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Interactions between amphoteric surfaces with
strongly overlapping double layers

Mark Vis, *a Remco Tuinier, ab Bonny W. M. Kuipers, b Agienus Vrijb and
Albert P. Philipse b

The entropic repulsion between strongly overlapping electrical double-layers from two parallel

amphoteric plates is described via the Donnan equilibrium in the limit of zero electric field. The plates

feature charge-regulation and the inter-plate solution is in equilibrium with a reservoir of a monovalent

electrolyte solution. A finite electric potential and disjoining pressure is found at contact between the

plates, due to a complete discharging of the plates. For low potentials, the decay of potential and

pressure is fully governed by a characteristic length scale and the contact potential. Additionally, for

large separations we find a universal inverse square decay of disjoining pressure, irrespective of the

contact potential. The results of the Donnan theory show quantitative agreement with self-consistent

field computations that solve the full Poisson equation.

1 Introduction

When two charged surfaces immersed in an electrolyte solution
move sufficiently far apart such that mid-plane electrical poten-
tials are small, double-layer repulsions between the surfaces can
be evaluated from the Debye–Hückel solution of the linearized
Poisson–Boltzmann (PB) equation.1–10 Upon approach of the two
plates, mid-plane potentials increase such that the approxi-
mation of weak double-layer overlap breaks down.

It has been pointed out11–14 that when two identical charged
surfaces come sufficiently near, another simplifying limit is
approached: for inter-plate distances below the Debye length,
the electric field between the surfaces gradually vanishes
throughout. Then a regime is entered where ions diffuse in a
spatially constant electrical potential (in contrast, for larger
separations, the electric field is only zero at the mid-plane
between the plates). For the case of ideal ions, the calculation
of this spatially constant potential, also known as the Donnan
potential, is straightforward. It leads—without any further
assumptions—to analytical expressions for the disjoining
pressure, i.e., the external pressure that is needed to fix the
repulsive plates at a certain distance.13 It should be stressed
that this inverse square decay differs in origin from the inverse-
square decay that is observed in the salt-free, counterion-only
limit.12,15

These Donnan disjoining pressures agree quite well with
numerical solutions of the PB equation up to inter-plate
distances as large as about the Debye length,13 in marked
contrast to the exponential decay that results from the weak-
potential Debye–Hückel approximation. Furthermore, recently
it was shown by Landman et al. that the algebraic Donnan
disjoining pressure could explain peculiar scaling of interbilayer
separation with concentration in structures of self-assembled
microtubes.16 Their observations represent, as far as we know,
the first experimental support for the zero-field Donnan model.
The Donnan model, it should be noted, was also employed by
Per Linse and co-workers in their profound computational
study of polyelectrolyte gels in equilibrium with a salt reservoir
solution.17,18

The zero-field Donnan treatment13 for constant-charge plates,
was recently extended14 to surfaces with a regulated charge
density. There, surface charge was due to a single association–
dissociation equilibrium, which excludes the possibility of a net-
charge sign reversal induced by a pH change: in other words,
those surfaces had no iso-electric point (IEP).14 Surfaces of
common inorganic colloids, composed of materials such as
silica, aluminium (hydr)oxides and iron (hydr)oxides, of course
do have an IEP owing to pH-dependent protonation and depro-
tonation of surface hydroxyl groups. The aim of the present work
is therefore to generalize the Donnan treatment14 to amphoteric
surfaces, i.e., surfaces grafted with a single type of molecules that
can accept as well as release cations, yielding positive or negative
charge densities depending on pH.

This paper is structured as follows. Derivations of electrical
potentials, dissociation degrees, and disjoining pressures for
amphoteric surfaces via Donnan zero-field theory are given in
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Section 2. Self-consistent field (SCF) computations, detailed in
Section 3, are done to assess the validity of the zero-field calcula-
tions done for ideal ions. The SFC lattice computations, which solve
the full PB equation for ions and solvent molecules of finite size,
are compared in Section 4 to predictions from Donnan theory. The
paper is finalized with general conclusions in Section 5.

2 Zero-field Donnan theory

In this section we will describe the repulsion between two
amphoteric, charge regulated surfaces using zero-field Donnan
theory. We will first give a description of the system at hand,
followed by derivations of the Donnan potential, degree of disso-
ciation, and disjoining pressure, with a focus on the limiting
behavior at low potentials.

2.1 General description of the system

Consider two parallel surfaces separated by a distance h,
immersed in an electrolyte solution. The electrolyte is a simple
strong monovalent acid such as HCl or HNO3. The inter-plate
region is in equilibrium with a reservoir of constant salt con-
centration rs, as sketched in Fig. 1.

The surface contains amphoteric groups –AH, that can both
accept and release ions. The following equilibria are accounted for:

–H2A+ " –HA + H+, (1)

–HA " –A� + H+, (2)

with the following equilibrium constants:

K1 ¼
sHArþ
sH2Aþ

; (3)

K2 ¼
sA�rþ
sHA

: (4)

Here r+ denotes the number density of cations, in this case H+,
at the surface of the plates. The surface densities are denoted
by si; the total surface density of the amphoteric groups is
given by

stot = sH2A+ + sHA + sA� (5)

and is assumed to be constant. It should be mentioned that,
through eqn (1) and (2), we implicitly also incorporate the
following surface equilibrium

–H2A+ + –A� " 2 –HA, (6)

with equilibrium constant

K3 ¼
sHA

2

sH2A
þsA�

¼ K1

K2
: (7)

We will follow the convention of referring to the numerical
values of the equilibrium constants through their pK’s, defined
as pKi � �log Ki.

From now on, we consider the limit of strongly overlapping
electric double layers, i.e., it is assumed that all inter-plate
separations are smaller than approximately the Debye length,
defined as

lD �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

8plBI
p ; (8)

where lB � e2/(4pe0erkBT) is the Bjerrum length of the medium
(with e the elementary charge, e0 the vacuum permittivity, er the
relative permittivity, kB the Boltzmann constant, and T the
absolute temperature) and I is the ionic strength. Under these
conditions, the electric field between the plates is negligible
and the ions are distributed homogeneously: r+ is a spatial
constant.

By solving eqn (1), (2) and (5) for sA� and sH2A+ simulta-
neously, we find that the degree of dissociation into positively
and negatively charged sites is given by

aþ �
sH2Aþ

stot
(9)

¼

rþ
rs

� �2

rþ
rs

� �2

þ k1
rþ
rs
þ k1k2

; (10)

and

a� �
sA�
stot

(11)

¼ k1k2

rþ
rs

� �2

þ k1
rþ
rs
þ k1k2

; (12)

where the dimensionless equilibrium constants k1 and k2,
defined through

ki � Ki/rs, (13)

have been introduced.

Fig. 1 Schematic overview of the system under consideration. Two plates,
grafted with amphoteric groups (–AH), are in equilibrium with a salt reservoir
containing a simple strong acid (HCl) at fixed concentration rs. The
amphoteric groups, with density stot, can acquire or release protons with
equilibrium constants K1 and K2 respectively, such that the surfaces become
positively or negatively charged. An external pressure DPd is required to fix
the distance h between the plates.
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When the plates are infinitely far apart, the concentration of
ions in the inter-plate region becomes equal to that of the reservoir.
Hence we find for the maximum degree of dissociation:

amax
þ ¼ 1

1þ k1 þ k1k2
; (14)

amax
� ¼ k1k2

1þ k1 þ k1k2
: (15)

For comparison with SCF computations, it is convenient to
vary the pH of systems while keeping the Debye length lD con-
stant through addition of inert background salt. This scenario
can be described by choosing effective values for pH, pK1, and
pK2. For instance, SCF computations at I = 10�6 M, pH = 6.5,
pK1 = 1, and pK2 = 13 may be mapped onto a system with pH = 6.0,
pK1 = 0.5, and pK2 = 12.5.

2.2 Donnan potential

The concentration of cations and anions in the inter-plate
region is assumed to be linked to the salt concentration in
the reservoir through a Boltzmann distribution,

r� = rs exp(8u), (16)

where u = ec/(kBT) is the dimensionless Donnan potential
difference of the inter-plate region w.r.t. the reservoir, with
c the potential difference. It is emphasized that u is assumed to
be a spatial constant in our zero-field Donnan model. It should
be compared to the mid-plane potential resulting from more
elaborate approaches (such as the full Poisson–Boltzmann
theory incorporated in our SCF computations), because halfway
between the two plates the local electric field is zero.

An expression for the potential u may be derived based on
the boundary condition that the inter-plate region is electrically
neutral. Electroneutrality entails that

r+h + 2stota+ = r�h + 2stota�, (17)

which can be rewritten as

sinh u ¼ stot
rsh

aþ � a�ð Þ; (18)

using eqn (10), (12) and (16) and (r+ � r�)/(2rs) = �sinh u.
It turns out that it is convenient to rewrite this as

sinh u ¼ l
h

aþ � a�
amax
þ � amax

�
(19a)

¼ l
h

1þ k1 þ k1k2

1� k1k2

expð�2uÞ � k1k2

expð�2uÞ þ k1 expð�uÞ þ k1k2
; (19b)

where

l � stot
rs

amax
þ � amax

�
� �

(20a)

¼ stot
rs

1� k1k2

1þ k1 þ k1k2
: (20b)

The parameter l has the unit of length and its absolute
magnitude sets the characteristic length scale for repulsions

between strongly overlapping double layers. Note that the sign of
l in this definition follows the sign of the surface charge: it is
positive for a net cationic surface and negative for a net anionic
surface, because k1k2 o 1 for the former and k1k2 4 1 for the latter.

The length scale l can be related to the Gouy–Chapman
length,12 which is inversely proportional to the number of
charges s per unit area of a surface:

lGC � (2plB|s|)�1. (21)

In our case, s (and consequently lGC) continuously varies
with separation distance between the plates, but as a reference
we may take the Gouy–Chapman length at infinite separation:

lmax
GC � (2plBstot|a

max
+ � amax

� |)�1, (22)

from which l follows as

|l| = 4lD
2/lmax

GC . (23)

Eqn (19) has a rather involved (though analytic) solution
since it is cubic in exp u and, for brevity, we do not show it here.
A straightforward solution for the Donnan potential at contact
is available however. It follows from the fact that, for h - 0, the
last fraction in eqn (19b) must become zero:

expð�2uÞ � k1k2

expð�2uÞ þ k1 expð�uÞ þ k1k2
¼ 0 for h! 0: (24)

Therefore, the contact electric potential u0 is given by

u0 ¼ � ln
ffiffiffiffiffiffiffiffiffi
k1k2

p
(25)

which is valid for potentials of arbitrary magnitude. This result
entails that the contact potentials for amphoteric surfaces
remain finite, whereas for surfaces with a single dissociation
equilibrium (k1 -N or k2 - 0) or with a fixed charge (k1 -N

and k2 - 0) the contact electric potential diverges.13,14,19 It
should also be noted that the contact potential is independent
of the surface density stot of the amphoteric groups.

In the limit of small potentials, more straightforward limit-
ing solutions can be obtained. When retaining only the first
order terms of eqn (19), it can be shown that

u ’ 1

ueff0

þ h

l

� ��1
for juj � 1; (26)

where we denote ueff
0 as the effective Donnan potential at con-

tact (h = 0) in the low-potential limit, defined as

ueff0 � �
1� k1k2ð Þ 1þ k1 þ k1k2ð Þ

k1 1þ 4k2 þ k1k2ð Þ : (27)

It is noted that u0 and ueff
0 have the same value for small contact

potentials. This does not hold for large contact potentials (e.g., far
from the IEP), however the definition of eqn (27) ensures that
whenever the Donnan potential u becomes small upon increasing
separation, eqn (26) will still predict the correct Donnan potential,
even if u0 and/or ueff

0 are large. This would not be the case if one
would naively use u0 (eqn (25)) in place of ueff

0 in eqn (26). This is the
reason that eqn (27) can be viewed as an effective or apparent contact
potential that one would probe at intermediate separations.
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From eqn (26) it is evident that the decay of the Donnan
potential with increasing separation h is fully set by the effective
contact potential ueff

0 and length scale l alone. We can make a
series expansion of eqn (26) for small inter-plate separations
h to find that

u ’ ueff0 1� ueff0

h

l
þ ueff0

h

l

� �2

þ � � �
" #

(28)

’ ueff0 1� ueff0

h

l

� �
for juj � 1 and h! 0; (29)

whereas for large separations,

u ’ l
h

1� 1

ueff0

l
h
þ 1

ueff0

l
h

� �2

þ � � �
" #

(30)

’ l
h

for juj � 1 and h!1: (31)

Interestingly, the Donnan potential at large separations is inde-
pendent of ueff

0 to leading order. In other words, for sufficiently
large separations, the decay of u(h) shows universal behavior,
when the separations are normalized to the length scale l.

2.3 Degree of dissociation

The degree of dissociation can be obtained from substitution of
eqn (16) into eqn (10) and (12):

aþ ¼
expð�2uÞ

expð�2uÞ þ k1 expð�uÞ þ k1k2
; (32)

a� ¼
k1k2

expð�2uÞ þ k1 expð�uÞ þ k1k2
: (33)

The net degree of dissociation, which is proportional to the
charge density of the surfaces, is therefore given by

aþ � a� ¼
expð�2uÞ � k1k2

expð�2uÞ þ k1 expð�uÞ þ k1k2
: (34)

For two plates at contact, using eqn (25), it follows that

aþðh ¼ 0Þ ¼ a�ðh ¼ 0Þ ¼ 1

2þ
ffiffiffiffiffi
k1

k2

r : (35)

Since the net charge density on each plate is proportional to
a+ � a�, this means that two amphoteric plates at contact fully
discharge each other. This full net discharge of the plates at
contact in turn enables the finite contact potential u0.

For low potentials, eqn (32) and (33) may be linearized
to yield

aþ ’
1� 2u

ð1� 2uÞ þ k1ð1� uÞ þ k1k2
(36)

¼
amax
þ 1� 2ueff0 1þ ueff0

h

l

� ��1" #

1� amax
þ ueff0 2þ k1ð Þ 1þ ueff0

h

l

� ��1 for juj � 1; (37)

and

a� ’
k1k2

ð1� 2uÞ þ k1ð1� uÞ þ k1k2
(38)

¼ amax
� k1k2

k1k2 � amax
� ueff0 2þ k1ð Þ 1þ ueff0

h

l

� ��1 for juj � 1; (39)

where eqn (26) was employed. Likewise, the corresponding
limits of small and large separations may be obtained using
eqn (29) and (31), but for brevity we omit them here.

2.4 Disjoining pressure

The expressions for u also allow to calculate the disjoining
pressure of the charge-regulated plates. The disjoining pressure,
scaled to the osmotic pressure of the salt reservoir, is defined as

D ~P � DP
2rskBT

(40)

¼ rþ þ r� � 2rs
2rs

: (41)

Inserting the Boltzmann distribution of eqn (16) yields

D ~P = cosh u � 1. (42)

Eqn (42) is also valid when there is only weak overlap of the
double layers, as long as the electric field in the mid-plane is
zero and the ions in the mid-plane behave ideally.

For small potentials, cosh u� 1 ’ 1

2
u2. Using eqn (26), (29)

and (31), we find:

D ~P ’ 1

2

1

ueff0

þ h

l

� ��2
for juj � 1; (43)

D ~P ’ 1

2
ueff0

� �2
1� 2ueff0

h

l

� �
for juj � 1 and h! 0; (44)

D ~P ’ 1

2

l
h

� �2

for juj � 1 and h!1: (45)

It follows that the inverse square decay, first predicted for
constant-charge surfaces13 and charge-regulated surfaces with
a single equilibrium,14 also holds for amphoteric surfaces,

as long as ueff0

h

l
� 1. The prefactor ueff

0 in this limit entails,

perhaps somewhat counter-intuitively, that for small contact
potentials, large separations are necessary to achieve this con-
dition. For constant-charge and single-equilibrium surfaces,
the contact potential is infinite, thus this subtlety is not present
for those surfaces. For infinite contact potentials, eqn (43)
directly reduces to eqn (45).

3 SCF computations

In order to assess the validity of our theoretical approximations
in the previous section, we performed self-consistent field (SCF)
calculations to compute the thermodynamic properties of
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two infinite parallel amphoteric plates in an electrolyte
solution. In contrast to the zero-field approximation, the SCF
computations solve the full Poisson equation (on a mean-field
level) and assume a finite size for ions and solvent. SCF theory
has been extensively discussed in the literature before, see
ref. 20–27 for details. Here we will mostly focus on a description
of the parameters used in the computations.

We perform our calculations on the basis of the numerical
lattice approximation of Scheutjens and Fleer.20,23 In the
Scheutjens–Fleer method, space is represented by a set of
lattice sites. For the application of SCF theory in this work,
the focus is on a flat geometry in which T lattice layers are con-
sidered. The lattice layers are numbered z = 0, 1, 2,. . ., T, T + 1,
where the first plate is located at z = 0 and the second plate at
z = T + 1. The inter-plate distance is given by h = bT, where b is
the size of a lattice site. The solution between these plates is in
equilibrium with a reservoir of constant chemical potential.

Our calculations are performed with the following parameters.
The size of a lattice site is set to b = 0.3 nm and all ions, solvent
molecules, and surface groups in the system occupy a single
lattice site. We assume ideal behavior, so all Flory–Huggins
interaction parameters w are set to zero.26,28 The relative permit-
tivity of all components is fixed to 80 to model water and the
temperature T = 298.15 K. The self-dissociation of water is
modeled with an equilibrium constant pKw = 14, leading to a
minimum ionic strength I = 10�7 M at a pH of 7 and higher
values at different pH. Additional (inert) background salt is added
in certain calculations; the reported ionic strength is the total in
the reservoir due to inert background salt and the acid–base
equilibrium at given pH. The two plates are grafted with weakly
acidic sites located directly next to the plates, i.e., at z = 1 and
z = T, with a density stot on each plate. The minimum number of
lattice layers between the plates is therefore T = 2, i.e., such that
the grafted groups touch but do not interpenetrate.

Two primary outcomes of the SCF computations that are
relevant for comparison to our zero-field theory are the electro-
static potential profiles c(z) and volume fraction profiles f(z) of
all components. The electrostatic zero-field potential from the
Donnan theory is compared to the potential at the mid-plane
(c(T/2)) of the SCF computations. The degrees of dissociation a+

and a� follow from the fraction of surface groups that are in a
positive or negative state, respectively.

The disjoining pressure can be obtained in various ways, for
instance from the derivative of the semi-open grand potential
with inter-plate separation.14 Here, we opt to obtain the dis-
joining pressure from the density of the ions in the mid-plane
(z = T/2). Since at the mid-plane the electric field is exactly zero
and all interaction parameters are set to zero, the dimension-
less disjoining pressure follows analogous to eqn (41) directly
from

D ~Pd ¼
fþðT=2Þ þ f�ðT=2Þ � 2fs

2fs

; (46)

where f+ and f� are the total volume fractions of positive and
negative ions (including background salt), respectively, and
where fs is the volume fraction of inert salt in the reservoir.

4 Results and discussion

In this section, we will first discuss the analytical results, followed
by a comparison with SCF computations.

4.1 Analytical results

When two charged amphoteric plates in an electrolyte solution
are brought to inter-plate separations h t lD, the electric field
between the plates should be sufficiently small for the zero-field
treatment of the preceding sections to apply. In the limit of two
touching plates, we find a finite contact Donnan potential due
to a complete discharging of the plates. This behavior can be
clearly seen in Fig. 2: there is no divergence of the potential
c = ukBT/e for small h/l. Since the disjoining pressure D ~Pd is
directly determined by the Donnan potential, the disjoining
pressure at contact also remains finite. Remarkably, the contact
potential u0 (eqn (25)) is fully determined by the equilibrium
constants pK1 and pK2 and the salt concentration; it is therefore
independent of the density stot of amphoteric surface groups.

Fig. 2 also shows various approximations to the zero-field
theory for the parameters listed in Table 1 (first section, pK1 = 1).
For two amphoteric plates at pH 6 (1 pH unit from the IEP), we
observe large potentials for small separations. Consequently, the
low-potential approximations (dashed blue curves) for the elec-
tric potential and pressure are not valid in such cases. However,
upon increasing the separation, the electric potential gradually
decreases and the low-potential approximation becomes valid,

Fig. 2 Comparison of various approximations for the Donnan potential
c = ukBT/e and disjoining pressure D ~Pd for two parallel plates grafted with
amphoteric groups (stot = 1 nm�2) according to the zero-field Donnan theory.
Equations plotted (top to bottom in legend): (potential) eqn (19), (26), (29)
and (31); (pressure) eqn (42)–(45). The dissociation constants are pK1 = 1 and
pK2 = 13 (IEP at pH 7) and the total ionic strength is held constant at I = 10�6 M
(lD = 304 nm). More details on the parameters can be found in Table 1.
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even though the contact potential is large. For pH 6.9 and 6.99,
closer to the IEP, the low potential approximation is valid over
the entire range.

Within the low potential approximation, the contact potential
ueff

0 dictates the decay of the electric potential and disjoining
pressure with the scaled distance h/l. The initial decay is linear,
with a slope set by ueff

0 , see eqn (29) and (44) (red dotted curve). This
contrasts surfaces with a constant charge or a single dissociation
equilibrium, which feature a divergence of the disjoining pressure
with h�1 and h�1/2, respectively, in the limit of small separations.19

This is the so-called Van ’t Hoff regime, where the repulsion is
dominated by an ‘ideal gas’ of counterions. The full discharging of
amphoteric surfaces at contact (eqn (35)) prevents this divergence.

However, at large separations the decay becomes independent
of ueff

0 , see eqn (31) and (45) (green dotted curve). When scaling
the disjoining pressure as (h/l)2D ~P, this universal inverse square
decay displays as a horizontal plateau. It is evident however that,
closer to the IEP an increasingly large separation h/l is required
to reach this limit. This is connected to the small contact
potential ueff

0 , see Table 1, because the large-separation limit
only holds for h c l/ueff

0 .
This brings us to the question: under which conditions can

the inverse square decay occur in practical amphoteric systems?
First of all, we note that the zero-field approximation is only valid
within the unscreened regime, i.e., for strongly overlapping
double layers or h t lD. Second, the electric potential must be
small, which is generally true for h c l even in case of large
contact Donnan potentials. (Naturally, for small contact potentials,
this condition is met regardless of separation.) Finally, to access
the inverse square decay of eqn (45), the condition h c l/ueff

0 must
be met. This suggests that, depending on the value of l, it may
become impossible to access the inverse square decay for increas-
ingly small contact potentials, since the Debye screening may
come into effect first. However, the values in Table 1 do suggest
that at least under certain combinations of parameters the inverse
square decay could be observable.

4.2 Comparison to SCF

To investigate the validity and accuracy of our zero-field theory
for two amphoteric surfaces, we will now compare the results

to self-consistent field (SCF) computations that solve the
full Poisson–Boltzmann equation and in which ions have a
finite size.

First we devote our attention to the situation at large Debye
length, when the ionic strength is low (I = 10�6 M, lD = 0.3 mm),
see Fig. 3. For these systems, we set a large difference between
the two equilibrium constants (pK1 = 1, pK2 = 13) and the pH
is rather close to the IEP, entailing very small degrees of disso-
ciation. A full overview of all parameters is given in the first
section of Table 1 (pK1 = 1).

From Fig. 3 it is evident that the zero-field Donnan treat-
ment gives a quantitative prediction of the electric potential,
the net degree of dissociation, and the disjoining pressure for the
parameters in question. We can identify three distinct regimes
in Fig. 3:

1. Relatively far from the IEP (e.g., a pH of 6), the electric
potential is large for small h. In this regime, the decay of u and
D ~Pd is governed by l.

2. For intermediate separations, h \ l, the system enters the
low-potential limit, and the length scale of the decay is set by
l/ueff

0 following eqn (26) and (43).
3. Finally, for large separations, the decay is once again set

by l, however the decay is now universal: the absolute value
of potential and pressure becomes independent of the contact
potential, following eqn (31) and (45).

Close to the IEP (pH 6.9 and 6.99), the contact potentials are
small: regime (1) is not present and regime (2) holds until the
plates touch. Additionally, all curves appear to be similar, except
for a different pre-factor. This is because close to the IEP, where
k1k2 E 1, the factor l/ueff

0 becomes constant:

l
ueff0

’ stot
rs

2

2þ k1
for k1k2 � 1: (47)

This can also be verified numerically from the data in Table 1.
Thus, in the vicinity of the IEP, a particular system will have a
universal behavior regardless of the precise distance to the IEP,
differing only by a pre-factor set by ueff

0 .
We now turn our attention to the situation an ionic strength

of I = 10�4 M (lD = 30 nm), see Fig. 4. The systems shown here
have a fixed pH of 7 and pK1 = 3. The second equilibrium

Table 1 Overview of relevant parameters for zero-field theory and SCF computations shown in Fig. 2–5. The contact potential and effective contact
potential are displayed here as c0 = u0kBT/e and ceff

0 = ueff
0 kBT/e, respectively. Note that the presence of additional inert background salt in the zero-field

theory is implicitly accounted for through a shift in the pK’s and pH; the reported values for k1 and k2 include this shift. For all systems, stot = 1 nm�2.
Identical values are not repeated

pK1 pK2 pH I (M) lD (nm) l (nm) c0 (mV) ceff
0 (mV) l/ueff

0 (nm) k1 k2 amax
+ amax

�

1 13 6 10�6 304 1.64 	 101 59.1 25.2 1.7 	 101 1.0 	 105 1.0 	 10�7 1.0 	 10�5 1.0 	 10�7

6.5 4.73 29.6 21.0 5.8 3.2 	 105 3.2 	 10�7 3.2 	 10�6 3.2 	 10�7

6.9 7.71 	 10�1 5.91 5.81 3.4 7.9 	 105 7.9 	 10�7 1.3 	 10�6 7.9 	 10�7

6.99 7.65 	 10�2 0.591 0.591 3.3 9.8 	 105 9.8 	 10�7 1.0 	 10�6 9.8 	 10�7

3 10 4 10�4 30.4 1.51 	 103 148 28.2 1.4 	 103 1.0 	 101 1.0 	 10�6 9.1 	 10�2 9.1 	 10�7

7 1.49 	 103 59.1 27.6 1.4 	 103 1.0 	 10�3 9.1 	 10�2 9.1 	 10�4

6 1.35 	 103 29.6 22.5 1.5 	 103 1.0 	 10�2 9.0 	 10�2 9.0 	 10�3

5.5 1.00 	 103 14.8 13.8 1.9 	 103 3.2 	 10�2 8.8 	 10�2 2.8 	 10�2

�1 15 6.5 10�6 304 4.73 	 10�2 29.6 21.0 5.8 	 10�2 3.2 	 107 3.2 	 10�9 3.2 	 10�8 3.2 	 10�9
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constant pK2 is varied, but in general pK1 and pK2 are signifi-
cantly closer together than in the previous example. A detailed
overview of all parameters is shown in the second section of
Table 1 (pK1 = 3).

From Fig. 4 it is immediately apparent that beyond separations
comparable to the Debye length, the zero-field assumption starts to

break down: screening comes into effect and the predicted potential,
degree of dissociation, and disjoining pressure as predicted by the
Donnan model are all higher than the numerical SCF results. At
small separations h t 15 nm the zero-field approach is still valid.
However, because Debye screening occurs at larger separations, the
low potential limit cannot be realized in these systems.

Fig. 3 Comparison between zero-field theory (solid black curve) and SCF computations (open circles) for the Donnan potential c = ukBT/e, net degree
of dissociation a+ � a�, and disjoining pressure D ~Pd for two parallel plates grafted with amphoteric groups (stot = 1 nm�2) as a function of the inter-plate
distance h at the indicated pH values. The dissociation constants are pK1 = 1 and pK2 = 13 (IEP at pH 7) and the total ionic strength is held constant at
I = 10�6 M through additional inert background salt (lD = 304 nm). More details on the parameters can be found in Table 1. Equations of zero-field theory
plotted (left to right in legend): (potential) eqn (19), (26) and (31); (dissociation) eqn (34); (pressure) eqn (42), (43) and (45).

Fig. 4 Comparison between zero-field theory and SCF computations for the Donnan potential c = ukBT/e, net degree of dissociation a+ � a�, and
disjoining pressure D ~Pd for two parallel plates grafted with amphoteric groups (stot = 1 nm�2) as a function of the inter-plate distance h. The dissociation
constant pK1 = 3 and pK2 is varied as indicated. The pH is 4 with no additional inert salt (ionic strength I = 10�4 M, lD = 30.4 nm). More details on the
parameters can be found in Table 1. Equations of zero-field theory plotted (left to right in legend): (potential) eqn (19) and (26); (dissociation) eqn (34);
(pressure) eqn (42) and (43).
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There are also qualitative differences between the systems
currently at hand and those previously discussed in Fig. 3. The
systems in Fig. 4 feature a very long-ranged decay of potential and
disjoining pressure with distance. The reason is that the length
scale l for these systems is very large, of the order of 1 mm. As can
be seen from eqn (20a), this is because there is a large net degree
of dissociation, as one of the pK’s is rather close to the pH.

Additionally, for pK2 = 10 there is a characteristic (rather
sharp) upturn of c = ukBT/e and D ~Pd at small h, which precedes
the slow decay of potential and pressure. This upturn is related
to the fact that surfaces with a single dissociation equilibrium
have an infinite contact potential. Here, the second dissocia-
tion equilibrium is very weak compared to the first equilibrium,
such that it is practically absent. The divergence of the contact
electric potential and contact disjoining pressure thus slowly
reappears when one of the equilibria becomes negligible.

Finally, we turn our attention to the inverse square decay of
pressure with separation. Since the focus of the current work is
on amphoteric surfaces, we will restrict ourselves to systems close
to the IEP, such that both equilibria play a role. As discussed in
the previous section, the observation of this behavior is most
likely when simultaneously the Debye length is relatively large
and both l and l/ueff

0 are small. The latter can be judged from
eqn (47). For systems close to the IEP, it turns out that l/ueff

0 is
small when k1 is large. Because close to the IEP k1k2 E 1, this
means that k2 must be small. In other words, there should be a
large difference between pK1 and pK2.

This requirement is illustrated in Fig. 5, which shows two
systems with (top) DpK = pK2� pK1 = 12 (same as in Fig. 3, pH 6.5)

and (bottom) DpK = 16 (see also Table 1, third section, pK1 = �1).
The pressure is scaled as (h/l)2D ~Pd, and the effective inter-plate
distance

heff = h � 2stotb
3 (48)

takes into account the finite volume of the surface groups.14 It
is evident that in the first case the plateau value (h/l)2D ~Pd = 0.5,
characteristic for the inverse square decay, is not fully devel-
oped due to the occurrence of Debye screening at h E 102 nm.
Increasing DpK to 16 decreases l hundredfold, while keeping
ueff

0 constant, see Table 1. This indeed makes the inverse square
decay clearly apparent.

It should be stressed that our SCF computations incorporate
a treatment of Poisson–Boltzmann theory on a mean-field level.
Therefore, deviations from Poisson–Boltzmann theory (such as
due to overcharging29 or under confinement30) are not accounted
for. We leave further discussion on the general validity of Poisson–
Boltzmann theory for other work; we note here that our results
show that the zero-field Donnan model represents an insightful
treatment of repulsions between amphoteric plates with strongly
overlapping double layers on the level of Poisson–Boltzmann
theory.

5 Conclusions

The entropic repulsion between two amphoteric surfaces has been
analyzed in the limit of zero electric field, where ideal ions are
homogeneously distributed in the inter-plate solution and are in
equilibrium with a reservoir with constant salt concentration. We
show that there is an inherent length scale l that governs the
decay of electric potential and disjoining pressure with inter-plate
distance, which serves as the unscreened counterpart of the Debye
length. In the limit of low potentials, we show that the decay is set
by an effective contact potential ueff

0 and the length scale l.
Further, the zero-field disjoining pressure between amphoteric
surfaces has an inverse-square decay for low potentials and
sufficient inter-plate distances, just as for constant-charge
surfaces and surfaces with a single dissociation equilibrium, be
it with a smaller amplitude due to the charge regulation. This is
remarkable, because in general scaling depends on the precise
boundary conditions (i.e., constant charge, constant potential, or
charge regulation). Numerical self-consistent field lattice compu-
tations quantitatively confirm the predictions of the zero-field
model, including the inverse square decay for large separations
and small potentials. Additionally, the zero-field model remains
valid at large electric potentials, showing that Donnan theory is a
tractable way to describe repulsions between amphoteric charged
plates separated by distances smaller than the Debye length. The
results described here have direct practical relevance, for instance
to understand electrostatic interactions in self-assembled multi-
layered structures, such as microtubes or membranes. A perti-
nent continuation for future work would be an extension of the
present model towards non-flat geometries, such as concentrated
dispersions of amphoteric colloids with average particle separa-
tions of the order of the Debye length.

Fig. 5 Manifestation of inverse square decay of disjoining pressure with
separation heff of two amphoteric plates. The dissociation constants are
(top) pK1 = 1 and pK2 = 13, and (bottom) pK1 =�1 and pK2 = 15 (IEP at pH 7).
The ionic strength is I = 10�6 M through additional inert background salt
(lD = 304 nm) and the pH is 6.5. The pressure is scaled as (heff/l)2D ~Pd, such
that the inverse square decay appears as a horizontal plateau. The effective
inter-plate distance heff is defined in eqn (48). From the zero-field theory
eqn (42) (full theory) and eqn (45) (|u| { 1, h - N) are shown.
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