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Abstract  
In this article, we introduce the Stata implementation of a flow-based cluster 

algorithm written in Mata. The main purpose of the flowbca command is to identify 
clusters based on relational data of flows. We illustrate the command by providing 
multiple examples of applications, from the research fields of economic geography, 
industrial input-output analysis, and social network analysis. 
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1 Introduction

In this article, we introduce the Stata implementation of a flow-based cluster algorithm,
flowbca, written in Mata.A flow variable registers the total change of the variable from
one entity to another entity during a specific period of time. The entity can be a region,
firm, or person, and during the process of clustering, they will be grouped according to
the size of the bilateral flows. Currently, flow-based cluster algorithms available in Stata
focus on visualizing social networks (e.g. Corten 2011; Miura 2012). However, these
algorithms lack the ability to flexibly aggregate units into clusters based on relational
data of flows. The main motivation to write flowbca is that there is a need in many
statistical applications, also in research fields other than social network analysis (SNA),
for an algorithm to flexibly aggregate non-overlapping units into clusters. Specifically,
as it provides a choice of how to operate clusters in empirical analyses and allows a
researcher to compare alternative sets of clusters.

Given the increasing availability and use of relational data of various types of flows,
flowbca can be of use to a variety of research fields. For example, the field of economic
geography makes use of flows to cluster regional units into regional clusters of economic
activity (Coombes, Green, and Openshaw 1986; Brezzi, Piacentini, Rosina, and Sanchez-
Serra 2012).1 Alternatively, industrial input-output analysis is based on trade linkages
that register the flows of goods that are produced in one production chain and used as
input in another production chain (Leontief 1986; Timmer, Dietzenbacher, Los, Stehrer,
and de Vries 2015). Finally, SNA detects communities (Fortunato 2010) and defines flow
networks (Ford Jr and Fulkerson 1962; Beguerisse-Dı́az, Garduño-Hernández, Vangelov,
Yaliraki, and Barahona 2014) in graphs as connected groups based on the strength of
flows between nodes.

flowbca is the implementation in Stata of a so-called agglomerative hierarchical
clustering algorithm (Fortunato 2010) to define clusters based on relational data of flows,
which has been used in the aforementioned research fields. The key difference between
flowbca and other agglomerative hierarchical clustering algorithms currently available
in Stata is the focus on flow-based clustering instead of distance-based clustering.2

In general terms, the flow-based cluster algorithm behind flowbca can be described
as follows. It starts from a set of K disjoint units. The algorithm aggregates two
units into one, considering the bilateral flows between the units. Clusters are defined
by iteratively repeating this procedure. In each iteration of the algorithm, the decision
criterion for aggregating two units into one is based on an optimization function selecting
the maximum flow out of all bilateral flows. The source unit from which the largest
flow starts is aggregated to the destination unit.

The algorithm is flexible in various aspects. First, the optimization function can

1. Global regional clusters of economic activity are defined using trade flows (Smith and White 1992),
foreign direct investment flows (Bathelt and Li 2014) or multinational firms relocation flows (Chen
and Moore 2010) Within-country regional clusters such as local labor markets or local housing
markets can be defined using commuting flows from place of residence to place of work, job-to-job
turnover flows, household migration flows or job search flows (e.g. Duranton 2015).

2. Distance-based clustering uses the distance between a pair of units as a measure of similarity.
Similar units are grouped into the same cluster and dissimilar units into separate clusters.
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be based on two definitions of flows, directed and undirected. The former refers to the
maximum of the single directed flows that are flowing from one unit to another; the
latter denotes the maximum of the sum of two bilateral flows. Second, the optimization
function can be based on absolute flows and relative flows, which are computed by
taking each absolute flow relative to the unit-specific total of outgoing flows. Third, the
algorithm allows for flexibility in the stopping criterion by allowing for five optional ex
ante user choices different from the default one. Using different options the researcher
can thus create different sets of clusters.

After the algorithm has been terminated, the researcher could evaluate the choice of
optimization function and stopping criterion by analyzing the level of self-containment
of the set of clusters. The level of self-containment is approximated by the average of the
internal relative flows. A higher average of the internal relative flows means there is a
stronger connectivity within each cluster and a weaker connectivity to outside clusters.

2 The flow-based cluster algorithm

2.1 The algorithm

The main inputs of the algorithm is a K-dimensional square matrix that contains the
absolute flows between K different units. Effectively, each row represents a different
source unit and each column represents a different destination unit.

The algorithm consists of the following five steps. The steps of the algorithm are
provided given the default options of the algorithm that will be described in Section 3.

Step 1: the absolute flows between K different units are rewritten as a K-dimensional
square matrix (i.e. an adjacency matrix in graph theory) of absolute flows F (K):

F (K) =


f11 f12 · · · f1K
f21 f22 · · · f2K
...

...
. . .

...
fK1 fK2 · · · fKK

 (1)

where fij (i 6=j) represents the flow in absolute term from source unit i to destination
unit j. Flows fii are defined as the internal absolute flows.

Step 2: the matrix F (K) is rewritten in terms of relative flows as a K-dimensional
square matrix G(K). Relative flows are computed by taking each absolute flow relative
to the unit-specific total of outgoing flows. G(K) can be expressed as:

G(K) =


g11 g12 · · · g1K
g21 g22 · · · g2K
...

...
. . .

...
gK1 gK2 · · · gKK

 (2)
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where

gij = fij/
K∑
t=1

fit i, j = 1, 2, . . . ,K

Note that the matrix is row-normalized.

Step 3: the optimization function selects the arguments of the maximum directed
relative flow from one unit to another, for i6=j, of all K × (K − 1) pairs of i and j:

(r, s) = arg max
i,j
i6=j

gij (3)

where units r and s are defined as the source unit and destination unit, respectively.
If grs = 0 or K = 1, the default stopping criterion of the procedure is met and the
algorithm is terminated.

Step 4: source unit r will be aggregated to destination unit s. The core of the cluster
is defined as the receiving unit, i.e. destination unit s. To be able to adjust matrix F (K),
a K × (K − 1)-dimensional matrix C(K) is specified. C(K) can be expressed as:

C(K) = (e1, e2, . . . , er−1, er + es, er+1, . . . , es−1, es+1, . . . , eK) (4)

where ei represents the i-th unit column vector. For sake of convenience in the exposition
of this algorithm, matrix C(K) is based on the assumption that the identifier value of
unit r is larger than the identifier value of unit s.

Step 5: the absolute flows to and from units r and s will be added. The new matrix
F (K−1) can be expressed as:

F (K−1) = (C(K))TF (K)C(K) (5)

where T refers to the transpose operator. F (K−1) is now a square matrix of dimension
(K − 1). The algorithm continues with step 1 starting with F (K−1) as an input.

After the stopping criterion of step 3 has been met, the algorithm is terminated and
K∗ clusters are returned. The matrix of absolute flows between the K∗ clusters, F (K∗),
equals

F (K∗) = CTF (K)C (6)

where matrix C is a matrix product of the matrices C(K) . . . C(K∗), which can be ex-
pressed as C = C(K)C(K−1)C(K−2) . . . C(K∗).

2.2 Stopping criteria

In step 3, the stopping criterion of the algorithm is defined as grs = 0 or K = 1. The
algorithm allows for five alternative stopping criteria, and each of them is a modification
of the stopping criterion mentioned in step 3.

First, the researcher could specify a flow threshold q. The threshold q represents the
minimum level of interaction at which a source unit is aggregated to a destination unit.
The algorithm is terminated in step 3 if grs < q.
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Second, the researcher could specify a minimum number of clusters k. The algorithm
is terminated in step 3 if the number of units have reduced to this minimum, i.e. if
k = K∗.

Third, the researcher could specify a minimum average of the internal relative flows
la. The average of the internal relative flows La is defined as equal to the sum of the
internal relative flows gii relative to the number of clusters K∗:

La =
1

K∗

K∗∑
i=1

gii (7)

The algorithm is terminated in step 3 if la ≤ La.

Fourth, the researcher could specify a minimum weighted average of the internal
relative flows lw. The weighted average of the internal relative flows Lw is defined as
equal to the sum of the internal absolute flows relative to the sum of all absolute flows:

Lw =
1

N

K∗∑
i=1

fii (8)

for which the sum of all absolute flows equals N =
∑K∗

i=1

∑K∗

j=1 fij . The algorithm is
terminated in step 3 if lw ≤ Lw.

Finally, the researcher could impose a minimum internal relative flow lm that all of
the clusters must satisfy. The minimum of the internal relative flows Lm is defined by:

Lm = min
i

gii (9)

The algorithm is terminated in step 3 if lm ≤ Lm.

2.3 An alternative optimization function

The algorithm provides two different optimization functions, which are based either on
the directed or on the undirected flows approach. The optimization function based on
the directed flows selects arg max gij , considering the maximum of the directed flows
from one unit to another. In contrast, the optimization function based on the undirected
flows approach selects arg max gij + gji, considering the maximum of the sum of two
bilateral flows, which can be expressed as:

(r, s) = arg max
i,j
i6=j

gij + gji (10)

Using the undirected flows approach, the algorithm is terminated if grs + gsr = 0 or
K = 1. Otherwise, the procedure will continue with step 4 of the algorithm. Note that
the new cluster gets the identification number of the unit with the largest incoming
flow, which represents the core of the new cluster.
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2.4 Some caveats

In step 3 it might be the case that arg max gij holds for multiple pairs of units i, j.
Consequently, the pair r, s will not be unique. The following rules are imposed to close
the algorithm:

1. If there are two or more source units r, e.g. r1 and r2, that both have the
maximum flow to the same destination unit s, r1 is aggregated to s if r1 has the
highest incoming flow from the other source unit(s) r.

2. If source unit r has identical flows to two or more units s, e.g. s1 and s2, r is
aggregated to s1 if s1 has the highest incoming flow from the other destination
unit(s) s.

3. If both r and s are not unique, e.g. there are two pairs r1,s1 and r2,s2, the
algorithm aggregates r1 to s1 if s1 has the highest incoming flow from the other
destination unit(s) s.

4. For the iterations where a unique pair is still not defined, the algorithm picks one
pair r, s of all pairs that correspond to the maximum flow.

3 The flowbca command

3.1 Syntax

flowbca varname varlist
[
, q(#) k(#) la(fraction) lw(fraction) lm(fraction)

opt f(#) save k
]

3.2 Description

flowbca implements the algorithm that is discussed in Section 2 and performs it in Mata.
The main inputs for flowbca are the variables listed in varname and varlist . varname
contains one variable representing the source unit identifier. This variable should be
numerical, as string variables are ignored by the flowbca command. varlist contains
a set of variables, one variable for each distinct destination unit, which represents the
absolute flows from the source units to the destination unit.

Effectively, the destination unit variables represent the columns of a K-dimensional
square matrix of flows between the K units. For example, the value of the first obser-
vation of a destination unit variable represents the absolute flow from the first source
unit to the corresponding destination unit. The source and destination units should be
numbered such that if they are sorted and ordered in a sequential order, the diagonal
elements of the K-dimensional square matrix represent the internal absolute flows. If
the flow data of the researcher is only available in an K×3-dimensional matrix in which
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there are three columns that represent the source unit identifier, destination unit iden-
tifier and absolute flows between the units, respectively, the data should be reshaped
by the user into a K-dimensional square matrix.

3.3 Options

q(#) sets the flow threshold. To set a relative flow threshold, place a fraction in paren-
theses after q. To set an absolute threshold, place an integer number in parentheses
after q. If the threshold is higher than the maximum of all flows, the stopping cri-
terion of the procedure has been met and the algorithm is terminated. The default
is to have a flow threshold equal to zero.

k(#) specifies the number of distinct clusters the algorithm should define. The default
is to define one cluster.

la(fraction) specifies the minimum average of the internal relative flows. If the fraction
is lower than or equal to the average of the internal relative flows, the stopping
criterion of the procedure is met. The default is no minimum average of the internal
relative flows.

lw(fraction) specifies the minimum weighted average of the internal relative flows. If
the fraction is lower than or equal to the weighted average of the internal relative
flows, the stopping criterion of the procedure is met. The default is no minimum
weighted average of the internal relative flows.

lm(fraction) specifies the minimum internal relative flow. If the fraction is smaller than
or equal to the minimum value of the internal relative flows, the stopping criterion
of the procedure is met. The default is no minimum internal relative flow.

opt f(#) specifies the optimization function. Four optimization functions can be cho-
sen. The default is opt f(1), which implements the directed relative flows approach.
The other functions are: opt f(2) implementing the undirected relative flows ap-
proach; opt f(3) implementing the directed absolute flows approach; opt f(4) im-
plementing the undirected absolute flows approach.

save k is an option to save the cluster setk data sets (see below). For each k, the data
set contains the absolute flows between the remaining k units (i.e. the matrix F (K)

for each k). To save the data sets, specify save k.

3.4 Output

flowbca saves three data sets.3

1. cluster set contains variables that characterize the defined clusters, including vari-

3. We suggest that the researcher creates a data set that consists of the variable sourceunit and a
variable that represents the source unit labels. This data set could be merged to the data sets
cluster set and unit set.
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ables that represent the cluster identifier (clusterid), the cluster-specific internal
relative flow (internal), the average of the internal relative flows (La), the weighted
average of the internal relative flows (Lw), the minimum of the internal relative
flows (Lm), the cluster-specific total value of outgoing flows (rowflows), the total
value of all flows (N) and a set of variables that represents the flows among all
clusters (destinationunit).

2. unit set contains variables that provide information on each starting unit, includ-
ing variables that represent the source unit identifier (sourceunit), the cluster to
which the unit is aggregated (clusterid), the relative flow at which the source
unit is aggregated to a destination unit (g), the number of distinct clusters that
are remaining after aggregating the source unit (round) and a zero-one indicator
variable that equals one if the unit is the core of a cluster and zero otherwise
(core).

3. cluster setk contains the source unit identifier variable (sourceunit), and one vari-
able for each destination unit representing the absolute flow (destinationunit). If
the researcher uses the option save k, the cluster setk data sets will be saved.

4 Examples

4.1 Example 1: Within-country regional clusters based on commut-
ing flows

In the first example of a statistical application, a researcher uses flowbca to construct
regional clusters based on individuals′ commuting flows from municipality of residence
to municipality of work. The researcher aims to compare the levels of self-containment
of forty NUTS 3 areas and twelve provinces to the levels of self-containment of forty
and twelve clusters defined using flowbca, respectively. Note that a higher level of self-
containment means there is a stronger connectivity within each regional cluster and a
weaker connectivity to outside regional clusters. That is, clusters that are relatively self-
contained are characterized by relatively many individuals who both live and work in
the identical cluster. The Dutch NUTS 3 areas offer an interesting point of comparison,
as they were defined, in 1971, based on journey-to-work and place-of-work statistics that
reflected the employment outcomes and commuting behavior of the Dutch population.
Moreover, in research on European countries, NUTS 3 areas are often used as the
regional classification to operate regional clusters (e.g. Ciccone 2002).

For this example, aggregate data on 7,131,000 commuting flows in 2014 were used,
at the municipality level, retrieved from the CBS StatLine open databank of Statistics
Netherlands (CBS 2018).4 The algorithm starts from a set of 398 municipalities (K).5

4. Note that the researcher could also exploit micro data to construct clusters. For instance, subgroup-
specific clusters could be defined using subgroup-specific flows (Farmer and Fotheringham 2011).

5. Note that five municipalities, which represent small Wadden islands in the northern part of the
Netherlands, were removed. These municipalities were removed as they would be defined as small
self-contained clusters that artificially increase the average of the internal relative flows (La).
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Note that this example uses the option k() of flowbca, as the researcher aims to
define a specific number of clusters. The optimization function is based on the directed
relative flows approach. The directed flows approach was used, as commuting flows are
by nature directed in the sense that they flow from one unit to another. Relative flows
are preferred to absolute flows, as relative flows function as weights to account for the
relative importance of a unit that allows smaller source units to be able to aggregate
to bigger destination units. To visualize the defined clusters, the Stata commands
mergepoly (Picard and Stepner 2015) and spmap (Pisati 2018) were used.

Before we discuss the results, we illustrate the main steps of the specific code used
to create Figures 1a and 1b.

. /* A loop is used to define 40 and 12 regional clusters (Fig. 1b and 2b, respectively) */

. local numbers 40 12

. local a=1

. foreach numbs of local numbers {

. /* Open the data set that contains commuting flows across the Dutch municipalities,
retrieved from Statistics Netherlands CBS Statline. */
. use "CBS_COMM_Flow.dta", clear

. /* Apply flowbca. "homemun" is the source unit identifier;
"workmun*" are the destination unit identifiers */
. flowbca homemun workmun*, k(`numbs´)

(output omitted )

. /* Get the summary statistics of the La, Lw, Lm variables */

. display as text "Values of La, Lw, Lm for Figure `a´b"

. sum La Lw Lm

. /* Syntax lines 43 to 61 are specified to merge the cluster labels
(names of the regions) to the cluster_set data set and the unit_set
data set (see footnote 3 in the paper) */
. use unit_set, clear
. rename sourceunit homemun
. merge 1:1 homemun using "Ex1label.dta"
. keep if _merge==3
. drop _merge
. rename homemun sourceunit
. save unit_set_Fig`a´b, replace

/* Open the shape boundary database file "Ex1nldb", which was
generated using the ESRI shapefile of the Netherlands */
. use "Ex1nldb.dta", clear

. /* Create an identifier */

. gen ID=_n

. order ID

. /* Merge "Ex1nldb" to the codings data set "Ex1id.dta" */

. merge 1:1 ID using "Ex1id.dta"

. /* Merge the data set to "unit_set_Fig`a´b.dta" that includes the cluster identifier */

. merge 1:1 sourceunit using "unit_set_Fig`a´b.dta"

. save "Ex1part1", replace

. /* Generate a data set "Ex1pointcoord.dta" that contains the point coordinates of the cores
of the clusters that are returned by the algorithm */
. use "Ex1part1", clear
. keep if core==1
. keep clusterid x_centroid y_centroid
. save "Ex1pointcoord.dta", replace

. /* Mergepoly: the mergepoly command is used to merge adjacent polygons from a
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shape boundary file: see http://fmwww.bc.edu/RePEc/bocode/m/mergepoly.html */
. /* We use the coordinate file "Ex1nlcoord" to merge the polygons of the units
that are in the same cluster (given by the variable "clusterid") */
. use "Ex1part1", clear
. mergepoly id_shape using Ex1nlcoord, coordinates(Ex1nlcoord2) replace by(clusterid)
. /* The output is the "Ex1nlcoord2" data set, which contains the coordinates of each cluster.
This data set will be used to draw the thick border of the cluster in the map below */

. /* Now draw the map with the spmap command */

. use "Ex1part1", clear

. spmap clusterid using Ex1nlcoord, id(id_shape) clmethod(unique) osize(thin) fcolor(Blues2)
legenda(off) polygon(data("Ex1nlcoord2.dta") ocolor(Greys2) osize(thick ..) by(_ID))
point(data("Ex1pointcoord.dta") x(x_centroid) y(y_centroid) by(clusterid) size(medium)
ocolor(white ..))
. graph export "Figure`a´b_clusters.png", replace width(5000)

. local a=`a´+1

}
Values of La, Lw, Lm for Figure 1b

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

La | 40 .6947013 0 .6947013 .6947013
Lw | 40 .804838 0 .804838 .804838
Lm | 40 .3852459 0 .3852459 .3852459

Values of La, Lw, Lm for Figure 2b

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

La | 12 .8688188 0 .8688188 .8688188
Lw | 12 .9008133 0 .9008133 .9008133
Lm | 12 .7762533 0 .7762533 .7762533

Figure 1 shows that the weighted average of the internal relative flows (Lw) of the
forty defined regional clusters (see Figure 1(b)) is higher than the weighted average of
the NUTS 3 areas (see Figure 1(a)). This means there are more individuals who live
and work in their defined regional cluster (about 80.5 per cent) than in their NUTS 3
area (about 74.3 per cent). Figure 2 shows that the average of the internal relative flows
(La), the weighted average of the internal relative flows (Lw) and the minimum of the
internal relative flows (Lm) are higher in the case of the twelve defined clusters than
of the twelve pre-defined administrative provincial areas. All in all, this example shows
that flowbca can be used to define meaningful regional clusters that are characterized
by a relatively high level of self-containment.
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(a) NUTS 3 areas. La = .699; Lw = .743;
Lm = .462; K∗ = 40; K = 40

(b) Forty clusters. La = .695; Lw = .805;
Lm = .385; K∗ = 40; K = 398

Figure 1: NUTS 3 areas and forty defined clusters. Notes: A commuting flow registers the number of
workers who commute from a municipality of residence to a municipality of work. The NUTS 3 cores
(black dots with a white circle) are defined as the municipality with the highest number of residents.
The cores of the defined regional clusters are returned by the algorithm. Each distinct cluster is
surrounded by a thick border and highlighted by a different color. Note that the color of a cluster does
not provide any further information. La, Lw and Lm are returned by the algorithm, and refer to the
average of the internal relative flows (Eq. (7)), the population-weighted average of the internal relative
flows (Eq. (8)), and the minimum of the internal relative flows (Eq. (9)), respectively. K∗ and K refer
to the number of defined regional clusters and the number of distinct starting units, respectively.
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(a) Provincial areas. La = .833; Lw = .866;
Lm = .570; K∗ = 12; K = 12

(b) Twelve clusters. La = .869; Lw = .901;
Lm = .776; K∗ = 12; K = 398

Figure 2: Provinces and twelve defined clusters. Notes: A commuting flow registers the number of
workers who commute from a municipality of residence to a municipality of work. The provincial cores
(black dots with a white circle) are the capital cities. The cores of the defined regional clusters are
returned by the algorithm. Each distinct cluster is surrounded by a thick border and highlighted by a
different color. Note that the color of a cluster does not provide any further information. La, Lw and
Lm are returned by the algorithm, and refer to the average of the internal relative flows (Eq. (7)), the
population-weighted average of the internal relative flows (Eq. (8)), and the minimum of the internal
relative flows (Eq. (9)), respectively. K∗ and K refer to the number of defined regional clusters and
the number of distinct starting units, respectively.
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4.2 Example 2: Global regional clusters based on national trade flows

In the second example, a researcher uses flowbca to construct global regional clusters
based on trade flows that are defined as the size of the annual trade from an exporting to
an importing country. The researcher aims to examine how interrelated countries are in
terms of trade, and whether this relatedness changed over time. The researcher defines
global clusters of economic activity for the years 1995 and 2011, given a minimum flow
threshold which is set equal to five per cent.

For this example, the World Input-Output Database (WIOD) was used (Dietzen-
bacher, Los, Stehrer, Timmer, and de Vries 2013). This data set consists of data on the
trade flows between forty countries in the period 1995-2011. The algorithm starts from
a set of forty countries (K). Note that this exercise uses the option q() of flowbca.
The optimization function is based on the directed relative flows approach.

The set of clusters in 1995 and 2011 are compared to examine the change in global
trade clusters over time. Figure 3 shows, given the flow threshold of five per cent, that
the number of distinct global clusters (K∗) decreases from nineteen to ten over the
period 1995-2011. Consistent with globalization, the decrease in the number of defined
clusters suggests that the trade flows within countries decreased relative to the trade
flows between countries. Another observation is that the size of the two clusters in
which China and Germany is the core, respectively, became larger over time.
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(a) Global trade clusters in 1995. La = .920; Lw = .943; Lm = .854; K∗ = 19; K = 40

(b) Global trade clusters in 2011. La = .938; Lw = .947; Lm = .898; K∗ = 10; K = 40

Figure 3: Global clusters based on trade flows. Notes: A trade flow registers the size of annual trade
from an exporting country to an importing country. The cores of the defined clusters (black dots with
a white circle) are returned by the algorithm. Each distinct cluster is highlighted by a different color.
Note that the color of a cluster does not provide any further information. Global clusters were defined
based on trade flows expressed in millions of dollars between countries from the 1995 and 2011 WIOD
data. The flow threshold q was set equal to five per cent. Trade flows between countries were computed
by aggregating all within-country flows. Nine countries with zero or negative flows were removed. La,
Lw and Lm are returned by the algorithm, and refer to the average of the internal relative flows (Eq.
(7)), the population-weighted average of the internal relative flows (Eq. (8)), and the minimum of the
internal relative flows (Eq. (9)), respectively. K∗ and K refer to the number of defined global clusters
and the number of starting countries, respectively.

4.3 Example 3: A social network based on friendship ties

In the third example, a researcher uses flowbca to detect groups of prison inmates based
on friendship ties. A friendship tie could be considered as a binary flow variable from
one inmate to another, which is one in case of a friendship. If two inmates indicate a
friendship with each other, the ties will flow in both directions. The researcher aims to
detect groups of inmates in which each group should have a minimum internal relative
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flow of at least fifty per cent. The minimum internal relative flow of fifty per cent means
that, in each group, at least fifty per cent of the inmates′ friendship ties should be with
inmates in their own group.

For this example, the Gagnon and MacRae prison friendship data set was used
(MacRae 1960). The level of interaction between inmates is approximated by multiple
zero-one indicator variables that represent friendship ties, which equal one if a given
“source” inmate indicates a friendship with a given “destination” inmate and zero oth-
erwise. The algorithm starts from a set of 67 inmates (K). All inmates could indicate
as few or as many friendship ties as desired. Inmates could not indicate a friendship
with themselves. Note that this example utilizes the option lm() of flowbca. Relative
flows were used to have the relative importance of each tie.

Before we discuss the results, we illustrate the main steps of the specific code used
to construct Table 1.

. /* Directed relative flows approach */

. use "Ex3_Prison.dta", clear

. /* Apply flowbca */

. flowbca sourceunit destinationunit*, lm(.5) opt_f(1)

. /* The option lm(fraction) is used to specify the minimum internal relative flow.
If the fraction is smaller than or equal to the minimum value, the algorithm is terminated */
. /* The option opt_f() is specified to use the directed relative flows approach */

. /* Drop the inmate (number 35) who is isolated */

. drop if internal==.
(1 observation deleted)

. /* Get the summary statistics of the La, Lw, Lm variables */

. sum La Lw Lm
Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------
La | 5 .8470662 0 .8470662 .8470662
Lw | 5 .8461539 0 .8461539 .8461539
Lm | 5 .7575758 0 .7575758 .7575758

. use unit_set, clear

. /* Generate the number of inmates in each cluster */

. bysort clusterid: gen n=_N

. tab n if core==1 & n!=1
n | Freq. Percent Cum.

------------+-----------------------------------
4 | 1 20.00 20.00
5 | 1 20.00 40.00
7 | 1 20.00 60.00
12 | 1 20.00 80.00
38 | 1 20.00 100.00

------------+-----------------------------------
Total | 5 100.00

. /* Undirected relative flows approach */

. use "Ex3_Prison.dta", clear

. /* Apply flowbca */

. flowbca sourceunit destinationunit*, lm(.5) opt_f(2)

. /* The option opt_f() is specified to use the undirected relative flows approach */

. /* Drop the inmates (numbers 19, 25, 26 and 35) who are isolated */

. drop if internal==.
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(4 observations deleted)

. /* Get the summary statistics of the La, Lw, Lm variables */

. sum La Lw Lm
Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------
La | 12 .6894538 0 .6894538 .6894538
Lw | 12 .6758242 0 .6758242 .6758242
Lm | 12 .5 0 .5 .5

. use unit_set, clear

. /* Generate the number of inmates in each cluster */

. bysort clusterid: gen n=_N

. tab n if core==1 & n!=1
n | Freq. Percent Cum.

------------+-----------------------------------
2 | 2 16.67 16.67
3 | 1 8.33 25.00
4 | 2 16.67 41.67
5 | 3 25.00 66.67
6 | 1 8.33 75.00
7 | 1 8.33 83.33
9 | 1 8.33 91.67
11 | 1 8.33 100.00

------------+-----------------------------------
Total | 12 100.00

Table 1 provides information about the groups of inmates that were detected using
flowbca for both the directed and undirected flows approach, respectively. The results
show that the directed flows approach, compared to the undirected flows approach,
leads to fewer and bigger groups of inmates. Another observation is that there are more
isolated inmates if the optimization function is based on the undirected flows approach.
Effectively, the undirected flows approach puts more weight on the situation where two
inmates indicate each other as friend, and leads to more sparse groups.
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Table 1: Number and size of the detected groups of inmates

Directed flows approach Undirected flows approach
Number of groups
for a given size

Size (in # of in-
mates)

Number of groups
for a given size

Size (in # of in-
mates)

1 38 1 11
1 12 1 9
1 7 1 7
1 5 1 6
1 4 3 5

2 4
1 3
2 2

La = .847 La = .689
Lw = .846 Lw = .676
Lm = .758 Lm = .5
K∗ = 5 K∗ = 12
K = 67 K = 67

Notes: The connected groups of inmates are based on friendship ties between inmates from the
Gagnon and MacRae prison data set. A friendship tie registers a friendship as a flow from one
inmate to another. The minimum internal relative flow lm, which each group should satisfy, was set
equal to fifty per cent. The raw prison data set contains 67 inmates. No inmate was disconnected,
i.e. the situation that an inmate did not specify nor was specified as friend by another inmate.
However, one inmate and four inmates were detected as isolated using the directed and undirected
flows approach, respectively. The isolated inmates were removed. La, Lw and Lm are returned
by the algorithm, and refer to the average of the internal relative flows (Eq. (7)), the population-
weighted average of the internal relative flows (Eq. (8)), and the minimum of the internal relative
flows (Eq. (9)), respectively. K∗ and K refer to the number of defined regional clusters and the
number of distinct starting units, respectively.

4.4 Example 4: Industrial clusters based on input-output flows

The final example is a case where a researcher uses flowbca to define five U.S. industrial
clusters based on input-output flows of goods between U.S. industries. A flow of goods
registers the size of the goods delivered by the industry of input to the industry of
output. The researcher examines whether the relatedness between industries changed
over time, by comparing the set of industrial clusters in 1995 to the set of clusters in
2011. The WIOD was used to define U.S. industrial clusters in the years 1995 and 2011.
The algorithm starts from a set of 35 industries (K). Note that this exercise utilizes
the option k() of flowbca. The optimization function is based on the directed relative
flows approach.

Table 2 presents the results of example 4. The sectors “Construction” and “Pub-
lic Administration and Defence; Compulsory Social Security” are the largest industrial
clusters in 1995 and 2011, respectively. Hence, in 2011, the industry “Public Adminis-
tration and Defence; Compulsory Social Security” uses relatively more goods that are
produced in other production chains than the industry “Construction”. Interestingly,
flowbca defines the industries “Food, Beverages and Tobacco”, “Textiles and Textile
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Products” and “Transport Equipment” as the core of a cluster in both 1995 and 2011,
which suggests that these clusters have been relatively self-contained over time.

As Table 2 shows, the largest cluster is composed of many units and the other
clusters are composed of very few units. Example 4 highlights the main limitation of
flowbca. The main limitation of flowbca is that the algorithm defines one relatively
big cluster that is composed of many units, if the network is not sparse enough and
thus not composed of multiple subnetworks. For example, consider the case that a
researcher aims to define clusters using random flows between units. It is likely that
in each iteration a source unit is aggregated to the identical destination unit, as the
destination unit represents a relatively big cluster due to the aggregations in the earlier
iterations.

All in all, to define meaningful clusters, the network should be sparse enough, e.g.
by distance (in the case of within-country regional clusters), input-output flows of goods
(in the case of industrial clusters) or social interaction (in the case of SNA). Otherwise,
the algorithm will define one relatively big cluster and several distinct clusters of very
few units. Note that the use of more disaggregated units in the starting set of units
would improve the accuracy of the cluster algorithm, as more detailed flow data is used.

Table 2: Industrial clusters based on U.S. input-output flows

1995 2011
Core of cluster Size (in #

of units)
Core of cluster Size (in #

of units)
Construction 28 Public Administration and

Defence; Compulsory So-
cial Security

30

Food, Beverages and To-
bacco

3 Food, Beverages and To-
bacco

2

Textiles and Textile Prod-
ucts

2 Chemicals and Chemical
Products

1

Chemicals and Chemical
Products

1 Basic Metals and Fabri-
cated Metal

1

Transport Equipment 1 Transport Equipment 1
La = .602 La = .567
Lw = .828 Lw = .837
Lm = .335 Lm = .287
K∗ = 5 K∗ = 5
K = 35 K = 35

Notes: U.S. industrial clusters based on U.S. input-output flows of goods expressed in millions of
dollars between 35 ISIC industries from the WIOD data. The minimum number of clusters k was
set equal to five. La, Lw and Lm are returned by the algorithm, and refer to the average of the
internal relative flows (Eq. (7)), the population-weighted average of the internal relative flows (Eq.
(8)), and the minimum of the internal relative flows (Eq. (9)), respectively. K∗ and K refer to the
number of defined regional clusters and the number of distinct starting units, respectively.
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5 Concluding remarks

In this article, we have introduced and illustrated the flowbca Stata command that can
be used to define clusters based on relational data of flows between disjoint units. Four
examples of statistical applications in a wide range of research fields were provided to
illustrate flowbca cluster identification capabilities. Given the increasing availability of
relational data of various types of flows, flowbca can be of use to a variety of research
fields. flowbca is flexible, because it allows for various optimization functions and
stopping criteria. The program is accessible for the researcher, which will hopefully lead
to a further development of the algorithm. Overall, the program is robust, user-friendly
and well able to define clusters that are characterized by a high level of self-containment.
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