Prof. dr. S.G.D. (Stefan) Rüdiger

Hugo R. Kruytgebouw
Padualaan 8
Kamer O 704
3584 CH Utrecht

Prof. dr. S.G.D. (Stefan) Rüdiger

Hoofd departement
Scheikunde
Hoogleraar
Scheikunde
030 253 3394
s.g.d.rudiger@uu.nl

Google Scholar profile:

http://scholar.google.nl/citations?hl=nl&user=Oz8twy8AAAAJ&view_op=list_works&sortby=pubdate

 

Publication highlights
(for full publication track record scroll down)

The overall aim of my work has been to provide a molecular understanding of how cells ensure protein folding and homeostasis, and to exploit this knowledge for targeting protein folding diseases. My most important achievement was identifying the general function of Hsp90 chaperonesas the downstream optimiser of the Hsp70 chaperone system [1]. Thus, the two most abundant chaperone machines act as an evolutionary conserved cascade[2], which can be tweaked by co-chaperones [3]. This advance was based on progress I made in understanding the substrate specificity of Hsp90, obtained by a structural model of an Hsp90-Tau complex[4]. This allowed me to formulate general concepts on Hsp90 specificity [5]. To achieve this, we pushed NMR to the limitsto reveal a dynamic picture of such complexes [4, 6]. We provided a molecular concept for toxicityof Tau aggregation, attraction of aberrant complexes by pi-stacking [7]. In fact, toxic gain of function of aggregates is a general concept that also plays a role in cancer [8]. Chaperones bind to the aggregation driving segments [9, 10];determining the specific roles of these chaperones will reveal new treatment targets for incurable protein folding diseases.

[1] Morán Luengo T, Kityk R, Mayer MP#, Rüdiger SGD# (# = main author). Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol Cell. 2018;70:545-552. (cover story)
We demonstrate the mode of action how Hsp70 and Hsp90 cooperate in assisting protein folding. Hsp70 chaperone inflicts a folding block, which is resolved by Hsp90. Hsp90 allows the protein to continue folding without engaging in repeated cycles of binding and release by Hsp70. This concept is conserved from bacteria to man. We demonstrate that Hsp70 and Hsp90 are together the most abundant of all chaperones and they constitute the central folding highway of the cell.

[2] Morán Luengo T, Mayer MP, Rüdiger SGD# (# = main author). The Hsp70-Hsp90 cascade in protein folding. Trends Cell Biol. 2019;29:164-177.
We provide a unifying concept for the action of the Hsp70-Hsp90 cascade. Tha Hsp90 chaperone has a conserved function in folding downstream of Hsp70, which is in contrast to widespread opinion not governed by regulating co-chaperones, which only specify tasks.

[3] Radli M, Rüdiger SGD# (# = main author). Picky Hsp90 - every game with a different mate. Mol Cell. 2017;67:899-900 (invited preview).
This is an invited preview on a key paper by the Buchner laboratory. They find that most co-chaperones inhibit Hsp90, and effects on folding are minimal. Here we add the thought that thesedata point to the fact that Hsp90 has a core-activity independent of any co-chaperone action.

[4] Karagöz GE, Duarte AMS, Akoury E, Ippel H, Biernat J, Morán Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T#, Rüdiger SGD#. (# = main author). Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell. 2014;156:963-974.
We present a structural model for the Hsp90 chaperone in complex with the Alzheimer protein Tau. We combine methyl-TROSY NMR techniques with SAXS to overcome the technical difficulties facing when analysing an asymmetric complex of a disordered protein with a large dimer. We provide for the first time a map of the substrate binding site of Hsp90, which reveals how these properties place it late on the chaperoned folding path. We also show that Hsp90 targets the aggregation-prone repeat region, providing insights on chaperone action in Alzheimer.

[5] Karagöz GE, Rüdiger SGD# (# = main author). Hsp90 interaction with clients. Trends Biochem Sci.2015;40:117-125 (Review).
We provide a synthesis several studies providing structural data on substrate recognition by Hsp90. We show that several clients mapped by others and us have a largely overlapping interaction surface. This provides a general concept of client specificity, for folded and unfolded substrates.

[6] Karagöz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R, Rüdiger SGD#. (# = main author). N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci U S A. 2011;108:580-5.
We present a dynamic picture of the full length Hsp90 dimer with its co-chaperone p23 in solution. It is an important milestone on the way to characterise Hsp90 substrate binding in solution, showing we can study the full length protein by NMR using methyl labelling techniques.

[7] Ferrar iL, Stucchi R, Konstantoulea K, van de Kamp G, Kos R, Geerts WJC, Bezouwen LS, Förster FG, Altelaar M, Hoogenraad CC, Rüdiger SGD#(# = main author). Arginine pi-stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Comm. 2020; 11:571.
We show that Tau fibrils attract aberrant interactors by pi-stacking forces. It shows that the grammar rules of liquid liquid phase separation also apply to other types of protein-protein interactions. It provides a mechanistic framework for toxicity of Tau aggregates in Alzheimer.

[8] Anvarian Z, Nojima H, van Kappel EC, Madl T, Spit M, Viertler M, Jordens I, Low TY, van Scherpenzeel R, Kuper I, Richter K, Heck AJR, Boelens R, Vincent JP, Rüdiger SGD#, Maurice MM# (# = main author). Axin cancer mutants form nano-aggregates to rewire the Wnt signaling network. Nature Struct Mol Biol. 2016;23:324-332.
We show that mutations destabilising the tumour suppressor Axin lead to nano-aggregates with a tumourigenic phenotype in vivo. Intriguingly, this phenotype is suppressed by additional mutations that prevent aggregation, although the protein is still unfolded. Mutated Axin forms nano-aggregates scavenging aberrant interactors, thereby derailingthe Wnt signalling cascade.

[9] Weickert S, M Wawrzyniuk M, John L, Rüdiger SGD#, Drescher M# (# = main author).The molecular mechanism of Hsp90-induced oligomerization of Tau. Science Adv.  2020; 6:eaax6999.
We show that Hsp90 opens up the conformation of the Tau ensemble and can initiate its oligomerization. If the chaperone fails to initiate Tau degradation it may have thus contribute to formation of toxic species.

[10] Burmann BM, Gerez JA, Matecko-Burmann I, Campioni, S, Kumari, P, Mazur, A, Aspholm, E, Šulskis D, Wawrzyniuk M, Bock T, Schmidt A, Rüdiger SGD, Riek R, Hiller S. Functional basis for α-Synuclein regulation by chaperones in mammalian cells. Nature. 2020; 577:147-132.
Hsp90 and other chaperones bind to the same site in alpha-synuclein. It is N-terminal of segment that forms the fibril core and allows general conclusions on co-operation of molecular chaperones by (partially) overlapping specificity.

 

Full record of international publications

Publications until 2009 are published as S. Rüdiger, since 2010 including the middle initials as S.G.D Rüdiger.

 

62. Koopman MB, Ferrari L, Rüdiger SGD#.

How do protein aggregates escape quality control in neurodegeneration?

Trends Neurosci
. In the press


61. Jarosinska OD, Rüdiger SGD#.

Molecular Strategies to Target Protein Aggregation in Huntington's Disease. 

Front Mol Biosci. 2021 8:769184. doi: 10.3389/fmolb.2021.769184. PMID: 34869596. OPEN ACCESS

60. Lashley T, Tossounian MA, Costello Heaven N, Wallworth S, Peak-Chew S, Bradshaw A, Cooper JM, de Silva R, Srai SK, Malanchuk O, Filonenko V, Koopman MB, Rüdiger SGD, Skehel M, Gout I. 

Extensive Anti-CoA Immunostaining in Alzheimer's Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A. 

Front Cell Neurosci. 2021 15:739425. doi:10.3389/fncel.2021.739425. PMID: 34720880. OPEN ACCESS

59. Dekker FA, Rüdiger SGD#

The Mitochondrial Hsp90 TRAP1 and Alzheimer’s Disease.

Frontiers Mol. Biosci. 2021 8:573; DOI=10.3389/fmolb.2021.697913. OPEN ACCESS

58. Aragonès Pedrola J, Rüdiger SGD#

Double J-domain piloting of an Hsp70 substrate.

J Biol Chem. 2021 296:100717. doi: 10.1016/j.jbc.2021.100717. OPEN ACCESS; invited preview

 

60. Bhattacharya K, Weidenauer L, Luengo TM, Pieters EC, Echeverría PC, Bernasconi L, Wider D, Sadian Y, Koopman MB, Villemin M, Bauer C, Rüdiger SGD, Quadroni M, Picard D.

The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation.

Nature Comm 2020 11:5975. OPEN ACCESS

doi: 10.1038/s41467-020-19783-w.

 

59. Koopman, MB#, Rüdiger SGD#

Alzheimer cells on their way to derailment show selective changes in protein quality control network.

Frontiers Mol. Biosci. 2020, 7:214. (# = corresponding author) OPEN ACCESS

doi: 10.3389/fmolb.2020.00214.

 

58 Koopman MB, Rüdiger SGD#

Behind closed gates - chaperones and charged residues determine protein fate.

EMBO J 2020; 39:e104939. (# = corresponding author) OPEN ACCESS

doi: 10.15252/embj.2020104939.

 

57 Weickert S, M Wawrzyniuk M, John L, Rüdiger SGD#, Drescher M#

The molecular mechanism of Hsp90-induced oligomerization of Tau.

Science Adv. 2020;6:eaax6999.  (# = corresponding author) OPEN ACCESS

doi: 10.1126/sciadv.aax6999S

 

56 Ferrari L, Stucchi R, Konstantoulea K, van de Kamp G, Kos R, Geerts WJC, Bezouwen LS, Förster FG, Altelaar M, Hoogenraad CC, Rüdiger SGD#

Arginine pi-stacking drives binding to fibrils of the Alzheimer protein Tau.

Nature Comm. 2020; 11:571. (# = corresponding author) OPEN ACCESS

doi: 10.1038/s41467-019-13745-7.

 

55 Burmann BM, Gerez JA, Matecko-Burmann I, Campioni, S, Kumari, P, Mazur, A, Aspholm, E, Šulskis D, Wawrzyniuk M, Bock T, Schmidt A, Rüdiger SGD, Riek R, Hiller S

Functional basis for α-Synuclein regulation by chaperones in mammalian cells.

Nature. 2020;577:127-132.

doi: 10.1038/s41586-019-1808-9.

 

54 Ferrari L., Rüdiger SGD#.

Hsp90 chaperone in disease

In: Heat shock protein 90 in human diseases and disorders. Springer (2019) 471-491. (# = corresponding author)

Doi.org/10.1007/978-3-030-23158-3_21. 

 

53 Morán Luengo T, Mayer MP, Rüdiger SGD#.

The Hsp70-Hsp90 chaperone cascade in protein folding

Trends Cell Biol. 2019;29:164-177,  (# = corresponding author)

doi.org/10.1016/j.tcb.2018.10.004

 

52 Hooikaas PJ, Martin M, Muhlethaler T, Kuijntjes GJ, Peeters CAE, Katrukha EA, Ferrari L, Stucchi R, Verhagen DGF, van Riel WE, Grigoriev I, Altelaar AFM, Hoogenraad CC, Rüdiger SGD, Steinmetz MO, Kapitein LC, Akhmanova A

MAP7 family proteins regulate kinesin-1 recruitment and activation.

J Cell Biol. 2019;218:1298-1318. doi: 10.1083/jcb.201808065.

 

51 Ferrari L, Rüdiger SGD#

Recombinant production and purification of the human protein Tau.

Protein Eng Des Sel. 2018 Dec 1;31(12):447-455. (# = corresponding author) 

doi: 10.1093/protein/gzz010. OPEN ACCESS

 

50 Radli M, Rüdiger SGD#.

Dancing with the diva: Hsp90-client interactions

J Mol Biol. 2018;430:3029-3040 (cover story). (# = corresponding author)

https://doi.org/10.1016/j.jmb.2018.05.026 OPEN ACCESS

high resolution cover: https://www.journals.elsevier.com/journal-of-molecular-biology/covers-gallery/volume-430-issue-18-part-b

 

49 Morán Luengo T, Kityk R, Mayer MP#, Rüdiger SGD#.

Hsp90 breaks the deadlock of the Hsp70 chaperone system.

Mol Cell. 2018;70:545-552 (cover story). (# = corresponding author)

DOI: 10.1016/j.molcel.2018.03.028

 

48 Radli M, Rüdiger SGD#.

Picky Hsp90 - every game with a different mate.

Mol Cell. 2017;67:899-900 (invited preview). (# = corresponding author)

DOI: 10.1016/j.molcel.2017.09.013

 

47 Radli M, Veprintsev DB, Rüdiger SGD#.

Production and purification of human Hsp90ß in Escherichia coli.

PLoS One. 2017;12(6):e0180047. (# = corresponding author) 

doi:10.1371/journal.pone.0180047 OPEN ACCESS

 

46 Anvarian Z, Nojima H, van Kappel EC, Madl T, Spit M, Viertler M, Jordens I, Low TY, van Scherpenzeel R, Kuper I, Richter K, Heck AJR, Boelens R, Vincent JP, Rüdiger SGD#, Maurice MM#.
Axin cancer mutants form nano-aggregates to rewire the Wnt signaling network.

Nature Struct Mol Biol. 2016;23:324-32. (# = corresponding author)

 

45 Hagemans D, van Belzen IAEM, Morán Luengo T, Rüdiger SGD#.

A script to highlight hydrophobicity and charge on protein surfaces.

Frontiers Mol Biosci 2015;2:56. (# = corresponding author) OPEN ACCESS

 

44 Sinnige T, Karagöz GE, Rüdiger SGD#.

Protein Folding and Chaperones.

Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester (2015). (# = corresponding author)

 

43 Karagöz GE, Rüdiger SGD#.

Hsp90 interaction with clients.

Trends Biol Sci. 2015;40:117-125. (# = corresponding author)

 

42 Karagöz GE, Duarte AMS, Akoury E, Ippel H, Biernat J, Morán Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T#, Rüdiger SGD#.

Hsp90-Tau complex reveals molecular basis for specificity in chaperone action.

Cell. 2014;156:963-974. (# = corresponding author)

 

41 Minde DP, Radli M, Forneris F, Maurice MM#, Rüdiger SGD#. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. 

PLoS One. 2013;8:e77257. (# = corresponding author) OPEN ACCESS

 

40 Xue B, Romero PR, Noutsou M, Maurice MM, Rüdiger SGD, William AM Jr, Mizianty MJ, Kurgan L, Uversky VN, Dunker AK.

Stochastic machines as a colocalization mechanism for scaffold protein function.

FEBS Lett. 2013;587:1587-91.

 

39 Minde DP, Maurice MM#, Rüdiger SGD#.

Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp.

PLoS One. 2012;7:e46147. (# = corresponding author)

 

38 Suijkerbuijk SJ, van Dam TJ, Karagöz GE, von Castelmur E, Hubner NC, Duarte AMS, Vleugel M, Perrakis A, Rüdiger SGD, Snel B, Kops GJ.

The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase.

Dev Cell. 2012;22:1321-9.

 

37 Li Y, Karagöz GE, Seo YH, Zhang T, Jiang Y, Yu Y, Duarte AMS, Schwartz SJ, Boelens R, Carroll K#, Rüdiger SGD#, Sun D#.

Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90.

J Nutr Biochem. 2012;23:1617-26. (# = corresponding author)

 

36 Tauriello DV, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, Bouwman BA, Noutsou M, Rüdiger SGD, Schwamborn K, Schambony A, Maurice MM.

Wnt/ß-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled.

Proc Natl Acad Sci U S A. 2012;109:E812-20.  

 

35 Didenko T, Duarte AM, Karagöz GE, Rüdiger SGD#.

Hsp90 structure and function studied by NMR spectroscopy.

Biochim Biophys Acta. 2012;1823:636-47. (# = corresponding author)

 

34 Minde DP, Anvarian Z, Rüdiger SGD#, Maurice MM#.

Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?

Mol Cancer. 2011;10:101. (# = corresponding author)

 

33 Karagöz GE, Sinnige T, Hsieh O, Rüdiger SGD#.

Expressed protein ligation for a large dimeric protein.

Protein Eng Des Sel. 2011;24:495-501. (# = corresponding author)

 

32 Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rüdiger SGD, Friedler A.

Studying protein-protein interactions using peptide arrays.

Chem Soc Rev. 2011;40:2131-45.

 

31 Karagöz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R, Rüdiger SGD#.

N-terminal domain of human Hsp90 triggers binding to the cochaperone p23.

Proc Natl Acad Sci U S A. 2011;108:580-5. (# = corresponding author)

 

30 Noutsou M, Duarte AMS, Anvarian Z, Didenko T, Minde DP, Kuper I, de Ridder I, Oikonomou C, Friedler A, Boelens R, Rüdiger SGD#, Maurice MM#.

Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded.

J Mol Biol. 2011;405:773-86. (# = corresponding author)

 

29 Didenko T, Boelens R, Rüdiger SGD#.

3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.

Protein Eng Des Sel. 2011;24:99-103. (# = corresponding author)

 

28 Sinnige T, Karagöz GE, Rüdiger SGD#.

Protein Folding and Chaperones.

Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester (2010). (# = corresponding author)

 

27 Tsaytler PA, Krijgsveld J, Goerdayal SS, Rüdiger S, Egmond MR.

Novel Hsp90 partners discovered using complementary proteomic approaches.

Cell Stress Chaperones. 2009;14:629-38.

 

26 Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rüdiger S, Danieli T, Friedler A.

The structure and interactions of the proline-rich domain of ASPP2.

J Biol Chem. 2008;283:18990-9.

 

25 Katz C, Benyamini H, Rotem S, Lebendiker M, Danieli T, Iosub A, Refaely H, Dines M, Bronner V, Bravman T, Shalev DE, Rüdiger S, Friedler A.

Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2.

Proc Natl Acad Sci U S A. 2008;105:12277-82.

 

24 Rodriguez F, Arséne-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.

Mol Cell. 2008;32:347-58.

 

23 Mayer S, Rüdiger S, Ang HC, Joerger AC, Fersht AR.

Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro.

J Mol Biol. 2007;372:268-76.

 

22 Vega CA, Kurt N, Chen Z, Rüdiger S, Cavagnero S.

Binding specificity of an alpha-helical protein sequence to a full-length Hsp70 chaperone and its minimal substrate-binding domain.

Biochemistry. 2006;45:13835-46.

 

21 Yu GW, Rüdiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR.

The central region of HDM2 provides a second binding site for p53.

Proc Natl Acad Sci U S A. 2006;103:1227-32.

 

20 Friedler A, DeDecker BS, Freund SMV, Blair C, Rüdiger S, Fersht AR.

Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation".

J Mol Biol. 2004;336:187-96.

 

19 Vandenbroeck K, Alloza I, Brehmer D, Billiau A, Proost P, McFerran N, Rüdiger S, Walker B.

The conserved helix C region in the superfamily of interferon-gamma /interleukin-10-related cytokines corresponds to a high-affinity binding site for the HSP70 chaperone DnaK.

J Biol Chem. 2002;277:25668-76.

 

18 Rüdiger S, Freund SMV, Veprintsev DB, Fersht AR.

CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90.

Proc Natl Acad Sci U S A. 2002;99:11085-90.

 

17 Hansson LO, Friedler A, Freund S, Rüdiger S, Fersht AR.

Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53.

Proc Natl Acad Sci U S A. 2002;99:10305-9.

 

16 Friedler A, Hansson LO, Veprintsev DB, Freund SMV, Rippin TM, Nikolova PV, Proctor MR, Rüdiger S, Fersht AR.

A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants.

Proc Natl Acad Sci U S A. 2002;99:937-42.

 

15 Patzelt H, Rüdiger S, Brehmer D, Kramer G, Vorderwülbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J, Bukau B, Deuerling E.

Binding specificity of Escherichia coli trigger factor.

Proc Natl Acad Sci U S A. 2001;98:14244-9.

 

14 Schaffitzel E, Rüdiger S, Bukau B, Deuerling E.

Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins.

Biol Chem. 2001;382:1235-43.

 

13 Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange.

Nature Struct Biol. 2001;8:427-32.

 

12 Rüdiger S, Schneider-Mergener J, Bukau B.

Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. 

EMBO J. 2001;20:1042-50.

 

11 Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B.

Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch.

J Mol Biol. 2000;304:245-51.

 

10 Mayer MP, Rüdiger S, Bukau B.

Molecular basis for interactions of the DnaK chaperone with substrates.

Biol Chem. 2000;381:877-85.

 

9 Mayer MP, Schröder H, Rüdiger S, Paal K, Laufen T, Bukau B.

Multistep mechanism of substrate binding determines chaperone activity of Hsp70.

Nature Struct Biol. 2000;7:586-93.

 

8 Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B.

Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.

EMBO J. 1999;18:6934-49.

 

7 Knoblauch NT, Rüdiger S, Schönfeld HJ, Driessen AJ, Schneider-Mergener J, Bukau B.

Substrate specificity of the SecB chaperone.

J Biol Chem. 1999;274:34219-25.

 

6 Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N.

Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein.

J Biol Chem. 1999;274:16522-30.

 

5 Rüdiger S, Buchberger A, Bukau B.

Interaction of Hsp70 chaperones with substrates.

Nature Struct Biol. 1997;4:342-9.

 

4 Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B.

Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. 

EMBO J. 1997;16:1501-7.

 

3 McCarty JS, Rüdiger S, Schönfeld HJ, Schneider-Mergener J, Nakahigashi K, Yura T, Bukau B. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria.

J Mol Biol. 1996;256:829-37.

 

2 Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rüdiger S, Schönfeld HJ, Schirra C, Bujard H, Bukau B.

A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.

EMBO J. 1996;15:607-17.

 

1 Herdegen T, Rüdiger S, Mayer B, Bravo R, Zimmermann M.

Expression of nitric oxide synthase and colocalisation with Jun, Fos and Krox transcription factors in spinal cord neurons following noxious stimulation of the rat hindpaw.

Brain Res Mol Brain Res. 1994;22:245-58.  

 

 

Publicaties

2022

Wetenschappelijke publicaties

Koopman, M. B., Ferrari, L., & Rüdiger, S. G. D. (2022). How do protein aggregates escape quality control in neurodegeneration? Trends in Neurosciences, 45(4), 257-271. https://doi.org/10.1016/j.tins.2022.01.006

2021

Wetenschappelijke publicaties

Jarosińska, O. D., & Rüdiger, S. G. D. (2021). Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Frontiers in Molecular Biosciences, 8, 1-21. [769184]. https://doi.org/10.3389/fmolb.2021.769184
Lashley, T., Tossounian, M. A., Costello Heaven, N., Wallworth, S., Peak-Chew, S., Bradshaw, A., Cooper, J. M., de Silva, R., Srai, S. K., Malanchuk, O., Filonenko, V., Koopman, M. B., Rüdiger, S. G. D., Skehel, M., & Gout, I. (2021). Extensive Anti-CoA Immunostaining in Alzheimer’s Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A. Frontiers in Cellular Neuroscience, 15, 1-15. [739425]. https://doi.org/10.3389/fncel.2021.739425
Dekker, F. A., & Rüdiger, S. G. D. (2021). The Mitochondrial Hsp90 TRAP1 and Alzheimer’s Disease. Frontiers in Molecular Biosciences, 8, 1-17. [697913]. https://doi.org/10.3389/fmolb.2021.697913
Pedrola, J. A., & Rüdiger, S. G. D. (2021). Double J-domain piloting of an Hsp70 substrate. Journal of Biological Chemistry, 296, 1-2. [100717]. https://doi.org/10.1016/j.jbc.2021.100717

2020

Wetenschappelijke publicaties

Koopman, M. B., & Rüdiger, S. G. D. (2020). Alzheimer Cells on Their Way to Derailment Show Selective Changes in Protein Quality Control Network. Frontiers in Molecular Biosciences, 7, 1-17. [214]. https://doi.org/10.3389/fmolb.2020.00214
Bhattacharya, K., Weidenauer, L., Luengo, T. M., Pieters, E. C., Echeverría, P. C., Bernasconi, L., Wider, D., Sadian, Y., Koopman, M. B., Villemin, M., Bauer, C., Rüdiger, S. G. D., Quadroni, M., & Picard, D. (2020). The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation. Nature Communications, 11(1), 1-21. [5975]. https://doi.org/10.1038/s41467-020-19783-w
Koopman, M. B., & Rüdiger, S. G. D. (2020). Behind closed gates – chaperones and charged residues determine protein fate. EMBO Journal, 39(11), 1-3. [e104939]. https://doi.org/10.15252/embj.2020104939
Weickert, S., Wawrzyniuk, M., John, L. H., Rüdiger, S. G. D., & Drescher, M. (2020). The mechanism of Hsp90-induced oligomerizaton of Tau. Science advances, 6(11), 1-7. [eaax6999]. https://doi.org/10.1126/sciadv.aax6999
Ferrari, L., Stucchi, R., Konstantoulea, K., van de Kamp, G., Kos, R., Geerts, W. J. C., van Bezouwen, L. S., Förster, F. G., Altelaar, M., Hoogenraad, C. C., & Rüdiger, S. G. D. (2020). Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Communications, 11(1), 1-13. [571]. https://doi.org/10.1038/s41467-019-13745-7
Burmann, B. M., Gerez, J. A., Matecko-Burmann, I., Campioni, S., Kumari, P., Ghosh, D., Mazur, A., Aspholm, E. E., Sulskis, D., Wawrzyniuk, M., Bock, T., Schmidt, A., Rudiger, S. G. D., Riek, R., & Hiller, S. (2020). Regulation of α-synuclein by chaperones in mammalian cells. Nature, 577(7788), 127-132. https://doi.org/10.1038/s41586-019-1808-9

2019

Wetenschappelijke publicaties

Ferrari, L., Stucci, R., Konstantoulea, A., van, D. K. G., Kos, R., Geerts, WJ., Forster, FG., Altelaar, M., Hoogenraad, C., & Rudiger, SG. (2019, Jan). Fibril formation rewires interactome of the Alzheimer protein Tau by π-stacking. https://doi.org/10.1101/522284
Rüdiger, S. G. D., & Ferrari, L. (2019). Hsp90 Chaperone in Disease. In A. A. A. Asea, & P. Kaur (Eds.), Heat Shock Protein 90 in Human Diseases and Disorders (1 ed., pp. 473-491). (Heat Shock Proteins; Vol. 19). Springer Cham. https://doi.org/10.1007/978-3-030-23158-3_21
Hooikaas, P. J., Martin, M., Mühlethaler, T., Kuijntjes, G. J., Peeters, C. A. E., Katrukha, E. A., Ferrari, L., Stucchi, R., Verhagen, D. G. F., Van Riel, W. E., Grigoriev, I., Altelaar, A. F. M., Hoogenraad, C. C., Rüdiger, S. G. D., Steinmetz, M. O., Kapitein, L. C., & Akhmanova, A. (2019). MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 218(4), 1298-1318. https://doi.org/10.1083/jcb.201808065
Morán Luengo, T., Mayer, M. P., & Rüdiger, S. G. D. (2019). The Hsp70-Hsp90 Chaperone Cascade in Protein Folding. Trends in Cell Biology, 29(2), 164-177. https://doi.org/10.1016/j.tcb.2018.10.004

2018

Wetenschappelijke publicaties

Ferrari, L., Geerts, WJ., van, W. M., Kos, R., Konstantoulea, A., van, B. LS., Forster, FG., & Rudiger, SG. (2018, Sept). Human chaperones untangle fibrils of the Alzheimer protein Tau. https://doi.org/10.1101/426650
Ferrari, L., & Rüdiger, S. G. D. (2018). Recombinant production and purification of the human protein Tau. Protein Engineering, Design and Selection, 31(12), 447-455. https://doi.org/10.1093/protein/gzz010
Radli, M., & Rüdiger, S. G. D. (2018). Dancing with the Diva: Hsp90-Client Interactions. Journal of Molecular Biology, 430(18 Part B), 3029-3040. https://doi.org/10.1016/j.jmb.2018.05.026
Morán Luengo, T., Kityk, R., Mayer, M., & Rüdiger, S. G. D. (2018). Hsp90 Breaks the Deadlock of the Hsp70 Chaperone System. Molecular Cell, 70(3), 545-552.e9. https://doi.org/10.1016/j.molcel.2018.03.028

2017

Wetenschappelijke publicaties

Radli, M., Veprintsev, D. B., Rüdiger, S. G. D., & Picard, D. (Ed.) (2017). Production and purification of human Hsp90β in Escherichia coli. PLoS One, 12(6), 1-20. [e0180047]. https://doi.org/10.1371/journal.pone.0180047
Radli, M., & Rüdiger, S. G. D. (2017). Picky Hsp90-Every Game with Another Mate. Molecular Cell, 67(6), 899-900. https://doi.org/10.1016/j.molcel.2017.09.013

2016

Wetenschappelijke publicaties

Anvarian, Z., Nojima, H., van Kappel, E. C., Madl, T., Spit, M., Viertler, M., Jordens, I., Low, T. Y., van Scherpenzeel, R. C., Kuper, I., Richter, K., Heck, A. J. R., Boelens, R., Vincent, J-P., Rüdiger, S. G. D., & Maurice, M. M. (2016). Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural and Molecular Biology, 23, 324-332. https://doi.org/10.1038/nsmb.3191

2015

Wetenschappelijke publicaties

Karagoz, E., & Rüdiger, S. G. D. (2015). Hsp90 interaction with clients. Trends in Biochemical Sciences, 40(2), 117-125. https://doi.org/10.1016/j.tibs.2014.12.002
Hagemans, D., van Belzen, I. A. E. M., Morán Luengo, T., & Rüdiger, S. G. D. (2015). A script to highlight hydrophobicity and charge on protein surfaces. Frontiers in Molecular Biosciences, 2, 1-11. [56]. https://doi.org/10.3389/fmolb.2015.00056

2014

Wetenschappelijke publicaties

Karagöz, G. E., Duarte, A. M. S., Akoury, E., Ippel, H., Biernat, J., Morán Luengo, T., Radli, M., Didenko, T., Nordhues, B. A., Veprintsev, D. B., Dickey, C. A., Mandelkow, E., Zweckstetter, M., Boelens, R., Madl, T., & Rüdiger, S. G. D. (2014). Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell, 156(5), 963-974. https://doi.org/10.1016/j.cell.2014.01.037

2013

Wetenschappelijke publicaties

Xue, B., Romero, P. R., Noutsou, M., Maurice, M. M., Rudiger, S. G. D., William, A. M. J., Mizianty, M. J., Kurgan, L., Uversky, V. N., & Dunker, A. K. (2013). Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Letters, 587, 1587-1591. https://doi.org/10.1016/j.febslet.2013.04.006
Minde, D. P., Radli, M., Forneris, F., Maurice, M. M., & Rüdiger, S. G. D. (2013). Large Extent of Disorder in Adenomatous Polyposis Coli Offers a Strategy to Guard Wnt Signalling against Point Mutations. PLoS One, 8(10), [e77257]. https://doi.org/10.1371/journal.pone.0077257

2012

Wetenschappelijke publicaties

Didenko, T., Boelens, R., & Rüdiger, S. (2012). Erratum: 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes (Protein Engineering, Design and Selection (2011) 24: 1 (99-103)). Protein Engineering, Design & Selection, 25(6), 319. https://doi.org/10.1093/protein/gzs017
Tauriello, D. V. F., Jordens, I., Kirchner, K., Slootstra, J. W., Kruitwagen, T., Bouwman, B. A. M., Noutsou, M., Rüdiger, S. G. D., Schwamborn, K., Schambony, A., & Maurice, M. M. (2012). Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E812-E820. https://doi.org/10.1073/pnas.1114802109
Karagöz, G. E., dos santos Duarte, A. M., Ippel, J. H., Veprintsev, D., Mandelkow, E. -M., Boelens, R., & Rüdiger, S. G. D. (2012). Interaction of the molecular chaperone Hsp90 with its substrate Tau. Journal of Nutritional Biochemistry.
Suijkerbuijk, S. J. E., van Dam, J., Karagoz, E., von Castelmur, E., Hubner, N. C., dos santos Duarte, A., Vleugel, M., Perrakis, A., Rüdiger, S. G. D., Snel, B., & Kops, G. J. P. L. (2012). The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase. Developmental Cell, 22(6), 1321-1329. https://doi.org/10.1016/j.devcel.2012.03.009
Didenko, T. V., dos santos Duarte, A. M., Karagoz, E., & Rüdiger, S. G. D. (2012). Hsp90 structure and function studied by NMR spectroscopy. Biochimica et Biophysica Acta-Reviews on Cancer, 1823(3), 636-647. https://doi.org/10.1016/j.bbamcr.2011.11.009
Minde, D. P., Maurice, M. M., & Rüdiger, S. G. D. (2012). Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp. PLoS One, 7(10), 1-9. [e46147]. https://doi.org/10.1371/journal.pone.0046147
Li, Y., Karagöz, G. E., Seo, Y. H., Zhang, T., Jiang, Y., Yu, Y., Duarte, A. M. S., Schwartz, S. J., Boelens, R., Carroll, K., Rüdiger, S. G. D., & Sun, D. (2012). Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. Journal of Nutritional Biochemistry, 23(12), 1617-1626. https://doi.org/10.1016/j.jnutbio.2011.11.004

2011

Wetenschappelijke publicaties

Katz, C., Levy-Beladev, L., Rotem-Bamberger, S., Rito, T., Rüdiger, S. G. D., & Friedler, A. (2011). Studying protein-protein interactions using peptide arrays. Chemical Society Reviews, 40(5), 2131-2145. https://doi.org/10.1039/c0cs00029a
Didenko, T., Boelens, R., & Rüdiger, S. G. D. (2011). 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Engineering, Design & Selection, 24(1-2), 99-103. https://doi.org/10.1093/protein/gzq091
Karagoz, E., dos santos Duarte, A., Ippel, H., Uetrecht, C., Sinnige, T., Van Rosmalen, M., Hausmann, J., Heck, A. J. R., Boelens, R., & Rüdiger, S. G. D. (2011). N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 580-585. https://doi.org/10.1073/pnas.1011867108
Karagöz, G. E., Sinnige, T., Hsieh, O., & Rüdiger, S. G. D. (2011). Expressed protein ligation for a large dimeric protein. Protein Engineering, Design & Selection, 24(6), 495-501. https://doi.org/10.1093/protein/gzr007
Minde, D. P., Anvarian, Z., Rüdiger, S. G. D., & Maurice, M. M. (2011). Messing up disorder: How do missense mutations in the tumor suppressor protein APC lead to cancer? Molecular Cancer, 10, [101]. https://doi.org/10.1186/1476-4598-10-101
Noutsou, M., dos santos Duarte, A., Anvarian, Z., Didenko, T., Minde, D. P., Kuper, I., De Ridder, I., Oikonomou, C., Friedler, A., Boelens, R., Rüdiger, S. G. D., & Maurice, M. M. (2011). Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded. Journal of Molecular Biology, 405(3), 773-786. https://doi.org/10.1016/j.jmb.2010.11.013

2010

Wetenschappelijke publicaties

Katz, C., Levy-Beladev, L., Rotem-Bamberger, S., Rito, T., Rudiger, S. G. D., & Friedler, A. (2010). Studying protein-protein interactions using peptide arrays. Chemical Society Reviews, 40(5), 2131-2145. https://doi.org/10.1039/C0CS00029A
Sinnige, T., Karagöz, G. E., & Rüdiger, S. G. D. (2010). Protein folding and chaperones. In Encyclopedia of life sciences Wiley.

2009

Wetenschappelijke publicaties

Tsaytler, P. A., Krijgsveld, J., Goerdayal, S. S., Rüdiger, S., & Egmond, M. R. (2009). Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress & Chaperones, (14), 629-638.

2008

Wetenschappelijke publicaties

Katz, C., Benyamini, H., Rotem, S., Lebendiker, M., Danieli, T., Iosub, A., Refaely, H., Dines, M., Bronner, V., Bravman, T., Shalev, D. E., Rüdiger, S. G. D., & Friedler, A. (2008). Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12277-12282.
https://dspace.library.uu.nl/bitstream/handle/1874/33027/Katz%2520et%2520al%2C%25202008.pdf?sequence=1
Rodriguez, F., Arsène-Ploetze, F., Rist, W., Rüdiger, S. G. D., Schneider-Mergener, J., Mayer, M. P., & Bukau, B. (2008). Molecular basis for regulation of the heat shock transcription factor s32 by the DnaK and DnaJ chaperones. Molecular Cell, 32, 347-358.
https://dspace.library.uu.nl/bitstream/handle/1874/33029/Rodriguez%2520et%2520al%2C%25202008.pdf?sequence=1
Rotem, S., Katz, C., Benyamini, H., Lebendiker, M., Veprintsev, D., Rüdiger, S. G. D., Danieli, T., & Friedler, A. (2008). The structure and Interactions of the proline-rich domain of ASPP2. Journal of Biological Chemistry, 283(27), 18990-18999.
https://dspace.library.uu.nl/bitstream/handle/1874/33026/Rotem%2520et%2520al%2C%25202008.pdf?sequence=1

2007

Wetenschappelijke publicaties

Mayer, S., Rüdiger, S. G. D., Ang, H. C., Joerger, A. C., & Fersht, A. R. (2007). Correlation of Levels of Folded Recombinant p53 in Escherichia coli with Thermodynamic Stability in Vitro. Journal of Molecular Biology, 327, 268-276.
https://dspace.library.uu.nl/bitstream/handle/1874/26804/53%2520Rudiger%2520JMB%252007%2520.pdf?sequence=1

2006

Wetenschappelijke publicaties

Vega, C. A., Kurt, N., Chen, Z., Rudiger, S. G. D., & Cavagnero, S. (2006). Binding Specificity of an α-Helical Protein Sequence to a Full-Length Hsp70 Chaperone and Its Minimal Substrate-Binding Domain. Biochemistry, 45(46), 13835-13846.
https://dspace.library.uu.nl/bitstream/handle/1874/20030/52%2520Rudiger%2520Biochem%252006.pdf?sequence=1
Yu, G. W., Rudiger, S. G. D., Veprintsev, D., Freund, S., Fernandez-Fernandez, M. R., & Fersht, A. R. (2006). The central region of HDM2 provides a second binding site for p53. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1227-1232.
https://dspace.library.uu.nl/bitstream/handle/1874/20029/48%2520Rudiger%2520PNAS%252006.pdf?sequence=1

2001

Wetenschappelijke publicaties

Rüdiger, S., Schneider-Mergener, J., & Bukau, B. (2001). Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO Journal, 20(5), 1042-1050. https://doi.org/10.1093/emboj/20.5.1042
Brehmer, D., Rüdiger, S., Gässler, C. S., Klostermeier, D., Packschies, L., Reinstein, J., Mayer, M. P., & Bukau, B. (2001). Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nature Structural Biology, 8(5), 427-432. https://doi.org/10.1038/87588

2000

Wetenschappelijke publicaties

Mayer, M. P., Rudiger, S., & Bukau, B. (2000). Molecular basis for interactions of the DnaK chaperone with substrates. Biological Chemistry, 381(9-10), 877-885. https://doi.org/10.1515/BC.2000.109

1997

Wetenschappelijke publicaties

Rüdiger, S., Buchberger, A., & Bukau, B. (1997). Interaction of Hsp70 chaperones with substrates. Nature Structural Biology, 4(5), 342-349. https://www.nature.com/articles/nsb0597-342