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The phase behaviour of mixed suspensions of large and small hard platelets is treated by osmotic equilibrium theory. Depend-
ing on the size ratios of the small and large platelets, three distinct phase behaviour scenarios appear: isotropic–isotropic–
nematic, isotropic–nematic and isotropic–nematic–nematic coexistence regions, in agreement with computer simulations.
The experimental multiphase coexistence observed in mixed suspensions of large Titanate platelets and small Laponite
platelets can be reproduced semi-quantitatively using osmotic equilibrium theory calculations.
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1. Introduction

The understanding of the structure and phase behaviour of
concentrated suspensions of colloidal particles has profited
enormously from the developments in the theory of liquids
[1–3]. Jean-Pierre Hansen made outstanding contributions
to the field of liquid-state theory [4,5], but he also has a keen
interest in the application of liquid-state theory to complex
fluids [6] and colloidal suspensions [7,8].

In the last decades, phase transitions in colloidal sus-
pensions induced by the addition of nonadsorbing polymers
through the depletion interaction [9–11] have attracted sig-
nificant attention (for recent reviews, see [12,13]). Also,
in this field, Jean-Pierre Hansen made seminal contribu-
tions [14–21]. Traditionally, depletion-mediated phase tran-
sitions in colloidal suspensions have been realised often by
adding nonadsorbing polymers. Adding small nonadsorb-
ing colloidal solid particles may, however, also give rise to
phase transitions [12]. The effects of polymers and small
colloidal particles on the liquid crystal phase behaviour of
suspensions of rod-like particles have been studied in the
last few decades with the focus on rod-like colloids (for
an overview, see Chapter 6 in [12]). It has been demon-
strated that polymeric depletants have a significant impact
on the liquid crystal phase behaviour of suspensions of
anisometric particles [12,22–24]. The study of the effect
of solid particles as depletants on the liquid crystal phase
behaviour of suspensions of plate-like particles is of more
recent date. Luan et al. [25], Kleshchanok et al. [26] and
Doshi et al. [27,28] experimentally studied the phase sta-
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bility of colloidal platelet–polymer mixtures and colloidal
platelet–sphere mixtures, observing rich and interesting
phase behaviour. Bates and Frenkel [29] and Zhang et al.
[30,31] theoretically studied the phase stability of colloidal
platelets and nonadsorbing polymer.

Rod-like particles are very efficient depletants
[10,32,33]. A study of Bates and Frenkel [29] on the ef-
fect of (infinitely thin) rods as depletion agents in suspen-
sions of colloidal platelets revealed that these rods affect
the phase behaviour already at extremely small concentra-
tions. Recently, it has also been observed that small platelets
as depletants may be very effective [34,35] in inducing
phase transitions at volume fractions as low as 10−6 of thin
platelets of the synthetic clay Laponite [36–39]. In fact,
already more than 10 years ago, Rowan and Hansen [40]
presented theoretical evidence for depletion-induced phase
separation in binary mixtures of hard platelets. Thermody-
namics and phase behaviour of binary mixtures of lamellar
colloids were studied by Harnau, Rowan and Hansen [41]
within a generalisation of the Zwanzig model for rods [42],
whereby the square cuboids can take only three orientations
along the x, y or z axes. For certain length and diameter
ratios of the lamellar colloids, their study reveals phase
coexistence between an isotropic phase and two nematic
phases of different compositions. Experimentally, such a
phase behaviour scenario was indeed observed in mixtures
of Titanate and Laponite by Nakato et al. [35].

In this paper, we formulate and apply osmotic equilib-
rium or free volume theory [12,30,31] to mixtures of large
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and small hard platelets. Three phase behaviour scenarios
are observed: (1) only I-N coexistence, (2) I1-I2-N three
phase coexistence plus I-N coexistence and (3) I-N plus
I-N1-N2 coexistence. Though not focused on here, I1-I2

(scenario (2)) and N1-N2 (scenario (3)) coexistence regions
appear as well. We determine the length to diameter ratios
of the large and small platelets for which these scenarios
occur. Our results are in agreement with those of Harnau
et al. [41]. Subsequently, calculations are performed for
length to diameter ratios of the large and small platelets,
corresponding to the experimental values in the system
studied by Nakato et al. [35]. The Titanate–Laponite mix-
ture they studied is highly polydisperse, leading to a signif-
icant broadening [43] of the I-N coexistence region for the
pure system of Titanate platelets. Nevertheless, satisfactory
agreement is found for the concentration of small platelets
to induce I-N1-N2 three-phase coexistence.

2. Theory

2.1. Onsager–Parsons–Lee theory for the
isotropic–nematic phase transition of hard
platelets

We consider a dispersion of N hard cylindrical platelets
with a diameter D and a thickness L in a volume V. The
volume of a platelet v = πD2L/4 and the volume fraction
of platelets is given by φ = Nv/V.

While the classic Onsager theory [44,45] for the
isotropic–nematic phase transition in suspensions of rod-
like particles also enables to make semi-quantitative pre-
dictions for the isotropic–nematic phase transition in sus-
pensions of plate-like particles, the intrinsic difficulty with
platelets, as pointed out by Onsager in his original paper,
is that the contributions of third and higher order virial
coefficients can no longer be neglected [46] as for long
thin rods. For a recent overview to extend Onsager’s sec-
ond virial theory, see Harnau [47]. Here, we follow refs.
[48,49] and write the Helmholtz free energy F within the
Onsager–Parsons–Lee approach [50–52] as

F̃

φ
= ln φ − 1 + σ [f ] + 2

π

D

L
φ GP (φ)〈〈�ex(γ )〉〉,

(1)
where a constant term has been omitted which does not
play a role in the calculation of the phase behaviour. Here,
F̃ = Fv/kBT V . The orientational entropy of the platelets
σ [f] in Equation (1) is defined as

σ [f ] =
∫

d�f (�) ln[4πf (�)], (2)

with d� an infinitesimal surface element on the unit sphere.
The orientation distribution function (ODF) is normalised

according to

∫
d�f (�) = 1. (3)

In Equation (1), �ex(γ ) is the excluded volume divided by
D3 between two platelets at fixed inter-particle angle γ :

�ex(γ ) = π

2
|sin(γ )| + L

D

{
π

2
+ 2E[sin(γ )]

+ π

2
cos(γ )

}
+ 2

(
L

D

)2

|sin(γ )| , (4)

including the complete elliptic integral of the second kind
E[x]. In Equation (1), 〈〈�ex(γ )〉〉 is defined as

〈〈�ex(γ )〉〉 =
∫ ∫

d�d�′f (�)f (�′)�ex(γ ). (5)

The effects of higher order virial terms are incorporated via
the Parsons–Lee scaling factor GP:

GP (φ) = 4 − 3φ

4(1 − φ)2
, (6)

The factor GP ensures that the ratios of the third and higher
virial coefficients to the second virial coefficient are the
same as for hard spheres.

At low concentrations, the system is isotropic (I), i.e.
all platelets are oriented randomly and fI = 1/4π , so that σ I

= 0 and �I
ex = 〈〈�ex(γ )〉〉 becomes

�I
ex ≈ π2

8
+ L

D

(
3π

4
+ π2

4

)
, (7)

where a term of order (L/D)2 has been omitted in the ex-
cluded volume term (here, the focus is on thin (L/D � 1)
platelets).

Hence, the free energy in the isotropic phase within the
Parsons–Lee approximation reads

F̃ I

φ
= ln φ − 1 + 2

π

D

L
GP (φ)�I

ex, (8)

Standard thermodynamics directly provides the (dimen-
sionless) osmotic pressure P̃ = Pv/kBT and chemical po-
tential μ̃ = μ/kBT of the platelets in suspension

P̃ I = φ + 2

π
φ2 D

L

1 − (1/2)φ

(1 − φ)3
�I

ex, (9)

and

μ̃I = ln φ + 2

π

D

L

8φ − 9φ2 + 3φ3

4(1 − φ)3
�I

ex. (10)
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2668 H.N.W. Lekkerkerker et al.

via the chemical potential in a canonical system μ =
(∂F/∂N)V, T or μ̃ = (∂F̃ /∂φ)V,T and the osmotic pressure
P = −(∂F/∂V)N, T or P̃ = φμ̃ − F̃ .

Above a certain concentration, the platelets sponta-
neously assume a preferred orientation, the nematic state.
One may then compute the ODF at each concentration nu-
merically by minimising the Helmholtz free energy expres-
sion (1), while using the condition of Equation (3). Since
the nematic phases we consider are uniaxial in symmetry,
the solid angle � only depends on the polar angle θ be-
tween a nematic director and the orientation of the platelet.
Given the fact that a functional free energy minimisation
is technically involved (see for instance [53,54]), we resort
to a much simpler analytical approach based on Odijk’s
Gaussian approximation for the ODF f(θ ) [55]

fG(θ ) ∼ α

4π
exp

[
−1

2
αθ2

]
, (11)

that applies to angles −π /2 ≤ θ ≤ π /2. The prefactor of the
Gaussian ODF follows from Equation (3).

Using the Gaussian ODF in the free energy of the ne-
matic state, we obtain

F̃ N

φ
∼ ln φ − 1 + ln α − 1 + φGP (φ)

[
D

L

√
π

α
+ 4

]
,

(12)
where we have used that to leading order σ N ∼ ln α − 1,
hence [54]

�N
ex = 〈〈�ex(γ )〉〉N ∼ 2π

L

D
+ π

2

√
π

α
. (13)

The chemical potential and osmotic pressure in the nematic
state can now easily be obtained

μ̃N ∼ ln φ + ln α − 1 + 8φ − 9φ2 + 3φ3

4(1 − φ)3

[
D

L

√
π

α
+ 4

]
,

(14)
and

P̃ N ∼ φ + φ2 1 − (1/2)φ

(1 − φ)3

[
D

L

√
π

α
+ 4

]
. (15)

The free energy and various thermodynamic properties
can be calculated explicitly once the unknown variational
parameter α is determined. This parameter follows from
the minimisation

∂F

∂α
= 0. (16)

Applying this to Equation (12) yields

α ∼ π

4

(
D

L

)2

φ2 G2
P (φ), (17)

Insertion of this result into Equation (12) provides the ex-
pression [54]

F̃ N

φ
∼ (ln φ − 1) +

[
2 ln

(
D

L

√
π

2
φGP (φ)

)
− 1

]
+ [4φGP (φ) + 2] , (18)

for the Helmholtz energy and

P̃ N ∼ φ + 2φ − φ2

(1 − (3/4)φ)(1 − φ)
+ 4φ2 − 2φ3

(1 − φ)3
, (19)

and

μ̃N ∼ 1 + 2 ln

(
D

L

√
π

2

)
+ ln φ + 2 ln[φGP (φ)]

+ 4φGP (φ) + 2 − φ

(1 − (3/4)φ)(1 − φ)

+ 4φ − 2φ2

(1 − φ)3
, (20)

for the osmotic pressure and chemical potential, respec-
tively. It is now possible to compute the coexisting isotropic
and nematic concentrations of hard platelets within the
Parsons–Lee approximation using the Gaussian form for
the ODF (GODF). In general, coexisting binodal concen-
trations follow from solving the concentrations for which
the chemical potentials μ and osmotic pressures P in phases
i and ii are equal

μ̃i = μ̃ii

P̃ i = P̃ ii , (21)

where i and ii used can be used for any of the isotropic (I)
or nematic (N) phases. Results for the binodal isotropic and
nematic concentrations using the Parsons–Lee approxima-
tion (curves) are shown in Figure 1 as a function of L/D.
Minimisation of the free energy using a Gaussian form of
the ODF (dotted curves) is compared to minimising the free
energy while solving the ODF numerically (solid curves)
and to computer simulation results (data points).

It is clear that the Gaussian approximation predicts a
wider coexistence region and slightly higher coexisting con-
centrations, especially on the nematic side. These findings
are similar to the situation for the I-N phase transition of
hard rod-like particles [12,23]. Still, given the relatively
simple approach, the Gaussian ODF combined with the
Parsons–Lee approximation provides a quite reasonable
description for the I-N phase transition of hard platelets,
except for L/D → 0. Next, mixtures of large (and thin) hard
platelets and small (and thin) hard platelets are considered.
Then, depletion forces modify the phase behaviour of a
system consisting of only hard monodisperse platelets. In
case of depletion-induced attractions, the particles become
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Molecular Physics 2669

Figure 1. I-N coexistence for pure hard platelets. Platelet con-
centration is given in terms of the quantity c = ND3/V=
φ(4/π )D/L. Curves are theoretical predictions using the Parsons–
Lee (P-L) approximation combined with a numerical minimisation
(solid curves) and minimisation using the Gaussian approximation
to the ODF (dotted curves). Data points are computer simulation
results by (1) Veerman and Fenkel [56] for L/D = 1/10 giving cI

= 3.82 and cN = 3.87, (2) Zhang et al. [30] for L/D = 1/10 corre-
sponding to cI = 4.03 and cN = 4.17 and for L/D = 1/20 : cI=3.90
and cN = 4.17, (3) Van der Beek et al. [57] for L/D = 1/15: cI =
3.86 and cN = 4.11 and (4) Eppenga and Frenkel [58] for L/D =
0: cI = 4.04 and cN = 4.12. It is noted that in the computer sim-
ulations, cut spheres were used to model platelets, which slightly
differs from the theoretical description of cylindrical platelets used
within osmotic equilibrium theory in this work.

much more aligned and the Gaussian approximation be-
comes more accurate with increasing amount of depletant
[23].

2.2. Free volume theory for the phase behaviour
of a mixture of large and small platelets

We use free-volume theory (FVT) to compute the phase
behaviour of a suspension large thin hard platelets with
diameter D1 and thickness L1 of volume fraction φ1 disper-
sions mixed with small thin hard platelets with diameter D2

and thickness L2 of volume fraction φ2. The volumes of the
platelets 1 and 2 are v1 = (π/4)D2

1L1 and v2 = (π/4)D2
2L2

and the relative sizes are defined by the ratios r, q and t

r = L1

D1
, q = D2

D1
, t = L2

L1
,

so L2/D2 = rt/q.
Free volume or osmotic equilibrium theory for suspen-

sions of mixed colloid–polymer suspensions and mixtures
of large and small colloids [12,59,60] makes use of placing
the system of interest in osmotic equilibrium with a hy-
pothetical reservoir, which only contains the polymers or
small colloids. Here, we place the large platelets (coded #1)
and small platelets (coded #2) in the system while the reser-

voir only contains small platelets. The semi-grand canonical
free energy � for a disperse mixture of platelets having a
volume V can then be written as

�(N1, V , μ2) = F0(N1, V , μ2 = −∞) +∫ μ2

−∞
dμ2

′
(

∂�(N1, V , μ2
′)

∂μ2
′

)
(22)

where F0 is the Helmholtz free energy of the dispersion
of pure (large) hard platelets, μ2 is the chemical potential
of the small added platelets. We use the thermodynamic
relation ∂�/∂μ2 = −N2 , where N2 is the averaged number
of small platelets 2 in the system. Using the Widom particle
insertion theorem [61], we can write

N2 = nR
2 〈Vfree〉, (23)

where 〈Vfree〉 is the ensemble-average free volume for the
small platelets in the system of large hard platelets and nR

2 is
the number density of small hard platelets in the reservoir.
We now make the key approximation to replace 〈Vfree〉 by
the free volume in the pure hard platelet dispersion 〈Vfree〉0.
Then,

N2 = nR
2 〈Vfree〉0. (24)

This expression is correct in the limit of small depletant
concentration but is only an approximation for higher de-
pletant concentrations. Substituting the approximation (24)
into (22) and using the Gibbs–Duhem relation,

nR
2 dμ2 = dP R, (25)

gives

�̃ = F̃ − χ

q2t
P̃ R

2 , (26)

where P̃ R
2 = v2P

R
2 /kBT is the (osmotic) pressure of the

small platelets in the reservoir, χ is the free volume
fraction of small platelets available in the system and
�̃ = �v1/kBT V . In case the concentration of the small
platelets in the reservoir is given by Van ’t Hoff’s law, one
can write P̃ R

2 = nR
2 v2 = φR

2 .
The free volume fraction for small platelets 2 in a disper-

sion of large platelets 1 is derived here from scaled particle
theory, in a similar fashion as for other colloidal mixtures
and colloid–polymer mixtures [12,22,60]. According to the
Widom insertion theorem, the free volume fraction χ can be
calculated from the reversible work W required for inserting
a platelet 2 into the dispersion of platelets 1 via

χ = 〈Vfree〉0

V
= e−W/kBT . (27)
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2670 H.N.W. Lekkerkerker et al.

An expression for the work of insertion W can be obtained
from scaled particle theory (SPT) [62]. This work W is cal-
culated by expanding (scaling) the size of the particle to be
inserted from zero to its final size: the size of the scaled par-
ticle is characterised by λD2 and νL2, with λ and ν running
from 0 to 1. In the limit λ, ν → 0, the inserted platelet 2 ap-
proaches a point particle and it is unlikely that the excluded
volumes of large and small particles overlap. Hence,

W = −kBT ln [1 − n1vexcl(λ, ν)] for λ , ν � 1. (28)

The excluded volume between large and small platelets
can be written as [45]

vexcl =
(π

4

)2
D1λD2(D1 + λD2)

+
(π

4

)
(L1D

2
1 + νL2λ

2D2)

+
(π

8

)
(L1λ

2D2
2 + νL2D

2
1)

+
(π

8

)2
D1λD2(L1 + νL2)

+
(π

4

)
L1νL2(D1 + λD2). (29)

The opposite limit λ, ν � 1 corresponds to the case that
the size of the inserted platelet is very large. Then, W is, to
a good approximation, equal to the volume work needed to
create a cavity of volume π

4 λ2D2
2νL2 and is given by

W = π

4
λ2D2

2νL2P0 for λ , ν � 1, (30)

where P0 is the (osmotic) pressure of the pure dispersion
of large hard platelets. In SPT, the above two limiting cases
are connected by expanding W given by Equation (28) as
a series in λ and ν up to quadratic order and combining it
with W (30) for the cubic term. By setting λ = ν = 1, one
obtains the work to insert a small platelet 2 in a system of
large platelets 1

W

kBT
= − ln[1 − φ1] + A

φ1

1 − φ1
+ B

(
φ1

1 − φ1

)2

+ q2t P̃0, (31)

where

A = π

4

q

r
+ π

2
q + 1

2
t + rt + π

4

q2

r
+ 1

2
q2

+ π

2
qt + qtr and

B = 1

2

(
π

4

q

r
+ π

2
q + 1

2
t + rt

)2

.

Using Equation (27), this yields for χ

χ = (1 − φ1) exp

(
− A

φ1

1 − φ1
− B

(
φ1

1 − φ1

)2

−q2t P̃0

)
. (32)

In order to calculate χ in the isotropic phase, Equation (32)
can be used straightforwardly. Strictly speaking, in the ex-
pression for χ in Equation (32), the osmotic pressure of the
pure platelets for P̃0 in the nematic phase should be used
in order to compute χ in the nematic phase(s). In order to
simplify calculations, we follow the approximation intro-
duced by Bolhuis et al. [63] in their treatment of the phase
behaviour of rod-like colloids and nonadsorbing polymer
and use for P̃0 the expression for isotropic phase, (9), for
both the isotropic and the nematic phases.

The minimisation of �

∂�

∂α
= 0. (33)

with respect to the parameter α then takes the form given
by Equation (17).

The pressure and the chemical potential are now given
by

P̃ I,N = P̃
I,N
0 + P̃ R

q2t

(
χ − φ1

∂χ

∂φ1

)
, (34)

and

μ̃
I,N
1 = μ̃

I,N
1,0 − P̃ R

q2t

∂χ

∂φ1
, (35)

For the chemical potentials and osmotic pressures of the
pure plate systems 1, we use the analytical expressions
given by Equations (9) and (10) for the (osmotic) pressure
and chemical potential of the isotropic phase for the pure
platelets and for the chemical potential and (osmotic) pres-
sure of the nematic phase of pure platelets, Equations (19)
and (20) are used. By setting equal both the chemical po-
tentials and pressures, see Equation (21), we can compute
isotropic–nematic coexistence curves for platelet mixtures.
As it turns out, also I-I and N-N demixing curves appear
depending on the values chosen for q, r and t.

3. Results and discussion

We first consider different phase transition scenarios for
our system of large and small platelets. In their study of the
phase behaviour of infinitely thin plates and polymers, Bates
and Frenkel [29] observed I1-I2-N coexistence regions for
a polymer size relative to platelet diameter larger than 0.3
and I-N1-N2 coexistence for ratios smaller than 0.08, while
(only) broadening of the I-N transition was detected for
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Figure 2. Phase diagrams for mixtures of large (1) and small (2) platelets for various combinations of r, q and t values indicated above
each diagram. Scenarios are shown for isotropic–nematic (I-N) phase coexistence (left panels), I-N, I1-I2 and I1-I2-N coexistence (middle
panels) and finally, for regions where besides I-N coexistence also N-N and I-N1-N2 coexistence regions appear (right panels). Upper
panels represent phase diagrams in terms of the reservoir small platelet osmotic pressure on the ordinate. Phase diagrams in system
concentrations of small and large platelets are plotted in the lower panels. Critical I-I and N-N points are indicated by open circles.

size ratios in between these limits. Zhang et al. [30,31]
observed I1-I2-N phase transitions for similar size ratios and
also considered N1-N2 coexistence, but such demixing was
superseeded by the more highly ordered columnar crystal
phase. While Harnau et al. [41] did not observe I1-I2-N
coexistence, they did detect I-N broadening as well as the
N1-N2 coexistence using the Zwanzig model.

Using osmotic equilibrium or free volume theory out-
lined above, we performed calculations for three cases:

• r=0.04, q=0.3, t=0.75 (I-I and I-N were observed),
• r=0.04, q=0.2, t=0.5 (only I-N was observed) and
• r=0.01, q=0.08, t=1 (I-N and N-N were observed).

Parameters were chosen close to those reported by Har-
nau et al. [41]; numerics differ slightly but rather similar
phase behaviour, N1-N2 coexistence plus I-N broadening
was found for r=0.01, q=0.08 and t=1. Representative free
volume theory results are reported in Figure 2. These free
volume theory results match with the three phase behaviour
scenarios previously observed on platelet plus polymer mix-
tures. One may compare the two cases when realising the
platelet diameter plays a similar role as the polymer diam-
eter.

Nakato and co-workers [35] studied the liquid-crystal
phase behaviour of suspensions of plate-like Titanate parti-
cles. These particles are characterised by a mean diameter
of 7.1 μm and a thickness of 0.75 nm, so D/L is close to
7500. The size distribution of these particles can be de-

scribed using a log-normal distribution with a width of
32.4%. The width of the biphasic I-N region ranges for this
system from φI ≈ 3.7 × 10−5 to φN ≈ 1.9 × 10−3, which
indeed is indicative of a rather polydisperse system [43]. By
adding very small amounts of laponite platelets, synthetic
hectorites with a diameter of 30 nm and thickness of 1 nm
[36–39,64], Nakato and co-workers [35] observed a tripha-
sic I-N1-N2 phase coexistence region when adding only
0.0005−0.005 g/L of Laponite, which corresponds to vol-
ume fractions 2 × 10−7 − 2 × 10−6 (density of Laponite
≈ 2.53 g/mL). These striking observations at first glance
seem mysterious. Free volume theory computations for the
experimental conditions of Nakato et al. yield results that
predict the presence of a triphasic I-N1-N2 phase coexis-
tence region when adding tiny amounts of small platelets,
see Figure 3.

The computed three-phase triangle extends from φ2 ≈
5 × 10−7 − 2 × 10−6 at φ1 from 6 × 10−4 − 20 × 10−4.
The range in clay concentrations observed experimentally is
much wider as for the monodisperse theoretical case which
reveals the effect of polydispersity. It is clear, however, that
free volume theory provides a reasonable prediction of the
multiphase I-N1-N2 coexistence region observed experi-
mentally.

Justification for the use of FVT resides in the observa-
tion that very small volume fractions of depletant (small
platelets) are needed to establish N1-N2 demixing and
triphasic equilibria. One of the main approximations of
FVT is that the depletant particles do not interact with each
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Figure 3. Phase diagram for large and small hard platelets with
r=1/7500, q=1/250, t=1 to model an experimental Titanate +
Laponite mixture.

other and therefore, behave as an ideal gas. In view of the
tiny volume fractions, this assumption seems appropriate
for the present case.

The near-ideal gas behaviour of the depletant (very
dilute) also justifies the assumption of isotropic order in
the free-volume contributions (cf. Equation (32)). This is
backed up by results from the full, self-consistent theory
(not shown here) in which the depletant is allowed to or-
der nematically. These results reveal that the degree of
nematic order of the small platelets is very weak indeed
so that isotropic order is warranted. On the contrary, the
large platelets, in general, exhibit very strong nematic order
(characterised by large values of α) which lends credence
to the use of the asymptotic Gaussian form employed in this
study.

The N1-N2 phase separation observed experimen-
tally by Nakato et al. [35] and reproduced here semi-
quantitatively using osmotic equilibrium theory calcula-
tions is on a fundamental level equivalent to the predicted
expanded-to-condensed crystal transition for spherical col-
loids with a short-ranged attractive interaction [65–68].
Bolhuis and Frenkel [65] presented an intuitive argument
for the latter transition: the decrease of the energy on com-
pression will outweigh the loss of entropy that is caused by
the decrease of the free volume. For the N1-N2 transition
of plate-like particles considered here, the same argument
can in essence be applied, albeit with a subtle modifica-
tion. As was shown by Vroege and Lekkerkerker [43] for
the N1-N2 transition in a dispersion of bidisperse rod-like
particles, the excluded volume per particle is the same in
the two coexisting nematics as the higher density in dense
nematic leads to a higher degree of ordering, compensating
the increased concentration which is also the case here. The
higher density nematic, however, loses more orientational
entropy which is compensated by a larger attractive deple-
tion attraction. A similar mechanism is at play in systems

of attractive rod-like mesogens as has been demonstrated
in a number of theoretical studies [69,70].

What makes the observation of Nakato et al. [35] of
two coexisting nematics under the influence of the deple-
tion attraction of a small depletant extra relevant is that
it presents the first experimental example of two coexist-
ing isostructural ordered phases under the influence of the
depletion attraction. Frenkel and co-workers [65,66] pre-
dicted that this could happen in a system of spheres but so
far this has not observed. Hence, the work of Nakato et al.
[35] adds another example of the richness of suspensions
of anisometric particles.

4. Concluding remarks

In this work, we applied free volume theory to a mixture of
large and small hard platelets. It is shown that besides the
isotropic (I)–nematic (N) phase transition region, I1-I2 and
N1-N2 coexistence regions appear by changing the relative
sizes of the large and small platelets. The advantage of free
volume theory is that it allows an easy route to construct
phase diagrams in the terms of the concentrations of both
components in the system of interest. These results demon-
strate that it is possible to induce N-N coexistence regions
when adding tiny amounts of small platelets to a disper-
sion of large platelets as was also found experimentally in
Titanate–Laponite mixtures.

The addition of Laponite in equal amounts to the smec-
tite clay Montmorillonite leads to the formation of gel net-
works [71–73]. Our calculations further indicate the pos-
sibility to observe interesting multiphase coexistence in
mixed suspensions of the smectic clay Beidellite (which
displays a nematic liquid crystal phase, see ref. [74]), and
low Laponite concentrations (φ ≈ 4 × 10−4, correspond-
ing to 1 g/L).

In conclusion, the area opened up by Hansen and co-
workers of small and large platelet mixtures offers intrigu-
ing opportunities to observe interesting depletion-induced
phase behaviour and at the same time presents significant
scientific challenges.
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