dr. C.C. (Carolin) Kreisbeck
Gegenereerd op 2018-09-20 05:32:23

Calculus of variations, nonlinear partial differential equations, multiscale problems, applications in materials science
Betrokken bij de opleiding(en)
Gegenereerd op 2018-09-20 05:32:23
Curriculum vitae
since Aug 2016 Assistant professor and Westerdijk fellow at Universiteit Utrecht
Sept 2012 - July 2016 Research associate at Universität Regensburg (on leave in summer 2014)
Apr 2014 - Sept 2014    Research associate at Weierstraß-Institut Berlin
Sept 2011- Aug 2012 Post-doctoral fellow at Universidade Nova de Lisboa
Sept 2010- Aug 2011 Post-doctoral fellow at Carnegie Mellon University
July 2010 PhD in Mathematics from Universität Regensburg
Mar 2007 Diploma in Mathematics from Universität Augsburg
Apr 2006 Bachelor in Mathematics from Technische Universität München
Gegenereerd op 2018-09-20 05:32:23
  • Asymptotic rigidity of layered structures and its application in homogenization theory (with F. Christowiak), Preprint arXiv:1808.10494
  • Characterizations of symmetric polyconvexity (with O. Boussaid, A. Schlömerkemper), Preprint arXiv:1806.06434
Journal articles  
  1. Homogenization of layered materials with rigid components in single-slip finite crystal plasticity, Calc. Var. PDE 56:75 (2017), 28 pages (with F. Christowiak), doi:10.1007/s00526-017-1171-3, Preprint arXiv:1604.03483
  2. Heterogeneous thin films: Combining homogenization and dimension reduction with directors, SIAM J. Math. Anal. 48 (2015), pp. 785-820 (with S. Krömer), doi:10.1137/15M1032557, Preprint arXiv:1502.07139
  3. A note on 3d-1d dimension reduction with differential constraints, accepted for publication in Discrete Contin. Dyn. Syst. Ser. S
  4. Thin-film limits of functionals on A-free vector fields, Indiana Univ. Math. J. 64 (2015), pp. 1383-1423 (with F. Rindler), doi:10.1512/iumj.2015.64.5653, Preprint arXiv:1105.3848
  5. Characterization of polynomials and higher-order Sobolev spaces in terms of functionals involving difference quotients, Nonlinear Anal. 112 (2015), pp. 199-214 (with R. Ferreira, A. M. Ribeiro), doi:10.1016/j.na.2014.09.007, Preprint WIAS No. 1949
  6. Asymptotic spectral analysis in semiconductor nanowire heterostructures, Appl. Anal. 94 (2015), pp.1153-1191 (with L. Mascarenhas), doi:10.1080/00036811.2014.919052, Preprint arXiv:1309.3831
  7. Relaxation of a model in finite plasticity with two slip systems, Math. Models Methods Appl. Sci. 23 (2013), pp. 2111-2128 (with S. Conti, G. Dolzmann), doi: 10.1142/S0218202513500279
  8. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), pp. 1-16 (with S. Conti, G. Dolzmann), doi:10.3934/dcdss.2013.6.1
  9. Another approach to the thin-film Gamma-limit of the micromagnetic free energy in the regime of small samples, Quart. Appl. Math. 71 (2013), pp. 201-213, doi:10.1090/S0033-569X-2012-01323-5 , Preprint arXiv:1105:4266
  10. Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Anal. 43 (2011), pp. 2337-2353 (with S. Conti, G. Dolzmann), doi:10.1137/100810320
  11. Relaxation of a class of variational models in crystal plasticity, Proc. Royal Soc. London 465 (2009), pp. 1735-1742 (with S. Conti, G. Dolzmann), doi:10.1098/rspa.2008.0390
Book chapters  
  • Variational modeling of slip: From crystal plasticity to geological strata, in S. Conti and K. Hackl, editor, Analysis and Computation of Microstructure in Finite Plasticity, Vol. 78 of Lecture Notes in Applied and Computational Mechanics, pp. 31-62, Springer, 2015 (with S. Conti and G. Dolzmann), doi:10.1007/978-3-319-18242-1
  • On the effective material response of bilayered composites in finite crystal plasticity, Oberwolfach Reports 17 (2016), pp. 34-37 (with F. Christowiak), doi:10.4171/OWR/2016/17
  • Laminate structures in plastic composite materials with rigid layers, Proc. Appl. Math. Mech. 15 (2015), pp. 539-540 (with F. Christowiak), doi:10.1002/pamm.201510260
  • Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity , Proc. Appl. Math. Mech. 10 (2010), pp. 3-6 (with S. Conti, G. Dolzmann), doi:10.1002/pamm.201010002
  • Analytical aspects of relaxation for models in crystal plasticity, Oberwolfach Reports 7 (2010), pp. 769-771 (with S. Conti, G. Dolzmann), doi:10.4171/OWR/2010/14
Alle publicaties
  2017 - Wetenschappelijke publicaties
Kreisbeck, C.C. (2017). A note on 3d-1d dimension reduction with differential constraints. Discrete and Continuous Dynamical Systems - Series S, 10 (1).
Kreisbeck, C.C. & Christowiak, Fabian (2017). Homogenization of layered materials with rigid components in single-slip finite crystal plasticity. Calc. Var. Partial Differential Equations, 56 (3).
^ naar boven
Gegenereerd op 2018-09-20 05:32:23
Research interests  
Calculus of variations and nonlinear partial differential equations

Variational multiscale problems with differential constraints and applications in materials science:
  • non-convex variational problems, notions of convexity, relaxation
  • Γ-convergence, dimension reduction, homogenization
  • PDE constraints, differential inclusions, rigidity arguments
  • relaxation of rate-independent processes, evolution of microstructure
  • mathematical models in plasticity theory
Gegenereerd op 2018-09-20 05:32:23
Current courses  
  • Fall 2018: Mathematics for Physicists 3 (lecture & exercises, 2nd year, UU)
  • Fall 2018: Mathematical Modeling (lecture & excercises, 3rd year, UU)
  • Spring 2019: Mathematics for Chemists 3 (lecture & excercises, 3rd year, UU)
Teaching archive  
  • Mathematics for Physicists 3 (lecture & exercises, 2nd year, UU)
  • Mathematics for Chemists 3 (lecture & exercises, 3rd year, UU)
  • Selected topics in the Calculus of Variations (seminar & tutorial, Master, UU)
  • Foundations of Mathematics (lecture & exercises, 1st year, UCU)
  • Calculus of variations II (lecture & excercises, Master UR)
  • Calculus of variations I (lecture & excercises, Master, UR)
  • Variational theory of phase transitions (seminar & tutorial, Master, UR)
  • Partial differential equations III - Calculus of variations (lecture & excercise, Master, UR)
  • Introduction to the calculus of variations (seminar & tutorial, Bachelor/Master, UR)
  • Selected topics in analysis (seminar & tutorial, 2nd year, UR)
  • Partial differential equations III (TA, Master, UR)
  • Bifurcation theory (seminar & tutorial, UR)
  • Plasticity theory (seminar & tutorial, UR)
  • Calculus of variations (seminar & tutorial, UR)
  • Analysis IV - Complex Analysis (TA, 2nd year, UR)
  • Linear Algebra II (TA, 1st year, Uni Augsburg)
Gegenereerd op 2018-09-20 05:32:23


Gegenereerd op 2018-09-20 05:32:23
Volledige naam
dr. C.C. Kreisbeck Contactgegevens
Hans Freudenthalgebouw

Budapestlaan 6a
Kamer 512

Telefoonnummer direct 030 253 3757
Gegenereerd op 2018-09-20 05:32:23
Laatst bijgewerkt op 03-09-2018