-1 (pr1–2) (Z48728) ; HvPR1a: H. �ulgare PR-1a
(X74939); HvPRB12: H. �ulgare basic PR-1 type (pbr1–2) (Z26320) ; HvPRB13: H. �ulgare PR-1b (X74940}Z26321}Z26333);
LeP14–1: Lycopersicon esculentum PR-1 type (A22635}AJ001627); LeP14–2: L. esculentum PR-1 type (A22636); LePR1A1: L. esculentum
acidic PR-1 (pr1A1) (X71592); LePR1A2: L. esculentum acidic PR-1 (Y08844); LePRP4: L. esculentum PR-1a (M69247); LePRP6:
L. esculentum PR-1b (M69248}Y08804); MtPR1: Medicago trunculata PRL-1 (X79778); N-tum: partial PR-1 type clone from F1
hybrid between Nicotiana glauca and Nicotiana langsdorfii (D26456); NgPR1: Nicotiana glutinosa PR-1f (U49341); NtPR1a: Nicotiana
tabacum PR-1a (A05264}D90196}M36691}X05452}X05959}X06361}X06930}X12485) ; NtPR1b: N. tabacum PR-1b
(D90197}M36692}S07579}X03465}X05453}X12486}X17680) ; NtPR1c: N. tabacum PR-1c (S07580}X05454}X12487}X17681);
NtPR1-Y: N. tabacum PR-1 type pseudogene (X52555); NtPRB1: N. tabacum PR-1g (X14065); NtPRB1b: N. tabacum basic PRL-
1 (X66942); OsPR1: Oryza sati�a PR-1 type (U89895); SaPR1: Santalum album PR-1 type (AF017277) ; SnPR1: Sambucus nigra PRL-
1 (Z46947) ; St-sts14: Solanum tuberosum pistil-specific protein, amino acids 1–21 not included in the figure (X82652); TaPR1–1:
Triticum aesti�um PR-1 (pr1–1) (AJ007348); TaPR1–2: T. aesti�um PR-1 (pr1–2) (AJ007349); ZmPR1: Zea mays PR-1 (X54325);

ZmPR1–2: Z. mays PR-1 (pr1–2) (U82200).
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T 3. Homology of PR-1 type proteins from plants and other organisms in percentage amino acid identity (upper) and similarity

(lower; in bold) with tobacco PR-1a (NtPR1a), excluding the signal sequence. For abbre�iations see legends to Figs 2–5

NtPR1b NtPR1c NtPR1-Y NgPR1 HvPR1-1 HvPRB13 HvPRB12 HvPR1a ZmPR1-2

NtPR1a 94%
96%

94%
97%

83%
85%

92%
95%

56%
68%

57%
68%

56%
69%

59%
70%

65%
79%

ZmPR1 OsPR1 TaPR1-1 TaPR1-2 HvPR1-2 LePR1A1 NtPRB1b NtPRB1 CaPR1

NtPR1a 53%
68%

59%
72%

57%
68%

54%
72%

55%
71%

55%
67%

59%
71%

56%
71%

52%
64%

SnPR1 LePRP6 LePRP4 LeP14-2 LeP14-1 LePR1A2 BnPR1-1 BnPR1-2 AtPR1-4

NtPR1a 63%
79%

58%
73%

60%
74%

54%
67%

58%
73%

53%
68%

61%
76%

60%
73%

63%
76%

AtPR1-2 AtPR1-3 AtPR1-1 SaPR1 MtPR1 N-tum CsPRL1 Nt-sts14

NtPR1a 60%
72%

55%
67%

50%
62%

41%
48%

52%
67%

46%
62%

31%
46%

34%
50%

Sc14 Sc7 Sc-YJH9 Sc-YKZ3 Sc-YJH8

NtPR1a 25%
38%

24%
36%

36%
49%

35%
47%

39%
51%

Si-VAg5 Vp-VAg5 Dm-Ag5 Dm-VAg5

NtPR1a 18%
30%

18%
30%

13%
25%

16%
28%

Hs-GLIO Hs-RTVP Hs-CRS3 Hs-SGP28 Mm-Scp1 Hs-GPepi Hs-TryInh Hh-Helo Tm-Crvp

NtPR1a 31%
46%

32%
46%

29%
45%

29%
45%

25%
40%

22%
40%

28%
43%

31%
46%

22%
33%

F. 3. Aligned amino acid sequences of tobacco PR-1a (NtPR1a) and corresponding parts of PR-1 type proteins from yeasts.
Identical amino acid residues are highlighted in black if present in all sequences and in gray if present in at least 50% of the
sequences. A ‘‘consensus sequence’’ is depicted below the sequences. The positions of the conserved cysteine residues forming
disulphide bonds in tobacco PR-1a are marked. Residue numbers are indicated to the right. Sc7: Schizophyllum commune fruiting body
protein (Accession number: M81722) ; Sc14: S. cummune fruiting body protein (M81723); Sc-YJH8: Saccharomyces cere�isiae ORF

(X83502}X88851}Z49353); Sc-YJH9: S. cere�isiae ORF (X83502}X88851}Z49354); Sc-YKZ3: S. cere�isiae ORF (Z28238).

cDNA cloning of the major allergen (Dol-Ag5) in the

venom of the white-face hornetwaspDolicho�espula maculata

revealed that the primary structures of the two isoforms

present have sequence similarity with tobacco PR-1a: in

a 130-residue overlap of these proteins, 35–39 residues

were identical [23] (Fig. 4). Similar sequences were also

revealed in venom proteins of other vespids [36, 47] and

fire ants [35], as well as in the fruit fly Drosophila

melanogaster (Dm-Ag5) [66], being up to 30% homologous

with tobacco PR-1a (Table 3). The vespid and ant venom

proteins are all major allergens and have been suggested

to have evolved for use against other insects or inverte-

brates [36], but no further physiological function is known

so far.
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F. 4. Aligned amino acid sequences of tobacco PR-1a (NtPR1a), including signal sequence, and corresponding parts of PR-1 type
proteins from insect venom allergens. Identical amino acid residues are highlighted in black if present in all sequences and in gray
if present in at least 50% of the sequences. A ‘‘consensus sequence’’ is depicted below the sequences. The cleavage site between the
signal peptide and mature protein is indicated by the arrowhead. The positions of the conserved cysteine residues forming disulphide
bonds in tobacco PR-1a are marked. Residue numbers are indicated to the right. Dm-Ag5: Drosophila melanogaster antigen 5 type
(partial sequence) (Accession number: L49036); Dm-VAg5: Dolicho�espula maculata antigen 5 (J03601); Si-VAg5: Solenopsis in�icta

allergen III (B37330); Vp-VAg5: Vespula pensyl�anica antigen 5 (C44522}C44583).

F. 5. Aligned amino acid sequences of tobacco PR-1a (NtPR1a), including signal sequence, and corresponding parts of PR-1 type
proteins from vertebrates. Identical amino acid residues are highlighted in black if present in all sequences and in gray if present
in at least 50% of the sequences. A ‘‘consensus sequence’’ is depicted below the sequences. The positions of the conserved cysteine
residues forming disulphide bonds in tobacco PR-1a are marked. Residue numbers are indicated to the right. Hh-Helo: Heloderma
horridum helothermine (Accession number: U13619); Hs-CRS3: Homo sapiens CRISP-3 (X95240); Hs-GLIO: H. sapiens
GliPR (U16307); Hs-GPepi : H. sapiens acidic epididymal glycoprotein homolog (S80310); Hs-RTVP: H. sapiens RTVP-1
(X91911); Hs-SGP28: H. sapiens SGP28 (X94323); Hs-TrInh: H. sapiens P25TI (D45027); Mm-SCP1: Mus musculus CRISP-1

(A49202}L05559}M92849); Tm-Crvp: Trismeresurus mucrosquamatus venom protein (U59447).

A related protein family in vertebrates (Fig. 5) has been

described as cysteine-rich secretory proteins (CRISPs).

The homology of the CRISPs with plant PR-1 proteins is

restricted to their N-terminal part, with 22–31% identity

and up to 46% similarity with tobacco PR-1a (Table 3).

The amino acid sequence GHYTQVVW is a particularly

well-conserved region in the two groups of proteins,

suggestive of an important functional role of this domain.

Mostly, two of the conserved PR-1 Cys residues involved

in the formation of the disulphide bridges are absent from

the vertebrate proteins. On the other hand, CRISPs

contain a conserved spacing of up to 16 Cys residues in the
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C-terminal half, which most probably forms a discrete,

compact domain [19].

It has been speculated that CRISPs might encode lytic

enzymatic activities, which would be consistent with the

observed association of the mammalian androgen-regu-

lated acidic epididymal glycoprotein (AEG, or CRISP-1)

with the sperm surface [11, 34], as well as with the

presence of the guinea pig counterpart (AA1) [33] of the

mouse testis-specific gene-encoded protein TPX-1

(CRISP-2) [37] in the acrosome, where these proteins

could assist in the maturation of the sperm and be

involved in degrading egg structures during fertilization.

In contrast, the mouse CRISP-3 protein has been shown

to be expressed in the male salivary gland [30] and in

developing B-cells, where a possible lytic activity might be

related to antimicrobial activity in saliva and in the blood

or lymph [59]. Helothermine, a toxin with hypothermic

effects originating from the salivary secretion of the

Mexican beaded lizard, Heloderma horridum, has been

found to be another member of the CRISP family [49, 53].

Based on the finding that helothermine blocks the

ryanodine receptor in striated muscle, the possibility was

suggested that CRISP-like proteins may endogenously

regulate ryanodine receptors in mammalian tissues.

The CRISP sequences show some stretches of complete

identity and an overall 30% identity to two further

groups of mammalian proteins, encompassing proteins

from human tumor cells of glial origin (GliPR, RTVP-1)

and macrophages [54, 63], and specific granule protein 28

(SGP28) from human neutrophils [40]. Based on its

intracellular location within the specific granules, SGP28

has been hypothesized to function either as an anti-

microbial protein or as a type of matrix protease. Another

related 25 kDa protein (P25TI), frequently expressed

on human neuroblastoma and glioblastoma cell lines

and also present at low levels in the brain, placenta

and lymphocytes, was characterized as exhibiting weak

trypsin-inhibiting activity, but its sequence has no

homology to other proteinase inhibitors [88]. PR-1

proteins from plants have been tested for proteinase-

inhibitory activity, but none has been reported.

These observations that PR-1 proteins form a specific

family within the plant kingdom and show homologies

and structural motifs in common with proteins from fungi,

invertebrate and vertebrate animals and humans, make

the PR-1 family a distinct and highly conserved group of

proteins. Their widespread occurrence suggests that these

proteins share an evolutionary origin and possess activity

essential to the functioning of living organisms. A close

structural similarity of the human glioma protein GliPR

and tomato PR-1b has been interpreted as evidence for an

origin of these proteins from a common ancestor that has

evolved into a large ‘‘PR-protein superfamily’’ [71]. It

was even inferred that human GliPR and plant PR-1

proteins operate according to the same molecular mech-

anism, establishing a possible functional link between the

human immune system and defense-related activity in

plants. It is striking that the proteins from insects and

vertebrates function as major antigens in venoms or are

implicated otherwise in defense. However, most plant PR-

1 proteins are not very antigenic and the functions of all

PR-1 type proteins remain essentially unknown. The

weak trypsin-inhibitory activity of P25TI provides a first

indication of some biochemical activity of a PR-1 type

protein, but it must be realized that this protein is

substantially larger than any of the plant PR-1 proteins.

Although it was suggested that all proteins of the PR-

protein superfamily could, on the basis of present

knowledge of the molecular structure, have similar

functions, the most convincing homology is observed with

the proteins from yeast, which have been implicated in

morphogenesis. It must be concluded that the high extent

of sequence conservation of the plant PR-1 proteins from

different plant families is remarkable, but so far does not

offer any clues concerning their mode of action. To define

their function(s) in plants, new strategies need to be

devised.
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