dr. A. (Alvaro) del Pino Gomez
Gegenereerd op 2018-09-21 06:34:58


I am a postdoctoral researcher within the project of Marius Crainic. My research deals mostly with h-principle phenomena, particularly within the context of spaces of tangent distributions. Some specific instances of this that I find interesting are contact structures, foliations, and Engel structures.

The h-principle encompasses a series of techniques/approaches that one can use to describe the homotopy type of a space of geometric structures. Some of the highlights in the history of the h-principle include the Nash C1-isometric embedding theorem, the Hirsch-Smale theorem describing the space of immersions, or Gromov's work on continuous sheaves. During the last 30 years the h-principle has become central in the study of contact and symplectic structures.

A (pretty broad) question that I find to be very intriguing is whether there exists a systematic method for determining whether a class of distributions satisfies the h-principle, or whether it admits a geometrically reasonable overtwisted subclass.

Gegenereerd op 2018-09-21 06:34:58


Gegenereerd op 2018-09-21 06:34:58
Volledige naam
dr. A. del Pino Gomez Contactgegevens
Hans Freudenthalgebouw

Budapestlaan 6
Kamer 816

Telefoonnummer direct 030 253 0000
Gegenereerd op 2018-09-21 06:34:58
Laatst bijgewerkt op 15-07-2017