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A B S T R A C T

The Donnan equilibrium is employed to evaluate the entropic repulsion between two charged plates that feature
charge regulation and are in equilibrium with a reservoir solution of monovalent salt. This approach represents
the zero-field limit of the Poisson–Boltzmann equation, valid for strongly overlapping electrical double layers.
We show that this scenario features an intrinsic length scale, which serves as the unscreened pendant of the
Debye length for strongly overlapping double layers. In general, the scaling of the disjoining pressure with inter-
plate distance is dependent on the boundary conditions (constant charge, constant potential, or charge reg-
ulation). Surprisingly, here we find for sufficiently low potentials the same inverse-square decay as for constant
charge surfaces. We test the validity of the zero-field limit by comparison with self-consistent field lattice
computations that invoke the full Poisson equation for finitely sized ions between two charge-regulated plates.

The electrical double-layer repulsion between two charged surfaces
in equilibrium with a salt reservoir is conventionally [1–10] evaluated
under the assumption that surfaces are sufficiently far apart such that
their double-layers only weakly interact. This so-called ‘weak-overlap
approximation’ [4] implies that the electrical potential in the mid-plane
between the two surfaces is small (though surface potentials, never-
theless, may be high). Within this weak-overlap approximation, the
Poisson–Boltzmann (PB) equation eventually yields osmotic disjoining
pressures that decay exponentially; the typical decay length being the
Debye screening length κ−1 which measures the thickness of a diffuse
electrical double-layer in solution. Together with Van der Waals at-
tractions, one arrives at the exponentially screened, classical DLVO
potential [1–4], which is applicable to dilute colloidal fluids in which
the average colloid–colloid distance is (much) larger than κ−1.

When distances between charged surfaces are comparable to or less
than κ−1 such that double-layers strongly overlap and the weak-overlap
approximation breaks down, one must resort to more complicated so-
lutions containing elliptic functions [11] or to numerical solutions. For
low surface potentials with plates in close proximity and in presence of
background salt, analytical approximations exist featuring a peculiar
inverse square decay of the disjoining pressure with the inter-plate
separation [11]. To the best of our knowledge, however, these

approximations are only known for the boundary condition of constant
surface charge [11–13], but not for surfaces featuring charge regula-
tion, even though these boundary conditions in general do not lead to
the same scaling behavior of the disjoining pressure [14]. It should be
mentioned that an inverse square decay is also known for the salt-free
(counter-ion only) limit at large separations, even in case of charge
regulation [11,15].

Here we demonstrate a relatively straightforward and analytical
treatment of the disjoining pressure between strongly overlapping flat
double-layers featuring charge regulation on the basis of the Donnan
equilibrium. This method exploits the circumstance that, on approach
of two charged plates, absolute values of the potential in the electrolyte
solution between the plates rise, but potential gradients on average
become smaller. Thus to analyze repulsions between plates at a distance
comparable to the Debye length, the limit of a weak electric field has to
be considered [13] rather than the limit of a high potential [1,2]. From
the weak-field point of view, the simplest starting point is obviously the
case where the electric field is zero everywhere, i.e., the ions in the
inter-plate electrolyte solution are homogeneously distributed in a
constant electrical potential, also known as the Donnan poten-
tial [16,17].

Zero-field disjoining pressures as function of the Donnan potential
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are derived as follows. Consider two parallel plates separated by an
electrolyte solution S in thermodynamic equilibrium with a large re-
servoir containing a constant number density ρs of salt molecules of
fully dissociated 1–1 electrolyte. The electrical potential in S, relative to
the potential in the reservoir, equals the constant Donnan potential Ψ ,
where the bar indicates the zero-field assumption. The ions in S are
homogeneously distributed in zero electric field, with average densities
given by the Boltzmann distributions for ideal ions:

= ∓ ≡±ρ ρ ū ū eΨ
k

exp( ), where .
T

s
B (1)

Here ū represents the dimensionless Donnan potential, e is the ele-
mentary charge, and kBT is the thermal energy. The excess ion density
Δρ in S relative to the ion density in the reservoir is ≡ + −+ −ρ ρ ρ ρΔ 2 s,
which can be combined with Eq. (1) to yield = −ρ ρ ūΔ 2 (cosh 1)s . For
ideal ions obeying Van ’t Hoff's law, the disjoining pressure equals
ΔΠd=ΔρkBT, which in terms of the Donnan potential reads

= −Π
ρ k T

ūΔ
2

cosh 1.d

s B (2)

Here pressures are scaled on the osmotic pressure 2ρskBT of the salt
reservoir. Since >ūcosh 1, the ion density in S always exceeds the re-
servoir ion density so charged plates always spontaneously separate
(‘disjoin’). Eq. (2) is exact for homogeneously distributed, ideal ions,
and is independent of the extent of surface charge regulation. The inter-
plate Donnan potential ū in Eq. (2) follows from the charge density on
the surfaces and the electro-neutrality condition, which we will con-
sider next.

Suppose the surfaces have a number of sites per unit area σtot that
each may release a mono-valent positive counter-ion into solution; a
practical example, addressed later, are the protons released by the
dissociating hydroxyl groups from a silica surface. When σ denotes the
density of dissociated, negatively charged sites and +ρ the density of
counter-ions in S, the dissociation equilibrium constant is given by

= −+K σρ σ σ( )/( )tot . On substitution of the cation Boltzmann distribu-
tion from Eq. (1) the degree of dissociation σ/σtot follows as

=
+

=
+ −+

σ
σ

K
K ρ

k
k ūexp( )

,
tot (3)

where we introduced the dimensionless equilibrium constant

≡k K ρ/ .s (4)

When the plates move apart, the charge density σ increases ac-
cording to Eq. (3) and approaches the maximum value

=
+

σ σ k
k1

,max tot (5)

achieved for the case of zero Donnan potential for a single free plate.
Next we employ the electro-neutrality condition = ++ −ρ h ρ h σ2 , for

two negatively charged plates at inter-plate distance h, to find on
substitution of σ from Eq. (3):

−
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Here we have introduced a characteristic length λ defined as

≡
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The length scale λ, incidentally, is a distinguishing feature of the
zero-field Donnan limit, being the unscreened pendant of the Debye
length

=−κ
πρ
1

8 ℓ
,1

s B (8)

(where ℓB is the Bjerrum length), which is the length scale that appears
in the exponentially screened repulsions between plates with weak

double-layer overlap [1–13]. Whereas κ−1 indicates the typical distance
over which screening occurs, its pendant λ indicates the inter-plate
distance h ≈ λ at which counter-ions and background salt have a
comparable effect on the Donnan potential: for h ≪ λ counter-ions
dominate, while for h ≫ λ background salt overshadows the contribu-
tion of the counter-ions. Alternatively, λ can be expressed in terms of
the Gouy–Chapman length ℓGC=(2πℓBσtot)−1 of a fully dissociated
plate as

=
+

− −λ k
k

κ4
1

ℓ .GC
1 2

(9)

We return to Eq. (6), which on substitution of the Boltzmann dis-
tribution, Eq. (1), yields an expression relating potential ū and inter-
plate distance h:

+ −
+

= −
k ū

k
ū λ

h
exp( )

1
sinh .

(10)

This equation is cubic in −ūexp( ). Fig. 1a illustrates that for given
inter-plate distance h the absolute value of the zero-field potential in
Eq. (10) rises upon increasing the dimensionless dissociation constant k,
an increase which corresponds with enhanced surface charge density on
the plates, see Eq. (3). If for given k the plates move apart, the Donnan
potential decreases and, consequently, the disjoining pressure decays.

To find the leading term in the pressure decay we first expand ex-
ponents ±ūexp( ) in Eq. (10) up to order ū2, to find the solution

Fig. 1. (a) Zero-field Donnan potential ū and (b) disjoining pressures ΔΠd versus the
dimensionless inter-plate distance h/λ, with λ defined in Eq. (7). The potential follows
from Eq. (10) and the disjoining pressure through subsequent application of Eq. (2). The
green dashed lines indicate the low-potential, large separation limits of Eqs. (12) and
(15). Increasing the dimensionless dissociation constant k increases the magnitude of ū
for a given inter-plate distance. Both potential and disjoining pressure show universal
behavior at large separations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Substitution of this Donnan potential in an expansion of Eq. (2) up
to order ū2 then yields the following disjoining pressure:
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Thus, disjoining pressures harbor at small inter-plate potentials, i.e.,
at large inter-plate distances, an inverse-square decay (h/λ)−2. This
decay is independent of the extent of charge regulation of the two sur-
faces and becomes identical to that of constant charge surfaces [11–13]
for k→∞. In other words, disjoining pressures merge into one universal
decay when inter-plate distances are scaled on λ, see also Fig. 1b. Al-
ready in the first additional term of order (h/λ)−3 in Eq. (14) this
‘universality’ disappears due to a term inversely proportional to 1+k.
When plates move even closer together such that Donnan potentials
significantly rise, the h-dependence of the disjoining pressure itself
depends on the dissociation constant k. This k-dependence, in-
cidentally, is due to salt expulsion by the charged plates to the re-
servoir: on approaching contact, the k-dependent counter-ion density in
the inter-plate space S dominates the disjoining pressure. The decay
from Eq. (15) occurs in the opposite regime, where salt molecules in S
in turn overshadow the counter-ions.

The inverse-square decay from Eq. (15) manifests itself only when
the maximum charge density σmax on free, non-interacting plates is
sufficiently low. Inter-plate distances h must be large enough to attain a
small Donnan potential ū but, on the other hand, should also satisfy h ≲
κ−1 to be in the unscreened, zero-field region in the first place. The
Donnan potential is small for inter-plate distances ≳h λ, so the inverse-
square decay falls inside a window of inter-plate distances approxi-
mately given by λ ≲ h ≲ κ−1. For this window to exist, the maximum
charge density on single plates must be below a threshold maximum
density of dissociated groups that occurs when λ in Eq. (7) equals the
Debye length:

≡ −σ ρ κ .max
thr

s
1 (16)

Some numerical examples for silica surfaces in water are listed in
Table 1. Due to their weakly acidic surface hydroxyl groups, silica
surfaces in close proximity display surface charge regulation [18,19].
According to Ref. [19] smooth, non-porous silica surfaces have silanol
densities of about σtot=5 nm−2. For the dissociation equili-
brium≡ ⇌ ≡ +− +SiOH SiO H of surface silanol groups, K ≈
10−7 M (i.e., pKa=7) [19]. These values for σtot and K lead to the
charge densities in Table 1, for various concentrations ρs of a simple
strong acid (e.g., HCl or HNO3) as the only salt. Note that in Table 1k≡
K/ρs ≪ 1: silica surfaces in water are always weakly dissociated; the
highest fraction of dissociated silanol groups in Table 1, achieved for
ρs=10−5 M, is only 1%. The requirement ≲σ σmax max

thr for having a
window for the inverse-square decay is fulfilled for pH 2 and 3, see
Table 1. Note that for ρs=10−3 M, the predicted window for an alge-
braic decay is fairly broad, from λ ≈ 0.8 nm to 1/κ ≈ 10 nm. It should
be mentioned that, in practice, silica at pH below 3 starts to acquire
positive surface charges due to other equilibria [20]; therefore we do
not further consider pH<3 here.

To quantitatively test the Donnan theory, we performed self-con-
sistent field (SCF) calculations of the thermodynamic properties of two
parallel charge-regulated plates in an electrolyte solution, see Figs. 2–4.

In contrast to Donnan theory for point ions, the SCF computations solve
the full Poisson equation (on a mean-field level) for finitely sized ions
and solvent molecules, incorporating also the effects of, e.g., the Stern
layer. SCF theory has been extensively discussed elsewhere [21–25].
The calculations yield, e.g., electrostatic potential and concentration
profiles, chemical potentials, and the free energy of the system. The
mid-plane potential (where the field is zero) of the computations is
compared to the zero-field Donnan potential. The disjoining pressure
follows from the derivative of the semi-open grand potential with re-
spect to inter-plate distance. The input of the SCF calculations is as
follows. The size of a lattice site is set to b=0.3 nm. All χ parameters
are set to zero (athermal Flory–Huggins interactions) and the relative
permittivity of the solvent equals 80 to model water. Water self-dis-
sociation is modeled with an equilibrium constant pKw=14, leading to
a minimum ionic strength of 10−7 M at pH 7 which increases at dif-
ferent pH. The reported ionic strength is the total in the reservoir due to
any added inert background salt and the acid–base equilibrium at given
pH. The two plates are grafted with weakly acidic sites located directly
next to the plates with a density σtot. The minimum number of lattice
layers between the plates is therefore 2, such that the grafted groups
touch but do not interpenetrate.

For Fig. 2a the parameters were chosen to model silica surfaces with
weakly acidic silanol groups (σtot=5 nm−2, pKa=7, and no additional
salt) at pH 5, 4, and 3. Under these conditions, we find quantitative
agreement between Donnan theory and the SCF computations. Only a
slight deviation is observed at small separations, owing to the finite
volume of dissociating surface groups in the SCF calculations, dis-
regarded in the Donnan theory. At pH 3, the low potential limits of Eqs.
(12) and (15) are reached (green dashed curves).

For the situation in Fig. 2a, the ionic strength can only be adapted
by changing the pH as there is no additional background salt. To se-
parate the effects of changing pH and ionic strength, SCF calculations
were also performed with additional background salt at fixed pH. Al-
though our Donnan theory does not explicitly include the effect of inert
salt, it can still be used under these conditions by choosing effective
values for pKa and pH while keeping their difference constant. These
computations, with results shown in Fig. 2b, are performed for
σtot=1 nm−2 with pKa=7, for 10−5, 10−4, and 10−3 M total salt at
pH 7. Despite the lower total surface density σtot, the mid-plane po-
tential is more negative due to a larger degree of dissociation and
therefore the dimensionless disjoining pressure is higher. This also
entails that in Fig. 2b the low potential limit is not reached. Ad-
ditionally, the electric fields are larger, leading to greater deviations
between the zero-field Donnan theory and SCF computations, especially
for higher salt concentrations at larger inter-plate distances h. This is
because the Donnan approach does not reproduce the exponential

Table 1
Parameters for silica surfaces in simple acida.

pH ρs (M)b kc σmax (nm−2)d σmax
thr (nm−2)e λ (nm)f κ−1 (nm)g

2 10−2 10−5 5 ⋅ 10−5 1.8 ⋅ 10−2 8.3 ⋅ 10−3 3.0
3 10−3 10−4 5 ⋅ 10−4 6.0 ⋅ 10−3 8.3 ⋅ 10−1 9.6
4 10−4 10−3 5 ⋅ 10−3 1.8 ⋅ 10−3 8.3 ⋅ 10+1 30
5 10−5 10−2 5 ⋅ 10−2 6.0 ⋅ 10−4 8.2 ⋅ 10+3 96

a The silica surfaces have a total number density σtot=5 nm−2 of dissociable surface
silanol groups with dissociation constant K=10−7M=60 μm−3 [19].

b Constant concentration of 1–1 strongly acidic electrolyte (e.g., HCl or HNO3) in a salt
reservoir.

c k=K/ρs; dimensionless dissociation constant, see Eq. (4).
d σmax=kσtot/(1+k); number density of dissociated silanol groups on a single, free

surface, see Eq. (5).
e = −σ ρ κmax

thr
s

1; threshold charge number density for a window of inverse-square decay

to exist, see Eq. (16).
f Minimum inter-plate separation to access region of small Donnan potential.
g Debye screening length from Eq. (8), which is approximately the maximum inter-

plate separation to stay within unscreened regime.
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decay due to screening at larger separations, as the zero-field limit by
definition implies the absence of screening. However, the minor dis-
crepancy at small h between zero-field theory and SCF is reduced owing
to the smaller value of σtot and the correspondingly smaller volume
occupied by the surface groups.

The situation at larger inter-plate distances of up to 60 nm is shown
in Fig. 3 for two examples: pH 4 with no additional background salt
(Fig. 3a) and pH 7 with 10−4 M salt (Fig. 3b). Evidently Donnan theory
breaks down at inter-plate distances comparable to the Debye length,
here κ−1=30 nm. However, for reasons mentioned previously, the

deviations are larger in Fig. 3b due to an enlarged degree of dissociation
and more negative potentials.

Fig. 4a shows SCF calculations for two silica surfaces at low pH
(Table 1) with charge densities below the threshold value from Eq. (16).
The disjoining pressures between the silica surfaces at pH 3 (from
Fig. 2a) are plotted such that the inverse square decay manifests itself as
a constant. Under the conditions of Fig. 4a, the minimum inter-plate
distance required to enter the low-potential region is predicted, see
Table 1, to be about 1 nm; the upper limit of the unscreened regime is
given by κ−1, implying a plateau for 1 nm ≲ h ≲ 10 nm, which indeed
can be discerned in Fig. 4a. The range of the plateau can be expanded
by increasing κ−1 or decreasing the minimum distance required to ac-
cess the low-potential limit (e.g., increasing the pKa). This is done in
Fig. 4b, which shows calculations for parallel plates at pH 7, with
σtot=1 nm−2, pKa=12 and 10−4 M total salt. The inverse square
decay is now predicted to lie roughly in the range of 0.2–30 nm, a
prediction that is clearly confirmed by the SCF results in Fig. 4b, where
the plateau is significantly broader than in Fig. 4a.

In conclusion, we have shown that the disjoining pressure between
two charged surfaces with extensive double-layer overlap harbors a
universal inverse-square decay (h/λ)−2 in the zero-field Donnan limit
for low potentials. This decay is independent of the extent of charge
regulation, which is encompassed in the characteristic length λ. While
in general the scaling behavior of the disjoining pressure depends on
the boundary conditions [14], here we find surprisingly the same in-
verse square decay as for plates with a constant charge [11–13]. Pre-
dictions from the Donnan theory are quantitatively confirmed by nu-
merical self-consistent field (SCF) lattice computations for inter-plate
distances smaller than approximately the Debye length. For low
Donnan potentials, the SCF calculations confirm the inverse-square

Fig. 2. Comparison between the zero-field approxima-
tion and numerical self-consistent field lattice calcula-
tions for the mid-plane potential Ψ and disjoining pres-
sure ΔΠd/(2ρskBT) of two charge-regulating plates in an
electrolyte solution. Calculations (a) for σtot=5 nm−2 at
pH 5, 4, and 3 with pKa=7, with no additional salt and
(b) for σtot=1 nm−2 at pH 7 with pKa=7, for 10−5,
10−4, and 10−3 M total salt. The SCF calculations (open
circles) are compared with full zero-field theory [solid
black curves, Eqs. (2) and (10)], and low potential ap-
proximations [green dashed curves, Eqs. (12) and (15)].
(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)

Fig. 3. Comparison between the zero-field approximation and self-consistent field cal-
culations for larger inter-plate distances h. (a) Same as Fig. 2a, pH 4; (b) same as Fig. 2b,
10−4 M salt.
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decay of the disjoining pressure. From a practical case study on weakly
acidic silica surfaces in water we deduce—from both Donnan theory
and SCF computations—that the surfaces exhibit charge-regulated zero-
field repulsions for a wide electrolyte concentration range.

We have considered two parallel, infinite plates—an obvious choice
of geometry to simplify calculations. In future work we seek for the
transition from the osmotic disjoining pressure between flat plates, to
the osmotic pressure of a dense dispersion of colloidal spheres where
the average particle surface-to-surface distance is below the Debye
length. We expect that the osmotic equation of state of such a con-
centrated dispersion comprises unscreened algebraically decaying

particle interactions, instead of screened exponentials.
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