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ABSTRACT 

To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic 
acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major 
objective in research on plant-pathogen interactions. The capacity of a plant to develop a broad-spectrum, systemic acquired resistance (SAR) 
after primary infection with a necrotizing pathogen is well known and its signal transduction pathway extensively studied. Plants of which the 
roots have been colonized by specific strains of non-pathogenic fluorescent Pseudomonas spp. develop a phenotypically similar form of 
protection that is called rhizobacteria-mediated induced systemic resistance (ISR). In contrast to pathogen-induced SAR, which is regulated by 
salicylic acid, rhizobacteria-mediated ISR is controlled by a signaling pathway in which the phytohormones jasmonic acid and ethylene play key 
roles. In the past decade, the model plant species Arabidopsis thaliana has been extensively explored to study the molecular basis of 
systemically induced resistance. Here we review the current knowledge on induced disease resistance signaling in plants. 

1. PLANT DISEASE RESISTANCE 

Non-host, basal and R-gene mediated resistance 
Plants are sessile organisms, incapable of fleeing from possibly harmful organisms. In order to defend themselves against pathogen attack, 
plants possess a range of constitutive and inducible resistance mechanisms. The most effective type is non-host resistance. This non-host 
resistance is expressed when a plant comes into contact with a pathogen which is incapable of provoking any disease in this plant (Heath 2002). 
In the absence of non-host resistance, the plant is susceptible. However, even susceptible plants are capable of reacting in a way that may slow 
down growth of the pathogen. The presence of such basal resistance was evidenced in Arabidopsis by the isolation of enhanced disease 
susceptibility (eds) mutants. These mutants showed increased susceptibility to moderately virulent pathogens such as Pseudomonas syringae 
(Glazebrook et al. 1996, Rogers and Ausubel 1997). Basal resistance is often dependent on the action of one or more of the plant hormones 
jasmonic acid (JA), ethylene (ET) and salicylic acid (SA). Upon attack, the levels of these hormones are usually enhanced. Such enhancement 
depends on the attacker that is trying to invade the plant, and each of the hormones act in the resistance against a specific set of pathogens. For 
instance, basal resistance against the oomyceteous pathogen Hyaloperonospora parasitica or the viral pathogen turnip crinkle virus was 
reduced in Arabidopsis mutants affected in pathogen-induced biosynthesis of SA. In contrast, it was not reduced in mutants impaired in JA- or 
ET-signaling (Delaney et al. 1994, Thomma et al. 1998, Nawrath and Métraux 1999, Kachroo et al. 2000, Ton et al. 2002c). Conversely, JA- and 
ET-signaling mutants showed enhanced susceptibility to the fungal pathogens Alternaria brassicicola and Botrytis cinerea, whereas SA-signaling 
mutants did not (Thomma et al. 1998, Thomma et al. 1999). Furthermore, ET-insensitive tobacco and Arabidopsis plants have been shown to be 
more susceptible to a range of necrotizing pathogens, e.g. B. cinerea, Pythium spp. and Fusarium spp. (Geraats et al. 2002). Some pathogens 
are resisted by a SA-dependent mechanism, as well as JA- and ET-dependent mechanisms, e.g. Pseudomonas syringae pv. tomato DC3000 
(Pst DC3000) and Xanthomonas campestris pv. armoraciae (Delaney et al. 1994, Pieterse et al. 1998, Ton et al. 1998, Ellis et al. 2002, Ton et al. 
2002b). Certain pathogens are resisted by the hormones acting sequentially, e.g. Xanthomonas campestris pv. vesicatoria  in tomato (O'Donnell 
et al. 2003). In this interaction, JA, ET and SA are required in succession. These results clearly demonstrate the intertwining of several signal 
transduction pathways in basal resistance. Moreover, it shows that the roles of different hormones vary depending on the plant-pathogen 
interaction. 

Within plant species, individuals can vary in their level of resistance to a certain pathogen, with some individuals being fully resistant. Such 
resistance can usually be described by a gene-for-gene relationship. A pathogen carrying a specific avirulence (AVR) gene is recognized only by 
a plant carrying a corresponding resistance (R) gene. In such an incompatible interaction, the pathogen usually triggers a rapid and local 
defense response that leads to a hypersensitive reaction. The hypersensitive reaction is often regarded as a form of programmed cell death that 
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is dependent on e.g. reactive oxygen species. The resulting small necrotic lesion is involved in preventing the pathogen from spreading any 
further (Dangl et al. 1996). Furthermore, deposition of anti-microbial compounds, strengthening of cell walls and expression of defense-related 
genes in the vicinity of the lesion all contribute to the restriction of the pathogen (Hammond-Kosack and Jones 1996). Non-host resistance, basal 
resistance and R-gene mediated resistance play an important role in the plant’s innate immune response. The mechanisms involved in these 
types of disease resistance have been extensively reviewed (Slusarenko et al. 2000). This review focuses on induction, signaling and expression 
of systemically induced, broad-spectrum disease resistance. 

2. INDUCED DISEASE RESISTANCE 

2.1. Biological and chemical induction of disease resistance 
During evolution plants have developed sophisticated defensive strategies to perceive pathogen attack and to translate this perception into an 
appropriate adaptive response. When under attack, a plant is capable of enhancing its resistance, and this condition is often referred to as 
induced, or acquired, resistance. Acquired disease resistance is thought to involve an enhancement of basal resistance (Van Loon 2000, Ton et 
al. 2002b). A classic example of biologically induced disease resistance is triggered after attack by a necrotizing pathogen (Ross 1961). This 
attack renders distant, uninfected plant parts more resistant towards a broad spectrum of virulent pathogens (Kuc 1982, Ryals et al. 1996, 
Sticher et al. 1997). The onset of this enhanced resistance, known as systemic acquired resistance (SAR), is accompanied by a local and 
systemic increase in SA levels (Malamy et al. 1990, Métraux et al. 1990). Subsequently, a large set of SAR genes, including genes encoding 
pathogenesis-related (PR) proteins, is up-regulated (Ward et al. 1991, Van Loon 1997, Van Loon and Van Strien 1999). These PR genes are 
often considered as marker genes for SAR expression. Several PR-proteins possess anti-microbial activity and are thought to contribute to the 
state of resistance attained. The PR proteins can accumulate to levels from 0.3 up to 1% of the total protein content of the leaf (Lawton et al. 
1995). 

A large variety of chemicals have been shown to activate the SAR response. Benzothiadiazole (BTH), 2,6-dichloroisonicotinic acid (INA), 
and SA induce the same set of PR genes comparable to biologically-induced SAR (Ward et al. 1991, Uknes et al. 1992, Lawton et al. 1996). 
Using parsley cells as a model, SAR induction by the commercially available plant activator BION and the biological agent Milsana, as well as a 
large group of related chemicals, was demonstrated (Siegrist et al. 1998). 

A second, well-studied biologically-induced disease resistance occurs after root colonization by selected strains of non-pathogenic 
Pseudomonas spp. (Van Peer et al. 1991, Wei et al. 1991). This type of resistance is generally called rhizobacteria-induced systemic resistance 
(ISR, Pieterse et al. 1996, Van Loon et al. 1998). ISR has been demonstrated in different plant species against several pathogens under 
conditions where the rhizobacteria and the pathogen remained spatially separated (Van Loon et al. 1998, Pieterse et al. 2002). The expression 
of rhizobacteria-mediated ISR was shown to be independent of the presence of SA or enhanced PR-gene expression. Phenotypically, 
rhizobacteria-mediated ISR resembles pathogen-induced SAR. Although the terms SAR and ISR are synonymous (Hammerschmidt et al. 2001), 
for convenience we distinguish between pathogen- and rhizobacteria-induced resistance by using the term SAR for the pathogen-induced type 
and ISR for the rhizobacteria-induced type of resistance. The non-protein amino acid β-aminobutyric acid (BABA) appears to have a different 
mode of action. Like ISR, it induces resistance without the expression of PR-genes (Cohen and Gisi 1994, Zimmerli et al. 2001). However, BABA 
can induce resistance to H. parasitica in Arabidopsis independent of SA, JA or ET, through a signaling pathway that requires abscisic adid (ABA) 
and involves priming for callose depositon (Ton and Mauch-Mani 2004, Ton et al. 2005). On the other hand, BABA-induced resistance against 
the bacterial pathogen Pst DC3000 and the fungal pathogen B. cinerea is SA dependent (Zimmerli et al. 2000, Zimmerli et al. 2001). 

2.2. Systemic acquired resistance 
After local infection by a necrotizing pathogen leading to an HR, the enhanced state of resistance extends systemically into the uninfected plant 
parts. During the onset of SAR, a locally altered transcriptional response precedes the hypersensitive reaction and a second wave of 
transcriptional reprogramming, not apparent in a virulent attack, marks the transition from basal to induced resistance (de Torres et al. 2003). 
The induction of SAR is accompanied by local and systemic accumulation of endogenous levels of the plant hormone SA, followed by PR-gene 
expression (Malamy et al. 1990, Métraux et al. 1990). The importance of the accumulation of SA for the expression of SAR was demonstrated by 
using transgenic NahG plants. These plants express the bacterial salicylate hydroxylase nahG gene, making them incapable of accumulating SA 
(Gaffney et al. 1993). NahG plants do not show a SAR response (Ryals et al. 1996). Exogenous application of SA, or one of its functional 
analogs BTH or INA, leads to the full expression of SAR. Likewise, SA production-deficient mutants sid1 (also called eds5) and sid2 (also known 
as eds16) do not show a SAR response after infection with a necrotizing pathogen (Fig. 1; Rogers and Ausubel 1997, Nawrath and Métraux, 
Wildermuth et al. 2001). These results indicate that SA is necessary and sufficient for the induction of SAR. In tobacco, up to 70% of the SA 
accumulating in non-infected leaves may originate from the infected leaves (Shulaev et al. 1995). The remaining SA is produced de novo in 
stems and petioles in response to a mobile signal (Smith-Becker et al. 1998). Even though SA is transported, grafting experiments between 
tobacco wild-type and NahG plants showed that SA is not the transported signal responsible for the systemic nature of SAR. However, SA is 
needed in non-infected tissues to effectively express SAR (Vernooij et al. 1994, Willits and Ryals 1998). As shown recently, ET perception is 
required to generate the systemic signal, but is not needed for the response to the systemic signal leading to SAR (Verberne et al. 2003). 
Instead, a putative apoplastic lipid transfer protein (DIR1) was characterized, which is thought to interact with a lipid-derived molecule to promote 
long distance signaling during SAR (Maldonado et al. 2002). 

Transduction of the SA signal into PR-gene expression and enhanced resistance requires the regulatory protein NPR1 (Cao et al. 1994). 
Mutant npr1 plants accumulate normal levels of SA after pathogen attack, but are incapable of transducing this SA accumulation into a response 
leading to PR-gene expression and SAR. Moreover, treatment of npr1 with SA or its analogue INA does not lead to induction of resistance. 
These results indicate that NPR1 is acting downstream of SA in the SAR signal transduction pathway (Fig. 1; Cao et al. 1994). Since the 
discovery of the NPR1 gene, several mutant screens based on impaired SAR expression (Delaney et al. 1995), reduced SA-induced PR-gene 
expression (Shah et al. 1997), or enhanced disease susceptibility (Glazebrook et al. 1996) identified mutations allelic to the npr1 mutation. These 
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Fig. 1 Schematic representation of the signal transduction pathways leading to rhizobacteria-mediated 
ISR and pathogen-induced SAR. 

results further illustrate the importance of the NPR1 
gene in SAR. The NPR1 gene encodes a protein 
with a BTB/POZ (for Broad-complex, Tramtrack and 
Bric-a-brac/Poxyvirus and Zinc fingers) (Harrison 
and Travers 1990, DiBello et al. 1991, Koonin et al. 
1991, Godt et al. 1993) and an ankyrin-repeat 
domain (Cao et al. 1997, Ryals et al. 1997, Aravind 
and Koonin 1999). Both domains have previously 
been shown to be important in protein-protein 
interactions (Bork 1993). In non-induced plants, 
NPR1 is present as a multimer through forming 
intermolecular disulfide bonds (Mou et al. 2003). 
During the induction of SAR, SA triggers a biphasic 
change in cellular redox potential that leads to 
reduction of the disulfide bonds. This results in 
conversion of NPR1 into a monomeric form. These 
monomers are translocated into the nucleus 
(Kinkema et al. 2000), where they interact with 
members of the TGA/OBF subclass of basic-
leucine-zipper (bZIP) transcription factors. These transcription factors are involved in SA-dependent activation of PR-genes (Lebel et al. 1998, 
Zhang et al. 1999, Després et al. 2000, Niggeweg et al. 2000, Zhou et al. 2000, Subramaniam et al. 2001, Fan and Dong 2002, Zhang et al. 
2003). A direct interaction between NPR1 and specific TGA transcription factors is required for binding of the complex to elements within the 
promoter of the PR-genes (Després et al. 2000, Fan and Dong 2002). Overexpression of the NPR1 gene leads to an enhanced resistance to 
pathogen attack (Cao et al. 1998, Friedrich et al. 2001). 

2.3. Rhizobacteria-induced systemic resistance 

2.3.1. SA- or stress-dependent enhancement of resistance 

Plants produce exudates and lysates at their root surface, where rhizobacteria are attracted in large numbers (Lynch and Whipps 1991, 
Lugtenberg et al. 2001, Walker et al. 2003). Selected strains of non-pathogenic rhizobacteria are named plant growth-promoting rhizobacteria 
(PGPR), because they possess the capability to stimulate plant growth (Kloepper et al. 1980, Pieterse and Van Loon 1999, Bloemberg and 
Lugtenberg 2001, Pieterse et al. 2003). Pseudomonas spp. are among the most effective PGPR. Moreover, they have been shown to be 
responsible for the reduced activity of soil-borne pathogens in disease-suppressive soils (Raaijmakers and Weller 1998, Weller et al. 2002, Duff 
et al. 2003). This type of biological control can be the result of competition for nutrients, siderophore-mediated competition for iron, antibiosis or 
the production of lytic enzymes (Bakker et al. 1991, Van Loon and Bakker 2003). Apart from such direct antagonistic effects on soil-borne 
pathogens, some PGPR strains are also capable of reducing disease incidence in above-ground plant parts through plant-mediated mechanisms. 
Under iron-limiting conditions, certain rhizobacterial strains produce SA as an additional siderophore (Meyer et al. 1992, Visca et al. 1993). The 
enhanced defensive capacity elicited by Pseudomonas fluorescens CHA0 in tobacco might be fully explained by the bacterial production of SA, 
which could elicit a SAR response. Treatment of tobacco roots with CHA0 triggers accumulation of SA-inducible PR proteins in the leaves 
(Maurhofer et al. 1994). Moreover, transformation of the SA-biosynthetic gene cluster of CHA0 into Pseudomonas fluorescens P3 improved the 
systemic resistance inducing-capacity of this strain (Maurhofer et al. 1998). 

Another strain that has been suggested to elicit a SA-dependent enhanced defensive capacity is Pseudomonas aeruginosa 7NSK2. A SA-
deficient mutant of this bacterium failed to induce resistance in bean and tobacco (De Meyer and Höfte 1997). Moreover, 7NSK2 was unable to 
induce resistance in NahG tobacco plants against TMV (De Meyer et al. 1999). A SA overproducing mutant of 7NSK2 was shown to trigger the 
SA-dependent SAR pathway by producing SA at the root surface (De Meyer and Höfte 1997). Recently, however, Audenaert et al. (2002) 
showed that the secondary siderophore pyochelin and the antibiotic pyocyanin are the determinants for the enhanced resistance induced by 
wild-type 7NSK2. SA is an intermediate in the formation of pyochelin and the combination of pyocyanin and pyochelin is toxic to root cells, 
thereby setting off the SAR response. 

General stresses can also induce similar responses. Cartieaux et al. (2003) performed a transcriptome analysis of Arabidopsis roots and 
shoots upon colonization of the roots by Pseudomonas thivervalensis (strain MLG45). MLG45 induced a clear growth reduction under the 
conditions used (Persello-Cartieaux et al. 2001, Cartieaux et al. 2003), suggesting that systemic changes in gene expression observed were due 
to a more general stress response. A significant increase in defense-related transcripts was detected prior to challenge inoculation, whereas very 
few changes in the transcriptome of roots were apparent, suggesting that the systemic changes in gene expression observed in MLG45-induced 
plants are primarily related to stress-induced reduction of plant growth. 

2.3.2. Bacterial-plant interactions involved in ISR 

Other strains of fluorescent Pseudomonas spp. have been shown to trigger ISR in an SA-independent manner (Pieterse and Van Loon 
1999). SA-independent ISR has been shown in Arabidopsis (Van Wees et al. 1997, Iavicoli et al. 2003, Ryu et al. 2003), cucumber (Wei et al. 
1991), tobacco (Press et al. 1997, Zhang et al. 2002), radish (Leeman et al. 1995a), and tomato (Yan et al. 2002). This wide range of induction of 
ISR indicates that the ability of these Pseudomonas strains to activate a SA-independent pathway controlling systemic resistance is common to 
a broad range of plants. ISR-inducing rhizobacteria show little specificity in their colonization of roots of different plant species (Van Loon et al. 
1998). In contrast, the ability to induce ISR appears to be dependent on the bacterium/host combination. For instance, Pseudomonas 
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Fig. 2 Effectiveness of rhizobacteria-mediated ISR (green squares) and pathogen-induced SAR (red squares) in Arabidopsis. Photographs depict symptoms in 
uninduced wild-type Arabidopsis plants upon infection or infestation of the pathogens and insects indicated. Squares underneath the photographs indicate that ISR 
and/or SAR confer a significant level of resistance. Results are based on studies by Pieterse et al. (1996 1998 2002), Van Wees et al. (1997 2000), Ton et al. (2002a 
2002b) and (CMJ Pieterse, JA Van Pelt, VR Van Oosten, and S Van der Ent, unpublished results). 

fluorescens WCS374r is capable of inducing ISR in radish, but not in Arabidopsis (Leeman et al. 1995a, Van Wees et al. 1997). Conversely, 
Arabidopsis is responsive to Pseudomonas putida WCS358r, while radish is not (Van Peer et al. 1991, Van Peer and Schippers 1992, Leeman et 
al. 1995a, Van Wees et al. 1997). Pseudomonas fluorescens WCS417r is capable of inducing ISR in both Arabidopsis and radish (Van Wees et 
al. 1997), as well as in other species, i.e. carnation (Van Peer et al. 1991), radish (Leeman et al. 1995a), tomato (Duijff et al. 1998), and bean 
(Bigirimana and Höfte 2002). 

Besides differences in inducibility between species, there can also be differences within species. Arabidopsis accessions Columbia (Col-0) 
and Landsberg erecta (Ler-0) are responsive to ISR induction by WCS417r, while accessions Wassilewskija (Ws-0) and RLD1 are not (Van 
Wees et al. 1997, Ton et al. 1999, Ton et al. 2001, Pieterse et al. 2002). Apparently, these accessions are compromised in a step between the 
recognition of the bacterium and expression of ISR. Moreover, these data indicate that ISR is genetically determined. Up until now, several 
compounds have been implicated in the elicitation of ISR (Van Loon et al. 1998, Bakker et al. 2003). Apart from live WCS417r bacteria, also 
dead bacteria are capable of inducing ISR, indicating that bacteria do not need to be metabolically active to induce ISR. Cell wall preparations, 
purified lipopolysaccharide, siderophores, antibiotics, and flagella all are capable of inducing systemic resistance (Van Peer and Schippers 1992, 
Leeman et al. 1995b, Van Wees et al. 1997, Bakker et al. 2003, Iavicoli et al. 2003). Because of there multiple inducing determinants, bacterial 
mutants lacking flagella or the O-antigenic side chain of the lipopolysaccharide were still able to elicit ISR in Arabidopsis (Van Wees et al. 1997, 
Bakker et al. 2003). So far, putative receptors for the bacterial cell wall preparations have not been isolated. However, a sensitive perception 
mechanism for bacterial flagellins has been identified (Felix et al. 1999). A receptor kinase was characterized that shares homology with known 
plant disease resistance genes (Gomez-Gomez and Boller 2000), suggesting that bacteria are recognized similar to plant pathogens. 

2.3.3. Range of ISR effectiveness 

The plant-growth promoting WCS417r (Pieterse and Van Loon 1999) has been shown to induce resistance in Arabidopsis against a broad 
range of pathogens (Van Loon et al. 1998, Pieterse et al. 2002, Pieterse et al. 2003). This makes ISR phenotypically comparable to pathogen-
induced SAR (Kuc 1982). Like classic pathogen-induced SAR, colonization of roots by WCS417r leads to ISR against different types of 
pathogens, including the fungal root pathogen F. oxysporum f.sp. raphani, the oomycetous leaf pathogen H. parasitica, and the bacterial leaf 
pathogens Xanthomonas campestris pv. armoraciae and Pst DC3000 (Fig. 2; Pieterse et al. 1996, Van Wees et al. 1997, Ton et al. 2002b). In 
contrast to SAR, treatment of Arabidopsis with WCS417r does not lead to systemic resistance against turnip crinkle virus. Conversely, ISR 
appears to be highly effective against the fungal pathogen A. brassicicola, whereas SAR is not (Ton et al. 2002b). The spectra of effectiveness of 
ISR and SAR partly overlap, but are also clearly divergent. This indicates a different mechanism of rhizobacteria-mediated ISR compared to the 
classic SAR response. This different mode of action was further apparent from the simultaneous activation of the ISR and SAR pathways. This 
results in an enhanced level of protection against Pst DC3000, compared to each treatment alone (Van Wees et al. 2000). 

2.3.4. Rhizobacteria-mediated ISR: signal transduction 

The differential range of effectiveness of ISR, compared to SAR, indicates the involvement of different mechanisms. Pathogen-induced SAR 
is accompanied by both local and systemic increases in SA levels and the expression of PR-genes (Van Loon and Van Strien 1999, Métraux 
2001). Compelling evidence that rhizobacteria-mediated ISR is a SA-independent defense response came from experiments with SAR-
compromised NahG plants. Upon colonization of the roots by ISR-inducing WCS417r bacteria, Arabidopsis NahG plants expressed normal 
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levels of ISR (Pieterse et al. 1996, Van Wees et al. 1997). Furthermore, WCS417r-induced radish plants did not accumulate PR-proteins in 
association with their enhanced defensive capacity against fusarium wilt disease (Hoffland et al. 1995). Moreover, WCS417r-induced, ISR 
expressing Arabidopsis plants showed enhanced resistance against Pst DC3000 and F. oxysporum f.sp. raphani, without activation of the SAR 
marker genes PR-1, PR-2, and PR-5 (Pieterse et al. 1996, Van Wees et al. 1997), and analysis of SA levels revealed no changes after ISR 
induction, neither locally nor systemically (Pieterse et al. 2000). Taken together, it was concluded that WCS417r-mediated ISR in Arabidopsis is 
regulated by a SA-independent signaling pathway. 

Further studies revealed that treatment of the roots with WCS417r failed to trigger ISR in JA-insensitive jar1 plants or ET-insensitive etr1 
plants. This indicated that the JA- and ET-response pathways are essential for the establishment of ISR (Fig. 1; Pieterse et al. 1998, Pieterse et 
al. 2000). Another indication for the involvement of the JA-signaling pathway came from the analysis of Arabidopsis mutant eds8, which was 
previously shown to exhibit enhanced susceptibility to P. syringae (Glazebrook et al. 1996). This mutant is impaired both in WCS417r-mediated 
ISR (Ton et al. 2002c), and JA-signaling (Ton et al. 2002b, Glazebrook et al. 2003). To further elucidate the role of ET in the ISR signaling 
pathway, a large set of well-characterized ET-signaling mutants was analyzed. None of these mutants showed an ISR response against Pst 
DC3000 after colonization of the roots by WCS417r (Knoester et al. 1999). These results confirmed that an intact ET-signaling pathway is 
required for the establishment of ISR. Particularly interesting was the analysis of the eir1 mutant, which is ET-insensitive in the roots, but not in 
the shoot. This eir1 mutant is incapable of showing ISR after root colonization by WCS417r. In contrast, after leaf infiltration with WCS417r, it did 
show ISR indicating that responsiveness to ET is required at the site of induction (Knoester et al. 1999). However, these results do not exclude 
the possibility that the ET response is also needed during the expression of ISR upon challenge inoculation. 

Further evidence for the involvement of the ET-response pathway came from the identification of the Arabidopsis ISR1 locus (Ton et al. 
1999). Genetic analysis of the progeny of a cross between the WCS417r-responsive ecotype Col-0 and the ISR-impaired ecotype RLD1 
revealed that both the potential to express ISR and basal resistance against Pst DC3000 are monogenic, dominant traits that are genetically 
linked. The ISR1 locus is required for effective ISR against several different pathogens (Fig. 1; Ton et al. 2002a). Interestingly, analysis of the 
ISR-impaired ecotype RLD1 revealed that it has a reduced sensitivity to ET, which co-segregates with the ISR1 locus (Ton et al. 2001). These 
results strongly indicate that the Arabidopsis ISR1 locus encodes a novel component in the ET-signal transduction pathway that is important in 
both basal resistance and ISR in Arabidopsis. 

Both at the site of application of the bacteria and systemically in the leaves, the JA content and the ET evolution remained unaltered upon 
ISR induction (Knoester et al. 1999, Pieterse et al. 2000). Moreover, LOX2 co-suppressed S-12 plants, which are blocked in the increase of JA 
after wounding (Bell et al. 1995) and pathogen infection (Pieterse et al. 2000), were normally responsive to WCS417r. Nevertheless, resistance 
comparable to ISR can be induced chemically by application methyl jasmonate (MeJA) or the ET precursor 1-aminocyclopropane-1-carboxylate 
(ACC). MeJA induction of resistance was blocked in the jar1 and etr1 mutants. In contrast, the ACC-induced expression of resistance was 
blocked in etr1, but not in jar1. Therefore, it was postulated that WCS417r-mediated ISR is regulated by a signaling pathway with the 
requirement for JA-signaling preceding the ET-signaling response (Fig. 1; Pieterse et al. 1998). 

To determine whether ISR is associated with increased JA- or ET-responsive gene expression, the expression of a large set of well-known 
JA- and ET-responsive genes (e.g. VSP2, PDF1.2, LOX1, LOX2, HEL, CHI-B, and PAL) was analyzed in WCS417r-induced Arabidopsis plants. 
None of these genes tested showed an up-regulation, neither locally in the roots, nor systemically in the leaves (Van Wees et al. 1999). These 
results indicate that the enhanced defensive state during WCS417r-mediated ISR is not associated with enhanced JA- or ET-dependent gene 
expression. Because ISR is not associated with enhanced levels of the hormone signals JA or ET (Pieterse et al. 2000), but nevertheless 
requires responsiveness to JA and ET (Pieterse et al. 1998), it was suggested that ISR is based on an enhanced sensitivity to these hormones, 
rather then on an increase in their production (Fig. 1). 

2.4. Dual role for NPR1 in SAR and ISR 
To investigate the possible involvement of the SAR regulatory protein NPR1 in ISR signaling, the Arabidopsis npr1 mutant was tested in the ISR 
bioassay. Surprisingly, the npr1 mutant was incapable of showing WCS417r-mediated ISR (Pieterse et al. 1998). This result clearly showed that 
WCS417r-mediated ISR, like SA-dependent SAR, is an NPR1-dependent defense response (Fig. 1). Further analysis of the ISR signal-
transduction pathway revealed that NPR1 acts downstream of the JA- and ET-response pathways (Pieterse et al. 1998). Because SAR is 
associated with NPR1-dependent PR-gene expression, and ISR is not, this demonstrates that NPR1 must differentially regulate gene expression, 
depending on the signaling pathway that is activated upstream of it. NPR1 seems not a limiting factor since simultaneous activation of ISR and 
SAR leads to an enhanced defensive activity compared to that observed with either type of induced resistance alone (Van Wees et al. 2000). 
These results suggest that the NPR1 protein is important in regulating and intertwining different hormone-dependent defense pathways. 

Apart from its role in SA-dependent gene expression, NPR1 was also shown to be involved in the negative regulation of the JA-response by 
SA (Spoel et al. 2003). Whereas nuclear localization of NPR1 is needed for SA-induced PR-1 gene expression (Kinkema et al. 2000), the SA-
induced, NPR1-mediated negative effect on JA-responsive gene expression is exerted through an as yet uncharacterized function in the cytosol 
(Spoel et al. 2003). These results indicate that NPR1 can have different functions at different locations in the cells. 

3. GENE EXPRESSION ANALYSIS 

3.1. Transcriptome analysis of SAR 
All the different large-scale analyses of the transcriptome of Arabidopsis show that plants react with major changes to different pathogens, like 
Psm ES4326 and A. brassicicola, and stimuli, like JA, the ET precursor ACC, and SA (Schenk et al. 2000, Cheong et al. 2002, Glazebrook et al. 
2003, Katagiri and Glazebrook 2003, Schenk et al. 2003, Tao et al. 2003, Van Wees et al. 2003, De Vos et al. 2005). Northern blot analysis 
confirmed a limited set of SAR marker genes (Ward et al. 1991, Ryals et al. 1996). Using a small set of Arabidopsis enhanced sequenced tags 
(EST's), Schena et al. (1995) made the DNA microarray technology accessible for plant research, making it possible to examine the expression 
of a large group of genes simultaneously. Since then, and aided by the full sequencing of the Arabidopsis genome (Kaul et al. 2000), many 
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microarray service centers have been established, which now provide a range of different small microarrays up to complete genome arrays 
(Reymond 2001, Zhu 2003). Using a DNA microarray representing about 25% of all Arabidopsis genes, Maleck et al. (2000) monitored gene 
expression after treatment of wild type and different SAR-impaired mutants with several different SAR inducers. About 300 (4.3%) out of the 
7,000 genes were shown to be involved in the SAR response. These results indicate that expression of SAR leads to a much larger 
transcriptional reprogramming than just the changes in PR-gene expression observed by convential methods. Moreover, Maleck and co-workers 
(2000) provided evidence for a common promoter element in a set of coordinately regulated genes, including PR-1. In addition, they showed that 
subtle differences in gene expression patterns occur under different SAR-inducing and repressing conditions, indicating that although every 
treatment leads to SAR, induction is accompanied by additional treatment-specific gene expression. Moreover, gene expression during the SAR 
response was found to partly overlap with responses observed during a compatible interaction. This paradox is thought to be explained by the 
fact that during a compatible interaction, host defense responses are turned on, but too slowly or too late to be effective. These results support 
the idea that acquired resistance is an enhancement of basal resistance, and involves the same resistance mechanisms (Van Loon 2000). 

3.2. Transcriptome analysis of ISR 
To identify ISR-related genes, Léon-Kloosterziel et al. (2005) screened a large number of gene trap and enhancer trap lines of Arabidopsis for 
WCS417r-induced gene expression. This resulted in the isolation of an enhancer trap line with WCS417r-induced GUS expression in the roots. 
Further study revealed that this induction occurs upon colonization of the roots by different non-pathogenic Pseudomonas spp. strains, but not 
after colonization by Escherichia coli. Moreover, GUS expression was also observed after treatment with ACC, but not with JA or SA. Analysis of 
the flanking sequences revealed that the GUS gene was activated in cis by the thaumatin-like gene AtTLP1, which encodes a pathogenesis-
related protein of the PR-5 family. However, analysis of an AtTLP1 knockout mutant indicated that WCS417r-induced expression of this gene is 
not required for the expression of ISR against Pst DC3000. Moreover, overexpression of the AtTLP1 gene did not result in a constitutive or 
enhanced ISR response. These results indicate that AtTLP1 gene expression is a common response of Arabidopsis roots to non-pathogenic 
Pseudomonas bacteria, but it is unlikely that the AtTLP1 protein contributes to the enhanced defensive capacity observed in ISR-expressing 
plants. 

Verhagen et al. (2004) analyzed the transcriptome of Arabidopsis during WCS417r-mediated ISR induction and expression using Affymetrix 
GeneChips containing about one third of the genes present in the Arabidopsis genome. Colonization of the roots by WCS417r resulted in 
changes in expression of a large group of genes locally in the roots. Part of these changes was transient and only visible at a single time point, 
whereas 97 genes showed consistent changes in time. This group is thought to be involved in the local onset of ISR. Systemically in ISR 
expressing leaves, prior to pathogen challenge, none of the ~8,000 genes tested showed consistent changes in expression. These observations 
indicate that the state of ISR, in contrast to SAR, is not associated with detectable changes in gene expression. Gene expression patterns were 
also determined after challenge inoculation with Pst DC3000. In non-induced, infected control plants, a large set of genes showed changes in 
expression after pathogen challenge. Part of this set is thought to be important for basal resistance against Pst DC3000. Also in ISR-expressing 
plants, a large group of genes showed altered expression levels. This group was slightly smaller in number, perhaps because of the enhanced 
resistance in ISR-expressing plants. In challenged control plants, these general Pst DC3000-responsive genes were shown to be predominantly 
dependent on JA/ET and SA signal transduction. A group of 81 of these – mainly JA/ET-dependent – genes showed augmented expression in 
ISR-expressing plants, indicating that these genes were primed to respond faster and/or more strongly upon pathogen attack.The majority of the 
primed genes was predicted to be regulated by JA and/or ET signaling, which confirmed earlier findings that colonization of the roots by 
WCS417r primed Arabidopsis plants for augmented expression of the JA- and/or ET-responsive genes AtVSP2, PDF1.2 and HEL (Van Wees et 
al. 1999, Hase et al. 2003). Other ISR-inducing PGPR have also been demonstrated to enhance the plant’s defensive capacity by priming for 
potentiated defense-related gene expression (e.g. De Meyer et al. 1999, Ahn et al. 2002, Kim et al. 2004, Tjamos et al. 2005), indicating that this is a 
common feature in rhizobacteria-mediated ISR. These results demonstrate that WCS417r-mediated ISR is associated with potentiation of gene 
expression. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the 
broad-spectrum action of rhizobacteria-mediated ISR. 

3.3. Priming in other beneficial plant-microbe interactions 
Besides pathogenic interactions, mutually beneficial relationships are frequent in nature, improving plant nutrition and/or helping the plant to 
overcome biotic or abiotic stresses. These associations can involve fungi, such as mycorrhizal and plant growth-promoting fungi (PGPF), or 
bacteria, such as the nitrogen-fixating Rhizobium spp., or plant growth-promoting rhizobacteria (PGPR)(Van Loon et al. 1998, Kloepper et al. 
2004, Bent 2005, Harrison 2005). The establishment of mutualistic associations involves mutual recognition and a high degree of coordination 
that is based on a continuous cellular and molecular dialogue between the plant and the micro-organism. In many cases, recognition of a 
beneficial micro-organism by the plant induces an enhanced defensive capacity in the plant that effectively protects the plant against a broad 
spectrum of plant pathogens (Pozo et al. 2005, and references herein). For instance, colonization of tomato roots by the mycorrhizal fungus 
Glomus mosseae systemically protects the plant against infection by Phytophthora parasitica (Cordier et al. 1998, Pozo et al. 2002). In general, 
systemic resistance induced by beneficial micro-organisms is not associated with major changes in defense-related gene expression (Pieterse et al. 
2002), probably because this would entail heavy investments in host resources and reduced fitness (Heil 2002), which would undermine the 
mutual benefits of the interaction. 

A common feature of resistance induced by beneficial micro-organisms is priming. For instance, colonization of tomato roots by mycorrhizal 
fungi systemically protects the plant against H. parasitica infection, but it does not directly induce systemic accumulation of PR proteins. However, 
upon pathogen attack, mycorrhizal plants accumulate significantly more PR-1a and basic β-1,3 glucanase protein than non-mycorrhizal plants. 
Ultrastructural studies revealed that mycorrhizal plants deposited host cell wall thickenings containing non-sterified pectins and callose around 
the sites of pathogen infection, whereas non-mycorrhizal plants did not (Cordier et al. 1998, Pozo et al. 1999, Pozo et al. 2002). Similarly, PGPF, 
such as Trichoderma spp., have been shown to induce a primed state in plants. In cucumber, subsequent challenge inoculation of Trichoderma 
asperellum T203-preinoculated plants with the leaf pathogen Pseudomonas syringae pv. lachrymans resulted in potentiated PR gene expression 
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relative to non-induced, challenged plants (Shoresh et al. 2005). In barley, pre-inoculation of the roots with the PGPF Piriformospora indica 
resulted in enhanced disease resistance and increased tolerance to salt stress without clear changes in defense-related gene expression (Waller 
et al. 2005). Evidence was provided indicating that the primed state was conferred through an enhanced antioxidative capacity that boosts plant 
defense responses to biotic and abiotic stress. 

3.4. Priming in plant-pathogen interactions 
Priming has emerged as a common feature of different types of induced resistance (Conrath et al. 2002). For instance, SAR-non-inducing doses 
of the synthetic SAR inducer benzothiadiazole (BTH) were shown to enhance two cellular defense responses after Pst infection, namely PAL 
gene expression and callose deposition, without inducing these responses by itself. Moreover, priming for potentiated defense gene expression 
was also found during Pst DC3000(avrRpt2)-induced SAR against virulent Pst DC3000 (Kohler et al. 2002). Priming was also shown to be 
important in the enhancement of resistance by the non-protein amino acid β-aminobutyric acid (BABA). BABA potentiated the accumulation of 
PR-1 mRNA after attack by Pst DC3000 (Zimmerli et al. 2000), but BABA treatment of mutants impaired in the SAR pathway did not result in this 
potentiation (Zimmerli et al. 2000 2001). Recently, BABA-induced priming of defense responses was shown to be regulated through yet another 
signaling pathway, that depends on abscisic acid (Ton and Mauch-Mani 2004). 

Priming can explain, on the one hand, the lack of changes in leaves of ISR-expressing plants prior to pathogen challenge and, on the other 
hand, why the plant is able to react more effectively when subsequently attacked. Plants in a primed state do not have the metabolic costs of a 
constantly activated defense response, in contrast to plants in the state of SAR (Heil 2002, Heil and Baldwin 2002). The costs of constant 
activation of the SAR pathway are apparent in mutant cpr1 (for constitutive PR gene expressor), which constitutively expresses SAR and is 
much smaller compared to wild-type Arabidopsis plants (Bowling et al. 1994). 

3.5. Combining ISR and SAR to improve biocontrol of plant diseases 
Plant diseases are responsible for large crop losses in agriculture. Conventional disease control is based on application of chemical agents and 
resistance breeding. The use of chemical agents and their persistence in soil are potentially harmful to the environment, especially when chemicals 
are applied repeatedly in large amounts such as in the control of soil-borne fungal pathogens. Classic resistance breeding depends on the availability 
of resistance genes, which often show limited durability. Moreover, both these disease control strategies are directed against a single or a small 
group of plant pathogens. Induced disease resistance is an attractive alternative form of plant protection, as it is based on the activation of extant 
resistance mechanisms in the plant and is effective against a broad spectrum of plant pathogens (Kuc 1982, Van Loon et al. 1998). Therefore, 
detailed knowledge of the molecular mechanisms underlying induced disease resistance will be instrumental in developing biologically-based, 
environmentally-friendly, and durable crop protection. 

Previously, we demonstrated that simultaneous activation of ISR and SAR results in an enhanced level of induced protection against Pst 
DC3000 (Van Wees et al. 2000). This indicates that the JA/ET-dependent ISR pathway and the SA-dependent SAR pathway act independently 
and additive at the level of protection against this particular pathogen. Moreover, we provided evidence that ISR and SAR confer differential 
protection against different types of pathogens (Ton et al. 2002b). Thus, combining both types of induced resistance can protect the plant against 
a complementary spectrum of pathogens, and can even result in an additive level of induced protection against pathogens that are resisted 
through both the JA/ET- and the SA- dependent pathways. 

Biological control of plant diseases is still in its infancy, because the level of protection and its consistency are generally not sufficient to 
compete with conventional methods of disease control. One approach to improve the efficacy and consistency of biological control against soil-
borne pathogens is to apply combinations of antagonistic micro-organisms with different mechanisms of action(De Boer et al. 1999, Bakker et al. 
2003). In addition, our findings that the combination of ISR and SAR confers protection against a complementary spectrum of pathogens and 
results in enhanced levels of protection against specific bacterial pathogens (Van Wees et al. 2000), offers great potential for integrating both 
forms of induced resistance in future agricultural practices. 
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