Google Scholar profile:
http://scholar.google.nl/citations?hl=nl&user=Oz8twy8AAAAJ&view_op=list_works&sortby=pubdate
Publication highlights
(for full publication track record scroll down)
The overall aim of my work has been to provide a molecular understanding of how cells ensure protein folding and homeostasis, and to exploit this knowledge for targeting protein folding diseases. My most important achievement was identifying the general function of Hsp90 chaperonesas the downstream optimiser of the Hsp70 chaperone system [1]. Thus, the two most abundant chaperone machines act as an evolutionary conserved cascade[2], which can be tweaked by co-chaperones [3]. This advance was based on progress I made in understanding the substrate specificity of Hsp90, obtained by a structural model of an Hsp90-Tau complex[4]. This allowed me to formulate general concepts on Hsp90 specificity [5]. To achieve this, we pushed NMR to the limitsto reveal a dynamic picture of such complexes [4, 6]. We provided a molecular concept for toxicityof Tau aggregation, attraction of aberrant complexes by pi-stacking [7]. In fact, toxic gain of function of aggregates is a general concept that also plays a role in cancer [8]. Chaperones bind to the aggregation driving segments [9, 10];determining the specific roles of these chaperones will reveal new treatment targets for incurable protein folding diseases.
[1] Morán Luengo T, Kityk R, Mayer MP#, Rüdiger SGD# (# = main author). Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol Cell. 2018;70:545-552. (cover story)
We demonstrate the mode of action how Hsp70 and Hsp90 cooperate in assisting protein folding. Hsp70 chaperone inflicts a folding block, which is resolved by Hsp90. Hsp90 allows the protein to continue folding without engaging in repeated cycles of binding and release by Hsp70. This concept is conserved from bacteria to man. We demonstrate that Hsp70 and Hsp90 are together the most abundant of all chaperones and they constitute the central folding highway of the cell.
[2] Morán Luengo T, Mayer MP, Rüdiger SGD# (# = main author). The Hsp70-Hsp90 cascade in protein folding. Trends Cell Biol. 2019;29:164-177.
We provide a unifying concept for the action of the Hsp70-Hsp90 cascade. Tha Hsp90 chaperone has a conserved function in folding downstream of Hsp70, which is in contrast to widespread opinion not governed by regulating co-chaperones, which only specify tasks.
[3] Radli M, Rüdiger SGD# (# = main author). Picky Hsp90 - every game with a different mate. Mol Cell. 2017;67:899-900 (invited preview).
This is an invited preview on a key paper by the Buchner laboratory. They find that most co-chaperones inhibit Hsp90, and effects on folding are minimal. Here we add the thought that thesedata point to the fact that Hsp90 has a core-activity independent of any co-chaperone action.
[4] Karagöz GE, Duarte AMS, Akoury E, Ippel H, Biernat J, Morán Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T#, Rüdiger SGD#. (# = main author). Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell. 2014;156:963-974.
We present a structural model for the Hsp90 chaperone in complex with the Alzheimer protein Tau. We combine methyl-TROSY NMR techniques with SAXS to overcome the technical difficulties facing when analysing an asymmetric complex of a disordered protein with a large dimer. We provide for the first time a map of the substrate binding site of Hsp90, which reveals how these properties place it late on the chaperoned folding path. We also show that Hsp90 targets the aggregation-prone repeat region, providing insights on chaperone action in Alzheimer.
[5] Karagöz GE, Rüdiger SGD# (# = main author). Hsp90 interaction with clients. Trends Biochem Sci.2015;40:117-125 (Review).
We provide a synthesis several studies providing structural data on substrate recognition by Hsp90. We show that several clients mapped by others and us have a largely overlapping interaction surface. This provides a general concept of client specificity, for folded and unfolded substrates.
[6] Karagöz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R, Rüdiger SGD#. (# = main author). N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc Natl Acad Sci U S A. 2011;108:580-5.
We present a dynamic picture of the full length Hsp90 dimer with its co-chaperone p23 in solution. It is an important milestone on the way to characterise Hsp90 substrate binding in solution, showing we can study the full length protein by NMR using methyl labelling techniques.
[7] Ferrar iL, Stucchi R, Konstantoulea K, van de Kamp G, Kos R, Geerts WJC, Bezouwen LS, Förster FG, Altelaar M, Hoogenraad CC, Rüdiger SGD#(# = main author). Arginine pi-stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Comm. 2020; 11:571.
We show that Tau fibrils attract aberrant interactors by pi-stacking forces. It shows that the grammar rules of liquid liquid phase separation also apply to other types of protein-protein interactions. It provides a mechanistic framework for toxicity of Tau aggregates in Alzheimer.
[8] Anvarian Z, Nojima H, van Kappel EC, Madl T, Spit M, Viertler M, Jordens I, Low TY, van Scherpenzeel R, Kuper I, Richter K, Heck AJR, Boelens R, Vincent JP, Rüdiger SGD#, Maurice MM# (# = main author). Axin cancer mutants form nano-aggregates to rewire the Wnt signaling network. Nature Struct Mol Biol. 2016;23:324-332.
We show that mutations destabilising the tumour suppressor Axin lead to nano-aggregates with a tumourigenic phenotype in vivo. Intriguingly, this phenotype is suppressed by additional mutations that prevent aggregation, although the protein is still unfolded. Mutated Axin forms nano-aggregates scavenging aberrant interactors, thereby derailingthe Wnt signalling cascade.
[9] Weickert S, M Wawrzyniuk M, John L, Rüdiger SGD#, Drescher M# (# = main author).The molecular mechanism of Hsp90-induced oligomerization of Tau. Science Adv. 2020; 6:eaax6999.
We show that Hsp90 opens up the conformation of the Tau ensemble and can initiate its oligomerization. If the chaperone fails to initiate Tau degradation it may have thus contribute to formation of toxic species.
[10] Burmann BM, Gerez JA, Matecko-Burmann I, Campioni, S, Kumari, P, Mazur, A, Aspholm, E, Šulskis D, Wawrzyniuk M, Bock T, Schmidt A, Rüdiger SGD, Riek R, Hiller S. Functional basis for α-Synuclein regulation by chaperones in mammalian cells. Nature. 2020; 577:147-132.
Hsp90 and other chaperones bind to the same site in alpha-synuclein. It is N-terminal of segment that forms the fibril core and allows general conclusions on co-operation of molecular chaperones by (partially) overlapping specificity.
Full record of international publications
Publications until 2009 are published as S. Rüdiger, since 2010 including the middle initials as S.G.D Rüdiger.
62. Koopman MB, Ferrari L, Rüdiger SGD#.
How do protein aggregates escape quality control in neurodegeneration?
Trends Neurosci. In the press
61. Jarosinska OD, Rüdiger SGD#.
Molecular Strategies to Target Protein Aggregation in Huntington's Disease.
Front Mol Biosci. 2021 8:769184. doi: 10.3389/fmolb.2021.769184. PMID: 34869596. OPEN ACCESS
60. Lashley T, Tossounian MA, Costello Heaven N, Wallworth S, Peak-Chew S, Bradshaw A, Cooper JM, de Silva R, Srai SK, Malanchuk O, Filonenko V, Koopman MB, Rüdiger SGD, Skehel M, Gout I.
Extensive Anti-CoA Immunostaining in Alzheimer's Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A.
Front Cell Neurosci. 2021 15:739425. doi:10.3389/fncel.2021.739425. PMID: 34720880. OPEN ACCESS
59. Dekker FA, Rüdiger SGD#
The Mitochondrial Hsp90 TRAP1 and Alzheimer’s Disease.
Frontiers Mol. Biosci. 2021 8:573; DOI=10.3389/fmolb.2021.697913. OPEN ACCESS
58. Aragonès Pedrola J, Rüdiger SGD#
Double J-domain piloting of an Hsp70 substrate.
J Biol Chem. 2021 296:100717. doi: 10.1016/j.jbc.2021.100717. OPEN ACCESS; invited preview
60. Bhattacharya K, Weidenauer L, Luengo TM, Pieters EC, Echeverría PC, Bernasconi L, Wider D, Sadian Y, Koopman MB, Villemin M, Bauer C, Rüdiger SGD, Quadroni M, Picard D.
The Hsp70-Hsp90 co-chaperone Hop/Stip1 shifts the proteostatic balance from folding towards degradation.
Nature Comm 2020 11:5975. OPEN ACCESS
doi: 10.1038/s41467-020-19783-w.
59. Koopman, MB#, Rüdiger SGD#
Alzheimer cells on their way to derailment show selective changes in protein quality control network.
Frontiers Mol. Biosci. 2020, 7:214. (# = corresponding author) OPEN ACCESS
doi: 10.3389/fmolb.2020.00214.
58 Koopman MB, Rüdiger SGD#
Behind closed gates - chaperones and charged residues determine protein fate.
EMBO J 2020; 39:e104939. (# = corresponding author) OPEN ACCESS
doi: 10.15252/embj.2020104939.
57 Weickert S, M Wawrzyniuk M, John L, Rüdiger SGD#, Drescher M#
The molecular mechanism of Hsp90-induced oligomerization of Tau.
Science Adv. 2020;6:eaax6999. (# = corresponding author) OPEN ACCESS
doi: 10.1126/sciadv.aax6999S
56 Ferrari L, Stucchi R, Konstantoulea K, van de Kamp G, Kos R, Geerts WJC, Bezouwen LS, Förster FG, Altelaar M, Hoogenraad CC, Rüdiger SGD#.
Arginine pi-stacking drives binding to fibrils of the Alzheimer protein Tau.
Nature Comm. 2020; 11:571. (# = corresponding author) OPEN ACCESS
doi: 10.1038/s41467-019-13745-7.
55 Burmann BM, Gerez JA, Matecko-Burmann I, Campioni, S, Kumari, P, Mazur, A, Aspholm, E, Šulskis D, Wawrzyniuk M, Bock T, Schmidt A, Rüdiger SGD, Riek R, Hiller S
Functional basis for α-Synuclein regulation by chaperones in mammalian cells.
Nature. 2020;577:127-132.
doi: 10.1038/s41586-019-1808-9.
54 Ferrari L., Rüdiger SGD#.
Hsp90 chaperone in disease
In: Heat shock protein 90 in human diseases and disorders. Springer (2019) 471-491. (# = corresponding author)
Doi.org/10.1007/978-3-030-23158-3_21.
53 Morán Luengo T, Mayer MP, Rüdiger SGD#.
The Hsp70-Hsp90 chaperone cascade in protein folding
Trends Cell Biol. 2019;29:164-177, (# = corresponding author)
doi.org/10.1016/j.tcb.2018.10.004
52 Hooikaas PJ, Martin M, Muhlethaler T, Kuijntjes GJ, Peeters CAE, Katrukha EA, Ferrari L, Stucchi R, Verhagen DGF, van Riel WE, Grigoriev I, Altelaar AFM, Hoogenraad CC, Rüdiger SGD, Steinmetz MO, Kapitein LC, Akhmanova A
MAP7 family proteins regulate kinesin-1 recruitment and activation.
J Cell Biol. 2019;218:1298-1318. doi: 10.1083/jcb.201808065.
51 Ferrari L, Rüdiger SGD#.
Recombinant production and purification of the human protein Tau.
Protein Eng Des Sel. 2018 Dec 1;31(12):447-455. (# = corresponding author)
doi: 10.1093/protein/gzz010. OPEN ACCESS
50 Radli M, Rüdiger SGD#.
Dancing with the diva: Hsp90-client interactions
J Mol Biol. 2018;430:3029-3040 (cover story). (# = corresponding author)
https://doi.org/10.1016/j.jmb.2018.05.026 OPEN ACCESS
high resolution cover: https://www.journals.elsevier.com/journal-of-molecular-biology/covers-gallery/volume-430-issue-18-part-b
49 Morán Luengo T, Kityk R, Mayer MP#, Rüdiger SGD#.
Hsp90 breaks the deadlock of the Hsp70 chaperone system.
Mol Cell. 2018;70:545-552 (cover story). (# = corresponding author)
DOI: 10.1016/j.molcel.2018.03.028
48 Radli M, Rüdiger SGD#.
Picky Hsp90 - every game with a different mate.
Mol Cell. 2017;67:899-900 (invited preview). (# = corresponding author)
DOI: 10.1016/j.molcel.2017.09.013
47 Radli M, Veprintsev DB, Rüdiger SGD#.
Production and purification of human Hsp90ß in Escherichia coli.
PLoS One. 2017;12(6):e0180047. (# = corresponding author)
doi:10.1371/journal.pone.0180047 OPEN ACCESS
46 Anvarian Z, Nojima H, van Kappel EC, Madl T, Spit M, Viertler M, Jordens I, Low TY, van Scherpenzeel R, Kuper I, Richter K, Heck AJR, Boelens R, Vincent JP, Rüdiger SGD#, Maurice MM#.
Axin cancer mutants form nano-aggregates to rewire the Wnt signaling network.
Nature Struct Mol Biol. 2016;23:324-32. (# = corresponding author)
45 Hagemans D, van Belzen IAEM, Morán Luengo T, Rüdiger SGD#.
A script to highlight hydrophobicity and charge on protein surfaces.
Frontiers Mol Biosci 2015;2:56. (# = corresponding author) OPEN ACCESS
44 Sinnige T, Karagöz GE, Rüdiger SGD#.
Protein Folding and Chaperones.
Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester (2015). (# = corresponding author)
43 Karagöz GE, Rüdiger SGD#.
Hsp90 interaction with clients.
Trends Biol Sci. 2015;40:117-125. (# = corresponding author)
42 Karagöz GE, Duarte AMS, Akoury E, Ippel H, Biernat J, Morán Luengo T, Radli M, Didenko T, Nordhues BA, Veprintsev DB, Dickey CA, Mandelkow E, Zweckstetter M, Boelens R, Madl T#, Rüdiger SGD#.
Hsp90-Tau complex reveals molecular basis for specificity in chaperone action.
Cell. 2014;156:963-974. (# = corresponding author)
41 Minde DP, Radli M, Forneris F, Maurice MM#, Rüdiger SGD#. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations.
PLoS One. 2013;8:e77257. (# = corresponding author) OPEN ACCESS
40 Xue B, Romero PR, Noutsou M, Maurice MM, Rüdiger SGD, William AM Jr, Mizianty MJ, Kurgan L, Uversky VN, Dunker AK.
Stochastic machines as a colocalization mechanism for scaffold protein function.
FEBS Lett. 2013;587:1587-91.
39 Minde DP, Maurice MM#, Rüdiger SGD#.
Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp.
PLoS One. 2012;7:e46147. (# = corresponding author)
38 Suijkerbuijk SJ, van Dam TJ, Karagöz GE, von Castelmur E, Hubner NC, Duarte AMS, Vleugel M, Perrakis A, Rüdiger SGD, Snel B, Kops GJ.
The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase.
Dev Cell. 2012;22:1321-9.
37 Li Y, Karagöz GE, Seo YH, Zhang T, Jiang Y, Yu Y, Duarte AMS, Schwartz SJ, Boelens R, Carroll K#, Rüdiger SGD#, Sun D#.
Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90.
J Nutr Biochem. 2012;23:1617-26. (# = corresponding author)
36 Tauriello DV, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, Bouwman BA, Noutsou M, Rüdiger SGD, Schwamborn K, Schambony A, Maurice MM.
Wnt/ß-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled.
Proc Natl Acad Sci U S A. 2012;109:E812-20.
35 Didenko T, Duarte AM, Karagöz GE, Rüdiger SGD#.
Hsp90 structure and function studied by NMR spectroscopy.
Biochim Biophys Acta. 2012;1823:636-47. (# = corresponding author)
34 Minde DP, Anvarian Z, Rüdiger SGD#, Maurice MM#.
Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?
Mol Cancer. 2011;10:101. (# = corresponding author)
33 Karagöz GE, Sinnige T, Hsieh O, Rüdiger SGD#.
Expressed protein ligation for a large dimeric protein.
Protein Eng Des Sel. 2011;24:495-501. (# = corresponding author)
32 Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rüdiger SGD, Friedler A.
Studying protein-protein interactions using peptide arrays.
Chem Soc Rev. 2011;40:2131-45.
31 Karagöz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R, Rüdiger SGD#.
N-terminal domain of human Hsp90 triggers binding to the cochaperone p23.
Proc Natl Acad Sci U S A. 2011;108:580-5. (# = corresponding author)
30 Noutsou M, Duarte AMS, Anvarian Z, Didenko T, Minde DP, Kuper I, de Ridder I, Oikonomou C, Friedler A, Boelens R, Rüdiger SGD#, Maurice MM#.
Critical scaffolding regions of the tumor suppressor Axin1 are natively unfolded.
J Mol Biol. 2011;405:773-86. (# = corresponding author)
29 Didenko T, Boelens R, Rüdiger SGD#.
3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.
Protein Eng Des Sel. 2011;24:99-103. (# = corresponding author)
28 Sinnige T, Karagöz GE, Rüdiger SGD#.
Protein Folding and Chaperones.
Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester (2010). (# = corresponding author)
27 Tsaytler PA, Krijgsveld J, Goerdayal SS, Rüdiger S, Egmond MR.
Novel Hsp90 partners discovered using complementary proteomic approaches.
Cell Stress Chaperones. 2009;14:629-38.
26 Rotem S, Katz C, Benyamini H, Lebendiker M, Veprintsev D, Rüdiger S, Danieli T, Friedler A.
The structure and interactions of the proline-rich domain of ASPP2.
J Biol Chem. 2008;283:18990-9.
25 Katz C, Benyamini H, Rotem S, Lebendiker M, Danieli T, Iosub A, Refaely H, Dines M, Bronner V, Bravman T, Shalev DE, Rüdiger S, Friedler A.
Molecular basis of the interaction between the antiapoptotic Bcl-2 family proteins and the proapoptotic protein ASPP2.
Proc Natl Acad Sci U S A. 2008;105:12277-82.
24 Rodriguez F, Arséne-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
Mol Cell. 2008;32:347-58.
23 Mayer S, Rüdiger S, Ang HC, Joerger AC, Fersht AR.
Correlation of levels of folded recombinant p53 in escherichia coli with thermodynamic stability in vitro.
J Mol Biol. 2007;372:268-76.
22 Vega CA, Kurt N, Chen Z, Rüdiger S, Cavagnero S.
Binding specificity of an alpha-helical protein sequence to a full-length Hsp70 chaperone and its minimal substrate-binding domain.
Biochemistry. 2006;45:13835-46.
21 Yu GW, Rüdiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR.
The central region of HDM2 provides a second binding site for p53.
Proc Natl Acad Sci U S A. 2006;103:1227-32.
20 Friedler A, DeDecker BS, Freund SMV, Blair C, Rüdiger S, Fersht AR.
Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation".
J Mol Biol. 2004;336:187-96.
19 Vandenbroeck K, Alloza I, Brehmer D, Billiau A, Proost P, McFerran N, Rüdiger S, Walker B.
The conserved helix C region in the superfamily of interferon-gamma /interleukin-10-related cytokines corresponds to a high-affinity binding site for the HSP70 chaperone DnaK.
J Biol Chem. 2002;277:25668-76.
18 Rüdiger S, Freund SMV, Veprintsev DB, Fersht AR.
CRINEPT-TROSY NMR reveals p53 core domain bound in an unfolded form to the chaperone Hsp90.
Proc Natl Acad Sci U S A. 2002;99:11085-90.
17 Hansson LO, Friedler A, Freund S, Rüdiger S, Fersht AR.
Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53.
Proc Natl Acad Sci U S A. 2002;99:10305-9.
16 Friedler A, Hansson LO, Veprintsev DB, Freund SMV, Rippin TM, Nikolova PV, Proctor MR, Rüdiger S, Fersht AR.
A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants.
Proc Natl Acad Sci U S A. 2002;99:937-42.
15 Patzelt H, Rüdiger S, Brehmer D, Kramer G, Vorderwülbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J, Bukau B, Deuerling E.
Binding specificity of Escherichia coli trigger factor.
Proc Natl Acad Sci U S A. 2001;98:14244-9.
14 Schaffitzel E, Rüdiger S, Bukau B, Deuerling E.
Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins.
Biol Chem. 2001;382:1235-43.
13 Brehmer D, Rüdiger S, Gässler CS, Klostermeier D, Packschies L, Reinstein J, Mayer MP, Bukau B. Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange.
Nature Struct Biol. 2001;8:427-32.
12 Rüdiger S, Schneider-Mergener J, Bukau B.
Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone.
EMBO J. 2001;20:1042-50.
11 Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B.
Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch.
J Mol Biol. 2000;304:245-51.
10 Mayer MP, Rüdiger S, Bukau B.
Molecular basis for interactions of the DnaK chaperone with substrates.
Biol Chem. 2000;381:877-85.
9 Mayer MP, Schröder H, Rüdiger S, Paal K, Laufen T, Bukau B.
Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
Nature Struct Biol. 2000;7:586-93.
8 Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B.
Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.
EMBO J. 1999;18:6934-49.
7 Knoblauch NT, Rüdiger S, Schönfeld HJ, Driessen AJ, Schneider-Mergener J, Bukau B.
Substrate specificity of the SecB chaperone.
J Biol Chem. 1999;274:34219-25.
6 Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N.
Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein.
J Biol Chem. 1999;274:16522-30.
5 Rüdiger S, Buchberger A, Bukau B.
Interaction of Hsp70 chaperones with substrates.
Nature Struct Biol. 1997;4:342-9.
4 Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B.
Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries.
EMBO J. 1997;16:1501-7.
3 McCarty JS, Rüdiger S, Schönfeld HJ, Schneider-Mergener J, Nakahigashi K, Yura T, Bukau B. Regulatory region C of the E. coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria.
J Mol Biol. 1996;256:829-37.
2 Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rüdiger S, Schönfeld HJ, Schirra C, Bujard H, Bukau B.
A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
EMBO J. 1996;15:607-17.
1 Herdegen T, Rüdiger S, Mayer B, Bravo R, Zimmermann M.
Expression of nitric oxide synthase and colocalisation with Jun, Fos and Krox transcription factors in spinal cord neurons following noxious stimulation of the rat hindpaw.
Brain Res Mol Brain Res. 1994;22:245-58.