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Foreword

These are the notes of a course I taught in Utrecht in the fall of 2003, in the
context of the Master Class on Non-Commutative Geometry, a one year special
programme for a group of around 15 students from many different countries.
The material is a selection of standard results which can be found in many of
the text books on the subject, e.g. the one by C. Weibel (Cambridge University
Press) or the one by P. Hilton and U. Stammbach (Springer-Verlag). A first
draft of the notes was prepared by these students. Subsequently, the notes were
polished with the help of Federico De Marchi, who also added an appendix
on categorical language. Later, Roald Koudenburg added two sections on the
Künneth formula and the Eilenberg-Zilber isomorphism. I’d like to take this
opportunity to express my thanks to the students of the Master Class for being
an enthusiastic audience, and to Federico, Roald and these students for all their
work on the notes.

Utrecht,
April 2005 and September 2007
I. Moerdijk





1. Modules over a ring

By a ring, in this course, we intend an abelian group (in additive notation) with
a product operation, which distributes over the sum, is associative and has a
unit 1 6= 0.

The most standard examples of such a structure are the (commutative) ring
Z of integer numbers, the fields Q, R and C of rational, real and complex
numbers, respectively, and the group ring Z[G] (see Chapter 2, Definition 2.1.1),
which is not necessarily commutative.

1.1 Modules

Modules play to rings the same role as vector spaces do with respect to fields.

Definition 1.1.1 A left R-module is an abelian group (A,+) equipped with an
action by R:

R×A 3 (r, a) 7→ r · a ∈ A
satisfying the following conditions:

a) r · (a+ b) = r · a+ r · b;
b) r · 0 = 0;
c) (r + s) · a = r · a+ s · a;
d) r · (s · a) = (rs) · a;
e) 1 · a = a.

Typically, when the action R×A //A is fixed in the context, we will write ra
instead of r · a.

Example 1.1.2 The following is a list of basic examples of modules:

a) Every vector space over a field k is a k-module;
b) Every abelian group is a Z-module;
c) Every ring R is a module over itself, by taking as action R × R //R the
multiplication of R.

Definition 1.1.3 Let A and B be left R-modules. A mapping φ:A //B is
called an R-homomorphism if, for all a, a′ ∈ A and r ∈ R, we have:

φ(a+ a′) = φ(a) + φ(a′),
φ(ra) = r · φ(a).
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The composite of two R-homomorphisms is again an R-homomorphism, and
the identity map on a module is always an R-homomorphism. So, R-modules
and R-homomorphisms form a category (see Definition A.0.1), which we shall
call the category of left R-modules and will denote by R-mod.

Remark 1.1.4 The category mod-R of right R-modules is defined similarly.
Only, this time the action associates on the right of the elements.

If (R,+, ·) is a ring, its dual R◦ is the ring with the same underlying group,
but with reversed multiplication:

r ∗ s = s · r,

for r, s ∈ R. It is then a trivial observation that the categories R◦-mod and
mod-R are isomorphic.

WhenR is a commutative ring, it coincides with its dual, hence the categories
of left and right R-modules coincide (up to isomorphism), and their objects are
simply called R-modules.

Definition 1.1.5 Given two rings R and S, we say that A is an (R,S)-bimodule
if A is a left R-module and a right S-module, and the two actions associate as
follows:

(ra)s = r(as),

for all r ∈ R, a ∈ A, s ∈ S.
Given two (R,S)-bimodules, we call (R,S)-homomorphism a map between

them which is simultaneously an R-homomorphism and an S-homomorphism.
(R,S)-bimodules and (R,S)-homomorphisms form again a category, which we
shall denote by R-mod-S.

Example 1.1.6 In Example 1.1.2 c) above, R is an (R,R)-bimodule.

Let (Ai)i∈I be a family of left R-modules and let
∏
i∈I Ai be their cartesian

product as sets. Then, a typical element of
∏
i∈I Ai is a family (ai) with ai ∈ Ai

for all i ∈ I and (ai) = (a′i) if and only if ai = a′i for each i ∈ I. If (ai) and (a′i)
are elements of

∏
i∈I Ai and r ∈ R we set:

(ai) + (a′i) = (ai + a′i),
r(ai) = (rai).

With these operations,
∏
i∈I Ai becomes a left R-module, called the direct

product of the family (Ai)i∈I . We call πj :
∏
i∈I Ai //Aj the j-th canonical

projection. The direct product of a family (Ai)i∈I is uniquely characterised
(up to isomorphism) by the following universal property, which we leave you to
check for yourself.

Proposition 1.1.7 For any left R-module B and any family (gi:B //Ai)i∈I
of R-homomorphisms, there exists a unique R-homomorphism g:B //

∏
i∈I Ai

such that πi ◦ g = gi for all i ∈ I.

The subset of
∏
i∈I Ai consisting of those families (ai) with finitely many

non-zero elements ai clearly inherits the structure of an R-module. It is called
the direct sum of the family (Ai)i∈I , and we shall denote it by

⊕
i∈I Ai. For any j
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in I there is an obvious map σj :Aj //
⊕

i∈I Ai taking a ∈ Aj to the family (ai),
with ai = 0 for i 6= j and aj = a. We call this map the j-th canonical injection.
The direct sum of a family of left R-modules is again uniquely characterised (up
to homomorphism) by a universal property, which again you should check for
yourself.

Proposition 1.1.8 For any family (fi:Ai //B)i∈I of R-homomorphisms with
common codomain B, there exists a unique R-homomorphism f :

⊕
i∈I Ai //B

such that f ◦ σi = fi for all i ∈ I.
Remark 1.1.9 Note that, when I is a finite set {1, ..., n}, the R-modules∏
i∈I Ai and

⊕
i∈I Ai do coincide. In this case, we shall denote the resulting

module by A1 ⊕ · · · ⊕An.
Definition 1.1.10 An R-module F is called free if it is isomorphic to a direct
sum of copies of R; that is, if there is a (possible infinite) index set I with:

F =
⊕

i∈I
Ri

where Ri ' R for all i.

Note that, for a field k, every k-module is free.

1.2 The Hom Functor

Let A and B be two left R-modules. We can define on the set HomR-mod(A,B)
of R-homomorphisms from A to B a sum operation, by setting

(φ+ ψ)(a) = φ(a) + ψ(a).

This gives the set the structure of an abelian group, which we denote by
HomR(A,B).

Remark 1.2.1 Notice that there is a subtle but essential difference between
HomR-mod(A,B) and HomR(A,B): their underlying set is the same, but the
latter has much more structure than the former. In particular, they live in
two different categories, namely Set and Ab (for definitions, see the Appendix,
Example A.0.2).

Proposition 1.2.2 Just like the hom-sets give rise to Set-valued functors (see
Definition A.0.6 and Example A.0.10), the HomR-groups determine Ab-valued
functors:

a) For a fixed R-module A, the assignment B 7→ HomR(A,B) defines a
covariant functor HomR(A,−):R-mod //Ab;
b) Analogously, for a fixed R module B, HomR(−, B) is a contravariant
functor from R-mod to Ab.

Remark 1.2.3 Suppose R is a commutative ring. Then, we define an action
of R on the left of HomR(A,B) as follows:

(r · φ)(a) = r · (φ(a)),
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for r ∈ R, φ ∈ HomR(A,B) and a ∈ A. This determines on HomR(A,B) the
structure of a left R-module.

Notice that, in this case, HomR(A,−) and HomR(−, B) can be seen as func-
tors from the category R-mod to itself. Indeed, assume that A, A′, A′′ and B
are left R-modules and let φ:A′ //A be an R-homomorphism. Then, φ defines
by precomposition an R-homomorphism

φ∗: HomR(A,B) // HomR(A′, B);

moreover, if ψ:A′′ //A′ is another R-homomorphism, then we have the equality
ψ∗ ◦ φ∗ = (φ ◦ ψ)∗ of R-homomorphisms from HomR(A,B) to HomR(A′′, B).

Analogously, for left R-modules A, B, B′ and B′′, any R-homomorphism
φ:B //B′ determines by composition an R-homomorphism

φ∗: HomR(A,B) // HomR(A,B′)

and, for a second map ψ:B′ //B′′, we have the equality of R-homomorphisms
ψ∗ ◦ φ∗ = (ψ ◦ φ)∗: HomR(A,B) // HomR(A,B′′).

Remark 1.2.4 Let R and S be two rings, and A and B two abelian groups.
Then, the functor Hom relates different categories, depending on the way R and
S act on A and B.

a) Let A be a left S-module and B an (S,R)-bimodule. In this situation, the
abelian group HomS(A,B) can be endowed the structure of a right R-module,
the action of r ∈ R on φ ∈ HomS(A,B) being given by φ · r:A //B defined as:

(φ · r)(a) = φ(a)r.

It follows that HomS(A,−) is a covariant functor from S-mod-R to mod-R and
HomS(−, B) is a contravariant functor from S-mod to mod-R;
b) If A is an (S,R)-bimodule and B is a right R-module, then HomR(A,B) is
a right S-module with:

(φ · s)(a) = φ(sa),

thus determining the following functors: HomR(A,−): mod-R //mod-S and
HomR(−, B):S-mod-R //mod-S;
c) If A is a right R-module and B is an (S,R)-bimodule, then HomR(A,B) is
a left S-module with:

(sφ)(a) = sφ(a),

thus determining the following functors: HomR(A,−):S-mod-R //S-mod and
HomR(−, B): mod-R //S-mod;
d) If A is an (S,R)-bimodule and B is a left S-module, then HomS(A,B) is a
left R-module with:

(rφ)(a) = φ(ar),

thus determining the following functors: HomS(A,−):S-mod //R-mod and
HomS(−, B):S-mod-R //R-mod.

The universal properties of product and sums (Propositions 1.1.7 and 1.1.8)
can now be refined as follows.
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Proposition 1.2.5 Let A and B =
∏
j∈J Bj be left R-modules. Then, the map

(πj ◦ −): HomR(A,B) //
∏

j∈J
HomR(A,Bj)

taking a map φ to the family of composites (πj ◦φ) is an isomorphism of abelian
groups. Moreover, if each Bi is an (R,S)-bimodule, then (πj ◦−) is an isomor-
phism of right S-modules.

Proposition 1.2.6 Let A =
⊕

i∈I Ai and B be left R-modules. Then, the map

[− ◦ σi]: HomR(A,B) //
∏

i∈I
HomR(Ai, B)

taking a map φ to the family of composites (φσi) is an isomorphism of abelian
groups. Moreover, if each Ai is an (R,S)-bimodule, then this is actually an
isomorphism of left S-modules.

Exercises

a) Recall from the Appendix Definition A.0.12; then show that the assign-
ment φ 7→ φ∗ (resp. φ 7→ φ∗) of Remark 1.2.3 defines a natural trans-
formation between the functors HomR(A,−) and HomR(A′,−) (resp.
HomR(−, B) and HomR(−, B′)).

b) For a commutative ring R, consider the category End(R-mod), whose ob-
jects are functors from R-mod to itself and morphisms are natural trans-
formations between them. Using the previous exercise and Remark 1.2.3,
show that the assignments A 7→ HomR(A,−) and B 7→ HomR(−, B) de-
fine respectively a contravariant and a covariant functor from R-mod to
End(R-mod).

c) Check that any R-module A is isomorphic to HomR(R,A).

1.3 Tensor Product

When working with modules, one can choose between two different product op-
erations. One is the obvious cartesian product, which we have already examined
in Proposition 1.1.7; the other one, which will be essential for us, is called the
tensor product.

Let A be a right R-module and B a left one. Then, we can build the free
abelian group F over their cartesian product A×B. Its elements can be uniquely
written as finite sums ∑

i,j

pij(ai, bj),

for pij ∈ Z, ai ∈ A and bj ∈ B.
Let now T be the subgroup of F generated by all elements of the form

(a+ a′, b)− (a, b)− (a′, b), (a, b+ b′)− (a, b)− (a, b′), (a, rb)− (ar, b)

where a, a′ ∈ A, b, b′ ∈ B and r ∈ R.
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Definition 1.3.1 The quotient F/T has an obvious abelian group structure.
We denote it by

A⊗R B,
and we call it the tensor product of A and B.

The image of a pair (a, b) under the projection F //A⊗R B is denoted by
a⊗b. With this notation, A⊗RB consists of all finite sums

∑
i ai⊗bi, satisfying

the relations:

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b
a⊗ (b+ b′) = a⊗ b+ a⊗ b′

a⊗ rb = ar ⊗ b.

The map f :A×B //A ⊗R B defined by f(a, b) = a ⊗ b is bilinear, i.e. it
satisfies the following properties:

a) f(a+ a′, b) = f(a, b) + f(a′, b);
b) f(a, b+ b′) = f(a, b) + f(a, b′);
c) f(ar, b) = f(a, rb).

These properties characterise the tensor product uniquely, up to isomorphism.
In fact, you should check that the following universal property holds for tensor
products:

Proposition 1.3.2 If C is an abelian group and φ:A×B //C is any bilinear
map, then there is a unique group homomorphism φ:A⊗R B //C making the
following diagram commute:

A×B f
//

φ
**

A⊗R B
φ

²²

C.

(1.1)

Example 1.3.3 Let φ:A //A′ and ψ:B //B′ be homomorphisms of right
and left R-modules, respectively. Then, the map γ:A×B //A′ ⊗R B′ defined
by

γ(a, b) = φ(a)⊗ ψ(b)

is clearly bilinear, hence it induces a (unique!) homomorphism of abelian groups,
γ:A⊗RB //A′⊗RB′, making (1.1) commute, i.e. such that for all (a, b) ∈ A×B

γ(a⊗ b) = φ(a)⊗ ψ(b).

We shall call γ the tensor product of φ and ψ, and we shall denote it by φ⊗ ψ.

In particular, when φ = idA, an R-homomorphism ψ:B //B′ induces a
homomorphism of abelian groups idA ⊗ ψ:A⊗R B //A⊗R B′, and similarly,
when ψ = idB , every φ:A //A′ induces a map φ⊗ idB :A⊗R B //A′ ⊗R B.

Proposition 1.3.4 With the action on maps defined above, A⊗R− and −⊗RB
determine covariant functors from R-mod to Ab and mod-R to Ab, respectively.
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When either A or B have the structure of a bimodule, we can endow the
abelian group A⊗R B with the structure of a module, as follows.

Let R and S be two rings, and assume that A is an (S,R)-bimodule and
B is a left R-module. For each s ∈ S, the map φs:A×B //A ⊗R B defined
by φs(a, b) = sa ⊗ b is easily shown to be bilinear; hence, it determines a
homomorphism φs:A⊗RB //A⊗RB such that φs(a⊗ b) = sa⊗ b for any pair
(a, b) ∈ A×B.

We now define an action of S on A⊗R B by setting

s(a⊗ b) = φs(a⊗ b) = sa⊗ b.
It is straightforward to check that, under this action, A ⊗R B becomes a left
S-module. Accordingly, A ⊗R − and − ⊗R B become covariant functors from
R-mod to S-mod and from S-mod-R to S-mod, respectively.

Analogously, when B is an (R,S)-bimodule and A is a right R-module,
A⊗R B can be regarded as a right S-module by putting:

(a⊗ b)s = a⊗ bs.
In this case, A⊗R− and −⊗RB will become covariant functors from R-mod-S
to mod-S and from mod-R to mod-S, respectively.

Finally, we observe that the universal properties of sum and tensor can be
used to check the following:

Proposition 1.3.5 Let A =
⊕

i∈I Ai and B =
⊕

j∈J Bj be direct sums of right
R-modules and left R-modules, respectively. Then, there exists an isomorphism
of abelian groups

A⊗R B '
⊕

(i,j)∈I×J
(Ai ⊗R Bj).

Exercise

a) Show that two integer numbers n and m are relatively prime if and only
if Z/n⊗Z Z/m = 0.

1.4 Adjoint Isomorphism

Let R and S be two rings, A a right R-module, C a right S-module and B an
(R,S)-bimodule. Then, with the notation introduced in the previous sections,
we may form the groups HomS(A⊗RB,C) and HomR(A,HomS(B,C)). These
are related as follows.

Theorem 1.4.1 The map

τA,C : HomS(A⊗R B,C) // HomR(A,HomS(B,C)) (1.2)

which takes an S-homomorphism α:A ⊗R B //C to the R-homomorphism
α′:A // HomS(B,C) defined by

α′(a)(b) = α(a⊗ b)
is an isomorphism of abelian groups.
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Proof. It is clear that the given map is a group homomorphism. To define
its inverse, let β:A // HomS(B,C) be an R-homomorphism. Then, the map
A×B //C defined by (a, b) 7→ β(a)(b) is clearly bilinear. Hence, there exists a
group homomorphism ψ(β):A⊗R B //C such that

ψ(β)(a⊗ b) = β(a)(b).

Since β(a) is an S-homomorphism, so is ψ(β), and the assignment β 7→ ψ(β)
defines a homomorphism of abelian groups, which is easily checked to be the
inverse of τA,C . ¤

Exercises

a) Recall from the Appendix Definition A.0.16. Then, using Remark 1.2.1
and Theorem 1.4.1, show that, for an (R,S)-bimodule B, the functor
−⊗R B: mod-R //S-mod is left adjoint to the functor HomS(B,−).

b) State and prove a similar adjunction when Hom is taken to be one of the
functors in Remark 1.2.4 a)− d).

1.5 Change of Ring

Let φ:R //S be a ring homomorphism. Then, for any left S-module A, the
action of S induces via φ an action of R on the left of A, defined by

r · a = φ(r)a.

If B is another left S-module and ψ ∈ HomS(A,B), then

ψ(r · a) = ψ(φ(r) · a) = φ(r)ψ(a) = r · ψ(a).

So, ψ can also be regarded as a member of HomR(A,B). In this way, φ defines
a functor φ∗:S-mod //R-mod, or analogously from mod-S to mod-R.

In particular, by Example 1.1.2 c), we can regard S as an S-module, and φ∗

makes it into a right R-module, where the action is defined by s · r = sφ(r). We
have that

(ss′) · r = (ss′)φ(r) = s(s′φ(r)) = s(s′ · r),
thus giving S the structure of an (S,R)-bimodule, and we have the functor

φ! = S ⊗R −:R-mod //S-mod.

The action of φ! on an R-homomorphism τ :B //C gives the S-homomorphism
φ!(τ) = idS ⊗ τ :S ⊗R B //S ⊗R C.

The functors φ∗ and φ! are related in the following way.

Theorem 1.5.1 There is an isomorphism of abelian groups

HomS(φ!(B), A) ' HomR(B,φ∗(A)), (1.3)

which is natural in A and B. In particular, the functor φ! is left adjoint to φ∗.
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Proof. The proof is similar to that of Theorem 1.4.1, and we leave it as an
exercise. (In fact, you can try to see it as an instance of one of the adjunctions in
Exercise 1.4–b), using the observation that φ∗(A) ∼= HomS(S,A) as R-modules.)

¤

Proposition 1.5.2 Let A =
⊕

i∈I Ai be a left S-module. Then, there exists an
isomorphism of R-modules

φ∗(A) '
⊕

i∈I
φ∗(Ai).

Proposition 1.5.3 Let B =
⊕

j∈J Bj be a left R-module. Then, there exists
an isomorphism of S-modules

φ!(B) = S ⊗R B '
⊕

j∈J
(S ⊗R Bj) =

⊕

j∈J
φ!(Bj).

Proof. It follows immediately from Proposition 1.3.5. ¤

Finally, for a ring homomorphism φ as above, we can consider S as an
(R,S)-bimodule (via φ) and define a third functor

φ∗ = HomR(S,−):R-mod //S-mod

as in Remark 1.2.4 d). Now, given a left S-module A and a left R-module B,
we can compare the abelian groups HomR(φ∗A,B) and HomS(A,HomR(S,B)).
Let α ∈ HomR(φ∗A,B) and let a ∈ A. Define ψa:S //B by ψa(s) = α(sa).
Then, it is easy to check that the ψa’s are R-homomorphisms. Moreover,
they satisfy the relations ψa+a′ = ψa + ψa′ and ψsa = sψa; hence, the map
α′:A // HomR(S,B) defined by α′(a) = ψa is an S-homomorphism from A to
HomR(S,B). We now have a mapping

τA,B : HomR(φ∗(A), B) // HomS(A,HomR(S,B)),

defined by τA,B(α) = α′, which can easily be shown to be an isomorphism of
abelian groups. This gives a proof of the following.

Theorem 1.5.4 There is an isomorphism of abelian groups, natural in A and
B:

HomR(φ∗(A), B) ' HomS(A,φ∗(B)).

In particular, the functor φ∗ is right adjoint to φ∗.

1.6 Exact Sequences

We now introduce the notions of kernel and cokernel of a module homomor-
phism. Formally, they do not differ from the analogous notions for abelian
groups (after all, modules are abelian groups, with some extra structure). In
fact, the isomorphism theorems do still hold in this setting, although in proving
them one has to verify the extra condition imposed by the action of the ring.
So, let φ:A //B be an R-homomorphism.

9



Definition 1.6.1 The kernel of φ is the submodule ker(φ) of A defined as

ker(φ) = {a ∈ A : φ(a) = 0};

the image of φ is the submodule im(φ) of B defined as

im(φ) = {b ∈ B : there exists a ∈ A with φ(a) = b}.

In particular, a submodule is a subgroup; hence, we can consider the quotient
B/ im(φ) as abelian groups. It is easy to check that the action of R on B induces
one on the quotient; namely, r · a = r · a (where a is the equivalence class of a).
We define the cokernel of φ to be the quotient module

coker(φ) = B/im(φ).

Definition 1.6.2 A (possibly infinite) sequence

· · · // Ai+1
φi+1

// Ai
φi // Ai−1

// · · · (1.4)

of R-modules and R-homomorphisms is exact at Ai if ker(φi) = im(φi+1). It is
exact if it is exact at Ai for all i.

A short exact sequence is an exact sequence of the special form

0 // A′
φ

// A
ψ

// A′′ // 0. (1.5)

Example 1.6.3 The presence of 0’s in an exact sequence gives some informa-
tion about the adjacent maps. Namely,

a) A sequence 0 //A
φ

//B is exact if and only if φ is injective;

b) A sequence A
ψ

//B //0 is exact if and only if ψ is surjective.

Short exact sequences can be “composed”, and long ones decomposed, as in:

Proposition 1.6.4 (Splicing of exact sequences)

a) If the short sequences

0 // A
φ

// B
ψ

// C // 0,

0 // C
α // D

β
// E // 0

are exact, then there is a (long) exact sequence

0 // A
φ

// B
αψ

// D
β

// E // 0.

b) Conversely, a long sequence as in (1.4) is exact at Ai if and only if the
following is a short exact sequence:

0 // im(φi+1) // Ai // im(φi) // 0.

10



The proof is left as an exercise at the end of this section.

Definition 1.6.5 Let A and B be R-modules, then A is a retract of B if there
exist R-homomorphisms s:A //B and r:B //A such that r ◦ s = idA. When
this happens, we say that s is a section of r, and r is a retraction of s.

Proposition 1.6.6 For a short exact sequence

0 // A
f

// C
g

// B // 0

of left R-modules, the following are equivalent:

a) f has a retraction r:C //A;
b) g has a section s:B //C;
c) there is an isomorphism C ' A⊕B under which the short exact sequence
rewrites as

0 // A
σA // A⊕B πB // B // 0.

The proof is left as Exercise b) below.

Definition 1.6.7 We shall call split a short exact sequence satisfying the equiv-
alent properties of Proposition 1.6.6.

Proposition 1.6.8 (5-lemma) In any commutative diagram

A′ //

a ∼=
²²

B′ //

b ∼=
²²

C ′ //

c

²²

D′ //

d ∼=
²²

E′

e ∼=
²²

A // B // C // D // E

with exact rows, if a, b, d and e are isomorphisms, then so is c. More precisely,
if b and d are injective and a is surjective, then c is injective, and dually, if b
and d are surjective and e is injective, then c is surjective.

Proof. See Exercise c) below. ¤

Let C and D be categories of modules (or, more generally, categories in which
the notion “exact sequence” is defined: see Chapter 4), and F :C //D a functor
between them. In this case, it makes sense to ask whether F preserves exactness
of sequences.

Definition 1.6.9 F is said to be left exact if, whenever a short sequence as in
(1.5) is exact in C, the following is exact in D:

0 //F (A′)
Fφ

//F (A)
Fψ

//F (A′′).

We say that F is right exact if, when (1.5) is exact, we have an exact sequence:

F (A′)
Fφ

//F (A)
Fψ

//F (A′′) //0.

Finally, F is said exact if it is both left exact and right exact, i.e. if it preserves
the exactness of short sequences (or equivalently, by Proposition 1.6.4, of long
ones).
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Proposition 1.6.10 If a functor F : C //D between categories of modules is
left (respectively, right) exact, then it preserves monomorphisms (resp. epimor-
phisms).

Remark 1.6.11 Bearing in mind that a contravariant functor F : C //D is just
a covariant functor from Cop to D (see the Appendix for definitions), and that
clearly a short sequence is exact in C if and only if it is in Cop, one can easily
state the definition of left and right exactness for contravariant functors. It will
then follow that a left exact contravariant functor converts monomorphisms into
epimorphisms, and a right exact contravariant functor does the converse.

Next, we are going to analyse the exactness properties of the Hom and tensor
product functors.

Proposition 1.6.12 Let B be a left R-module. Then, the contravariant functor

HomR(−, B):R-mod //Ab

is left exact.

Proof. Consider a short exact sequence of left R-modules as in (1.5). Then,
we want to show the following sequence to be exact:

0 // HomR(A′′, B)
ψ∗

// HomR(A,B)
φ∗

// HomR(A′, B). (1.6)

To see that ψ∗ is injective, let f, g:A //B be two R-homomorphisms such
that ψ∗(f) = ψ∗(g), i.e. fψ = gψ. Since (1.5) is exact, we know that ψ is
surjective, therefore f = g, and the sequence (1.6) is exact at HomR(A′′, B).

For exactness at HomR(A,B), we need to show ker(φ∗) = im(ψ∗). By
Remark 1.2.3, φ∗ψ∗ = (ψφ)∗, but we know that ψφ is the null map, by the
exactness of (1.5), hence φ∗ψ∗ = 0, and this shows that im(ψ∗) ⊂ ker(φ∗).

For the reverse inclusion, take a map f :A //B such that φ∗(f) = fφ = 0.
We want to show that f = gψ for some g:A′ //B. Since fφ = 0, f factors
through the cokernel of φ, i.e. f = f ′π for some f ′, where π:A //A/ im(φ) is
the quotient projection. On the other hand, surjectivity of ψ determines an iso-
morphism h:A′′ ' //A/ ker(ψ) = A/ im(φ), for which it holds hψ = π. Then,
by taking g = f ′h we have f = f ′π = f ′hψ = gψ, and the result is proved. ¤

By analogous techniques, one proves the following.

Proposition 1.6.13 For a left R-module B, the functor

HomR(B,−):R-mod //Ab

is left exact.

Proposition 1.6.14 Let B be a left R-module. Then, the functor

−⊗R B: mod-R //Ab

is right exact.
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Exercises

a) Prove Proposition 1.6.4.
b) Prove Proposition 1.6.6.
c) Prove Proposition 1.6.8.
d) Recall from A.0.3 the definition of mono and epimorphisms; then, using

the characterisation of Example 1.6.3, give a proof of Proposition 1.6.10.
e) Make precise and verify the claims of Remark 1.6.11.
f) Prove Proposition 1.6.13.
g) Prove Proposition 1.6.14.
h) Show by an example that the functor − ⊗R B of Proposition 1.6.14 is

not left exact. (Hint: you can choose R to be the ring Z)
i) Give examples to show that neither the covariant nor the contravariant

Hom functors are right exact. (Hint: once again, you can choose R to be
Z)

1.7 Projective Modules

The last exercise to the previous Section makes clear that the Hom functors are
not always exact. In this section, we focus our attention on those modules for
which the covariant Hom is.

Definition 1.7.1 A left R-module P is called projective if the functor

HomR(P,−):R-mod //Ab

is exact. An analogous definition holds for right R-modules.

More concretely, by Proposition 1.6.13 and Example 1.6.3 P is projective if
and only if, for any surjection τ :A //B and any map φ:P //B, there exists
a lifting ψ:P //A making the following commute:

A

τ
²²²²

P
φ

//

ψ
>>

B.

Example 1.7.2 Check that every free R-module is projective.

It is also straightforward to verify the following:

Lemma 1.7.3 Every retract of a projective module is projective.

In R-mod, we can give a complete characterisation of projective modules.

Proposition 1.7.4 An R-module is projective if and only if it is a retract of a
free module.
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Proof. One direction easily follows from Example 1.7.2 and Lemma 1.7.3 above.
As for the other implication, let P be a projective and suppose we can cover it
by a free R-module F . Then, we can draw the diagram

F

r

²²

P
id

// P,

where r is an epimorphism, and because P is projective, we get a factorisation
id = rs for some R-homomorphism s, showing P as a retract of F . The exis-
tence of such a covering is given by the following lemma. ¤

Lemma 1.7.5 Every R-module A is covered by a free one, i.e. there is a free
module M and a surjective R-homomorphism

M //A //0.

In particular, this shows that every R-module is covered by a projective one.
This is an important property of the category of R-modules. We shall express
it by saying that R-mod has enough projectives.

Definition 1.7.6 A right R-module A is called flat if the functor A ⊗R − is
exact. Equivalently, by Proposition 1.6.14 and Example 1.6.3, A is flat if A⊗R−
preserves injective R-homomorphisms.

Proposition 1.7.7 Every projective right R-module is flat.

Exercises

a) Prove Lemma 1.7.5.
b) Show that a direct sum of flat modules is flat; use this to show that every

free module is flat.
c) Use exercise b) to prove Proposition 1.7.7.
d) Let A be a Z-module, i.e. an abelian group. Prove that if A is flat then it

is torsion free (i.e. for any non-zero elements a ∈ A and n ∈ Z, n ·a 6= 0).
See Exercise b) at the end of Section 1.11 for the converse.

e) Recall that a subgroup of a free abelian group is free. Prove that an
abelian group is projective if and only if it is free.

f) Use the classification of finitely generated abelian groups to show that, for
such groups, being torsion free, being free and being flat are all equivalent.

1.8 Injective Modules

In this Section, we are going to look at those modules for which the contravariant
Hom functor is exact.

Definition 1.8.1 A left R-module I is called injective if the functor

HomR(−, I):R-mod //Ab

is exact. The definition is easily adapted to the case of right R-modules.
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More concretely, I is injective if, for any two R-homomorphisms i:A //B
and φ:A //I with i injective, there exists an extension ψ:B //I making the
following commute:

A
φ

//

²²

i

²²

I.

B

ψ

??

Notice that the notions of injective and projective module are dual; that is,
we can write one from the other by “reversing the arrows”. More formally, an
object is injective in a category if and only if it is projective in its opposite
(see Definition A.0.8). This enables us to translate a few results for projective
modules to dual statements for injective ones. For instance, since the dual of a
retract is again a retract, we have the following.

Proposition 1.8.2 Every retract of an injective module is injective.

Proposition 1.8.3 Let (Aj)j∈J be a family of R-modules and let A be their
direct product. Then, A is injective if and only if each Ai is.

When R is the commutative ring Z, we can give a precise characterisation
of injective modules.

Definition 1.8.4 An abelian group D is called divisible if, for any d ∈ D and
any non-zero integer n, there is an element x ∈ D such that nx = d.

Example 1.8.5 The additive group Q of rational numbers is divisible. Also,
any quotient of a divisible group is itself divisible.

Any element d in an abelian group D determines a (unique) group homo-
morphism f :Z //D such that f(1) = d. Likewise, any n ∈ Z determines a
morphism n ·−:Z //Z, and this will be injective if n 6= 0. The group D is then
divisible if there exists a g:Z //D making the following triangle commute (so
that, by setting x = g(1), we have d = f(1) = g(n · 1) = nx):

Z
²²

n·−
²²

f
// D.

Z
g

>>

This proves the following.

Proposition 1.8.6 Every injective Z-module is divisible.

The converse is also true.

Proposition 1.8.7 Every divisible abelian group is injective as a Z-module.

Proof. Let D be a divisible group an consider a diagram of abelian groups

A′
φ

//

²²

i

²²

D

A
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where i is injective. We wish to extend φ along i. Consider the set X of pairs
(B,ψ) such that B is a subgroup of A containing A′ and ψ:B //D extends
φ. Define a partial order on X by saying that (B1, ψ1) ≤ (B2, ψ2) if B1 ⊂ B2

and ψ2 extends ψ1. Then, (X,≤) is clearly an inductive set, hence by Zorn’s
Lemma it has a maximal element (B0, ψ0).

Suppose B0 6= A, and let a ∈ A−B0. Then, the subgroup

B′ = {b+ na : b ∈ B0, n ∈ Z}

properly contains B0. If na /∈ B0 for all non-zero integers n, then ψ0 can be
extended to a homomorphism ψ′:B′ //D by defining

ψ′(b+ na) = ψ0(b).

Otherwise, let m be the least positive integer such that ma ∈ B0, and let
d = ψ0(ma). Then, define the extension ψ′:B′ //D of ψ0 as

ψ′(b+ na) = ψ0(b) + nx,

where x ∈ D is such that mx = d.
In either case, the pair (B′, ψ′) violates the maximality of (B0, ψ0), therefore

B0 = A. This shows that D is injective. ¤

Example 1.8.8 By Example 1.8.5, it follows immediately that the rational
circle Q/Z is divisible, hence injective.

We are now interested in showing that, every R-module can be embedded
into an injective one. In order to prove this result, we shall first restrict our
attention to the case R = Z. Then, we shall be able to transpose the property
to other categories of modules by means of an appropriate adjunction.

For the moment, let us define, for any abelian group A, a group Aˇas

Aˇ= HomZ(A,Q/Z).

Notice that there is a canonical homomorphism of abelian groups

α:A //(A )̌̌ (1.7)

defined by α(a)(φ) = φ(a) for any a in A and φ ∈ HomZ(A,Q/Z).

Lemma 1.8.9 The group homomorphism α of (1.7) is injective.

Proof. It is clearly enough to prove that for any a 6= 0 in A there is a morphism
φ:A //Q/Z with φ(a) 6= 0. Using injectivity of Q/Z, it is enough to define φ
on the subgroup B of A generated by a. If na 6= 0 for all n ∈ Z, then B is a
free Z-module with base a, and we may choose φ so that φ(a) is any non-zero
element of Q/Z. Otherwise, let m be the least positive integer such that ma = 0
and define φ(na) as the class of n/m in Q/Z. In both cases, φ satisfies the re-
quired property. ¤

Lemma 1.8.10 If A is a flat Z-module, then Aˇ is divisible.
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Proof. Equivalently, we show that Aˇ is an injective abelian group. To this
purpose, suppose

B
f

//

i

²²

Aˇ

B′,

are group homomorphisms, with i injective. Then, the diagram transposes
through the isomorphism (1.2) to give

B ⊗Z A
f ′

//

i⊗idA

²²

Q/Z

B′ ⊗Z A,

where i⊗ idA is injective because A is flat.
Hence, by Example 1.8.8, there is an extension g′:B′ ⊗Z A //Q/Z, which

transposes back to give a group homomorphism

g:B //Aˇ

such that gi = f . ¤

Theorem 1.8.11 Every abelian group can be embedded into an injective one.

Proof. By Lemma 1.7.5, we can cover the Z-module Aˇwith a free one, i.e.
there is an exact sequence

F
q

// Aˇ // 0 (1.8)

where F is free. By applying the contravariant functor HomZ(−,Q/Z) to (1.8),
we obtain an exact sequence

0 // (A )̌̌
q∗

// F .̌

Hence, q∗: (A )̌̌ //Fˇis injective and, by Lemma 1.8.9, so is the composite

A
α //(A )̌̌

q∗
//F .̌

Moreover, Fˇis injective by Lemma 1.8.10, whence the result. ¤

Analogously to the case of projectives, this property of categories of modules
is very important, and we shall express it by saying that Z-mod has enough
injectives.

Now, we can use Theorem 1.8.11 to prove that the category R-mod has
enough injectives for any ring R. This will use a standard proof technique, which
relies on the following categorical lemma (see the Appendix for the relevant
definitions).
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Lemma 1.8.12 If F aG: C //D is a pair of adjoint functors and F preserves
monos, then G preserves injectives.

Theorem 1.8.13 Every left R-module can be embedded into an injective one.

Proof. Let φ:Z //R be the unique morphism of rings fixing u(1) = 1. Then,
by Theorem 1.5.4, we have an adjunction

Z-mod
φ∗

⊥ 22 R-mod

φ∗
rr

and by Theorem 1.8.11 we can, for any R-module A, consider the embedding

φ∗A //
γ

// D

of the abelian group φ∗A into an injective D.
Since right adjoint functors preserve monomorphisms, φ∗γ is again mono.

Moreover, the unit of the adjunction η:A //φ∗φ∗A = HomZ(R,A) computes
as η(a)(r) = ra, therefore it is obviously injective. The transpose

γ̂ = A
η

// φ∗φ∗A
φ∗γ // φ∗D

of γ along the adjunction is then itself mono, and φ∗D is injective by Lemma
1.8.12, since φ∗ preserves monos; therefore, we have the desired embedding. ¤

Exercises

a) Prove Proposition 1.8.3.
b) Prove Lemma 1.8.12.

1.9 Complexes

In Section 1.6 we have investigated the concept of an exact sequence. In par-
ticular, these chains of morphisms satisfy the property that the composite of
any two consecutive maps is null. Complexes, and their homology, enable one
to study how far a sequence of modules is from being exact.

Definition 1.9.1 A chain complex C? of R-modules is a Z-indexed sequence of
R-modules and R-homomorphism

· · · Cn−1
oo Cn

dnoo Cn+1
dn+1

oo · · ·oo (1.9)

such that dn ◦ dn+1 = 0 for all n ∈ Z. The maps dn are called boundary maps,
and we shall omit the index whenever possible. An element of Cn is called an
n-chain.
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A morphism of chain complexes f?:C? //C ′? is a family (fn:Cn //C ′n)n∈Z
of R-homomorphisms, such that the following diagram commutes for all n ∈ Z:

Cn
dn //

fn

²²

Cn−1

fn−1

²²

C ′n
d′n

// C ′n−1.

We shall often drop the subscripts, and express this condition by saying that
fd = df . Two morphisms of chain complexes f?:C? //C ′? and g?:C ′? //C ′′?
can be composed degree by degree, to give the morphism g? ◦ f? = (gn ◦ fn)n∈Z.
Moreover, for any chain complex C? there is an obvious identity morphism
idC?

= (idCn
)n∈Z. Thus, we have a category of chain complexes, which we

denote by Ch(R).

Definition 1.9.2 The category Ch+(R) of positive chain complexes is defined
to be the (full) subcategory of Ch(R) whose objects are those chain complexes
C? with Cn = 0 for n < 0.

Similarly, we define the category Chb(R) of bounded chain complexes, whose
objects are those chain complexes C? such that Cn = 0 for all but finitely many
values of n.

As for many categorical notions, that of a chain complex has a dual.

Definition 1.9.3 A cochain complex C? of R-modules is a sequence of modules
and maps

· · · // Cn−1 dn−1
// Cn

dn
// Cn+1 // · · · (1.10)

with the property d ◦ d = 0. An element of Cn is called an n-cochain.
Morphisms of cochain complexes are defined in the obvious way, by the

condition fd = df , and they compose, to form a category of cochain complexes,
denoted by CCh(R). This admits a subcategory of positive cochain complexes
CCh+(R) and a subcategory of bounded cochain complexes CChb(R), defined in
the obvious way.

Notice that, for categories of (co)chain complexes, it makes sense to speak
of short exact sequences. In particular, we shall say that

0 //A?
f

//B?
g

//C? //0

is an exact sequence of (co)chain complexes if the short sequence of R-modules

0 //An
fn //Bn

gn //Cn //0

is exact for each n ∈ Z.

Example 1.9.4 The standard p-simplex ∆p ⊂ Rp+1 is defined as the set

∆p =

{
(x0, . . . , xp) :

p∑

i=0

xi = 1, xi ≥ 0 for all i = 0, . . . , p

}
.
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The face operators ∂i:∆p−1
//∆p (i = 0, . . . , p) are defined by

∂i(x0, . . . , xp−1)) = (x0, . . . , xi−1, 0, xi, . . . , xp−1).

A singular p-simplex in a topological space X is a continuous function
s:∆p

//X. For any p ≥ 0, the set of all singular p-simplices in X is denoted
by ∆p(X). The space Cp(X) of singular p-chains on X is the free Z-module
generated by ∆p(X).

Precomposition with ∂i takes any p-simplex s:∆p
//X to a (p− 1)-simplex

s ◦ ∂i. Since ∆p(X) is a basis of Cp(X), these maps extend uniquely to linear
maps

di:Cp(X) //Cp−1(X).

The boundary operator d:Cp(X) //Cp−1(X) (p > 0) is by definition the linear
map

d =
p∑

i=0

(−1)idi

taking a singular p-chain α to dα =
∑p
i=0(−1)iα ◦ ∂i.

The sequence of chain groups

· · · Cp−1(X)doo Cp(X)doo · · ·doo

is a positive chain complex. We call C?(X) the singular complex of X.
Moreover, any continuous map f :X //Y determines by postcomposition

a morphism of chain complexes f?:C?(X) //C?(Y ). We shall look at this in
more detail in Chapter 3.

Example 1.9.5 If M is an n-dimensional smooth manifold, define:

O(M) = {f :M //R : f is a C∞-function}.
We denote by Ωp(M) (p ≥ 0) the O(M)-module of differential p-forms on M ,
which is generated by elements dxi1 ∧ · · · ∧ dxip , subject to the condition

dxi1 ∧ · · · ∧ dxip = (−1)ldxτi1 ∧ · · · ∧ dxτip
for any permutation τ of i1, . . . , ip of degree l. Therefore, any element ω in
Ωp(M) is uniquely written as

ω =
∑

i1<···<ip
fi1···ipdxi1 ∧ · · · ∧ dxip (1.11)

with fi1...ip a C∞-function.
The exterior derivative d: Ωp(M) //Ωp+1(M) is inductively defined as fol-

lows. If f ∈ Ω0(M) = O(M), then

df =
n∑

j=1

∂f

∂xj
dxj .

If p > 0 and ω ∈ Ωp(M) is a p-form as in (1.11), then we define

dω =
∑

i1<···<ip
dfi1···ip ∧ dxi1 ∧ · · · ∧ dxip .
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The exterior derivative gives a bounded cochain complex Ω?(M), called the de
Rham complex of M :

0 // Ω0(M) d // Ω1(M) d // · · · d // Ωn(M) // 0.

Note that the condition dn ◦ dn+1 = 0 for a chain complex is equivalent
to im(dn+1) ⊂ ker(dn). This is half of the condition needed for exactness. In
particular, it enables us to form the quotient groups ker(dn)/ im(dn+1), which
will somehow measure “how far a complex is from being exact”.

Definition 1.9.6 The n-th homology group of the chain complex C? is defined
as:

Hn(C?) = ker(dn)/ im(dn+1).

The elements of Hn(C?) are called homology classes. They are represented by
n-chains in ker(dn) (these are called n-cycles), up to a summand in im(dn+1)
(which are called n-boundaries). The homology class represented by a cycle c
is denoted by [c] = c+ im(dn+1) ∈ Hn(C?). The sum of [x] and [y] is given by
the class [x + y], and the null class 0 is represented by x if and only if x = dy
for some y ∈ Cn+1.

Analogously, for a cochain complex C?, we define its cohomology group in
degree n as the quotient

Hn(C?) = ker(dn)/ im(dn−1).

A cochain x in Cn is a cocycle if dnx = 0 and a coboundary if x = dy for some
y ∈ Cn−1. The equivalence class of a cocycle x is called the cohomology class of
x, and it is denoted by [x].

Example 1.9.7

a) The homology groups Hn(C?(X)) of the singular complex of Example 1.9.4
above are called the singular homology groups of the space X, and are usually
denoted by Hi(X);
b) The p-th cohomology group Hp(Ω?(M)) of the complex of Example 1.9.5 is
denoted by Hp

dR(M) and it is called the p-th de Rham cohomology group of the
manifold M .

A morphism of (co)chain complexes f?:C? //C ′? clearly maps (co)cycles to
(co)cycles and (co)boundaries to (co)boundaries. Therefore, it induces in each
dimension n a homomorphism

Hn(f):Hn(C?) //Hn(C ′?)

defined as Hn(f)([c]) = [fn(c)]. We shall often simply write f , or f∗, for Hn(f).
As usual, we have functoriality: if f?:C? //C ′? and g?:C ′? //C ′′? are mor-
phisms of (co)chain complexes, then (g ◦ f)∗ = g∗ ◦ f∗ and id∗ = idHn(C?) for
each n. Thus each Hn is a covariant functor from Ch(R) (respectively, CCh(R))
to R-mod.
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Proposition 1.9.8 Let

0 // A?
f? // B?

g? // C? // 0

be a short exact sequence of chain complexes. Then, there are canonically in-
duced connecting homomorphisms

δn:Hn(C?) //Hn−1(A?)

making the following long sequence exact:

· · · f∗ // Hn(B?)
g∗ // Hn(C?)

δn // Hn−1(A?)
f∗ // · · · .

Moreover, the connecting morphisms are “natural”, in the sense that whenever

0 // A?
f? //

φ?

²²

B?
g? //

ψ?

²²

C? //

γ?

²²

0

0 // A′?
f ′?

// B′?
g′?

// C ′? // 0

is a commutative diagram with both rows exact and connecting morphisms δ and
δ′, then the following commutes for each n:

Hn(C?)
δn //

γ∗
²²

Hn−1(A?)

φ∗
²²

Hn(C ′?)
δ′n

// Hn−1(A′?).

Proof. We show how to find δn([c]) ∈ Hn−1(A?), where [c] ∈ Hn(C?), and
leave further details as an exercise. Consider the commutative diagram

...

²²

...

²²

...

²²

0 // An
fn //

²²

Bn
gn //

²²

Cn //

²²

0

0 // An−1
fn−1

//

²²

Bn−1
gn−1

//

²²

Cn−1
//

²²

0

0 // An−2
fn−2

//

²²

Bn−2
gn−2

//

²²

Cn−2
//

²²

0

...
...

...
.

We choose c′ ∈ Cn representing [c]. Then, d(c′) = 0 and, by surjectivity of g, we
can pick b ∈ Bn such that gn(b) = c′. Then, gn−1(d(b)) = d(gn(b)) = d(c′) = 0
and exactness of the middle row implies that there is a unique a ∈ An−1 such
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that fn−1(a) = d(b). Therefore, fn−2(d(a)) = d(fn−1(a)) = d(d(b)) = 0, and by
injectivity of fn−2 we get d(a) = 0, so we define δn([c]) = [a] ∈ Hn−1(A?). More
diagram chasing proves that [a] is independent of the choices of c′ ∈ [c] and
b ∈ Bn such that gn(b) = c′. Naturality of δ is proved by analogous techniques.

¤

Exercise

a) Fill in the details of the proof of Proposition 1.9.8. Then, formulate the
analogous result for cochain complexes.

1.10 Homotopy of chain complexes

We shall now focus on chain complexes, although this is inessential, and we
could easily restate every result for cochain complexes.

Definition 1.10.1 Let f, g:C? //C ′? be two morphisms of chain complexes.
Then, a chain homotopy between f and g is a sequence of homomorphisms
hn:Cn //C ′n+1 (n ∈ Z) such that, for all n,

fn − gn = d′n+1 ◦ hn + hn−1 ◦ dn. (1.12)

We shall often omit the subscripts, and write (1.12) as f − g = hd+ dh. Picto-
rially, the situation is represented in the diagram below:

· · · Cn−1
oo

hn−1

%%

fn−1

²²

gn−1

²²

Cn
dnoo

hn

%%

fn

²²

gn

²²

Cn+1
dn+1

oo

fn+1

²²

gn+1

²²

· · ·oo

· · · C ′n−1
oo Cn

d′n

oo Cn+1
d′n+1

oo · · ·oo

Example 1.10.2 Homotopies between maps of topological spaces induce chain
homotopies. We shall investigate this further in Chapter 3.

Remark 1.10.3 We define an equivalence relation between maps of chain com-
plexes by saying that f is equivalent to g if there is a homotopy from f to g.
(This is indeed an equivalence relation, by Exercise a) below.) We denote this
relation by writing f ∼ g, and say in this case that f and g are homotopic.
Notice that it is respected by composition:

Proposition 1.10.4 Consider the following diagram of chain complexes:

C?
f

//

g
// C ′?

h //

i
// C ′′?.

If f ∼ g and h ∼ i, then h ◦ f ∼ i ◦ g.

The proof of this result is left as an exercise.

23



Remark 1.10.5 This shows that the relation of being homotopic is preserved
by composition. In particular, this allows one to define the quotient categories

Ho(R), Ho+(R) and Hob(R)

of Ch(R), Ch+(R) and Chb(R) respectively. These will have the same objects as
their corresponding categories of complexes, but as maps homotopy equivalence
classes of maps of chain complexes.

Homology can not distinguish homotopic maps:

Proposition 1.10.6 If f ∼ g:C? //C ′? are homotopic maps of chain com-
plexes, then they induce the same maps between the homology groups:

f∗ = g∗:Hn(C?) //Hn(C ′?).

Proof. Suppose h is a homotopy between f and g. Then, we want to show
that the difference f∗ − g∗ is the null map between the homology groups. To
this purpose, let [c] ∈ Hn(C?) for some c ∈ ker dn. Then,

(fn − gn)(c) = (d′n+1hn + hn−1dn)(c) = d′n+1(hn(c));

that is, (fn − gn)(c) is an n-boundary in C ′n. Hence,

(f∗ − g∗)([c]) = [(fn − gn)(c)] = 0

for all [c] ∈ Hn(C?). ¤

Definition 1.10.7 A morphism f?:C? //C ′? of chain complexes is a homotopy
equivalence if there exists another morphism g?:C ′? //C? such that f ◦g ∼ idC′
and g ◦ f ∼ idC .

From Proposition 1.10.6 we obtain immediately:

Corollary 1.10.8 A homotopy equivalence f?:C? //C ′? induces isomorphisms
f∗:Hn(C?) //Hn(C ′?) between the homology groups in each degree n.

Definition 1.10.9 A morphism f?:C? //C ′? of chain complexes is said to be a
quasi-isomorphism if the corresponding homology maps f∗:Hn(C?) //Hn(C ′?)
are isomorphisms for all n ∈ Z.

Remark 1.10.10 It is obvious by the definitions and Proposition 1.10.6 that
every homotopy equivalence is also a quasi-isomorphism. The converse is not
true (see Exercise d) below).

Definition 1.10.11 A resolution A P?
εoo of a module A is an exact sequence

of modules
0 Aoo P0

εoo P1
oo · · ·oo

The resolution is called projective if so are all the modules Pn, for n ∈ Z. Dually,

an injective resolution A
η

//I? of A is an exact sequence:

0 // A
η

// I0 // I1 // · · ·
where each In is injective.
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Lemma 1.10.12 Given a map f :A //A′ of modules, a projective resolution

A P?
εoo of A and any resolution A′ B?

ε′oo of A′, there is a morphism
f?:P? //B? of exact sequences lifting f , in the sense that ε′f0 = fε:

0 Aoo

f

²²

P0
εoo

f0

²²

P1
d1oo

f1

²²

P2
d2oo

f2

²²

· · ·d3oo

0 A′oo B0
ε′

oo B1
d′1

oo B2
d′2

oo · · · .
d′3

oo

(1.13)

Furthermore, the morphism f? is unique up to homotopy.

Proof. Since P0 is projective and ε′ is surjective, we can find f0 to make

A

f
²²

P0
εoo

f0
²²

A′ B0
ε′

oo

commute. It is easy to check that f0 restricts to a map F0: ker(ε) // ker(ε′),
and by surjectivity of B1

// ker(ε′) we can find f1 making

ker(ε)

F0
²²

P1
oo

f1
²²

ker(ε′) B1
oo

commute. By iterating this construction, we define fn for all n ∈ Z.
If g?:P? //B? is another morphism of exact sequences making (1.13) com-

mute, then f?− g? covers the morphism 0 = f − f :A //A′. Therefore, unique-
ness follows if we show that f? is homotopic to zero whenever f = 0. To give a
homotopy, we need maps hn:Pn //Bn+1 (n ≥ 0) so that

fn = d′n+1hn + hn−1dn.

We are going to define them inductively. For n = 0, this reads f0 = d′1h0,
and since P0 is projective, the existence of h0 follows from the exactness of the
bottom row and the commutativity of the following:

A

0
²²

P0
oo

f0
²²

h0

$$

A′ B0
oo B1.

d′1

oo

For the inductive step, suppose the maps hi are defined for i < n and consider
the diagram

Pn−1

fn−1
²²

hn−1

MMM
M

&&MMM
M

Pn
dnoo

fn

²²

hn

&&

Bn−1 Bn
d′n

oo Bn+1.
d′n+1

oo
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The bottom row is exact and Pn is projective, so we can find a factorisation
fn − hn−1dn = d′n+1hn provided we verify that d′n(fn − hn−1dn) = 0. But, by
the inductive hypothesis, we know that d′nhn−1 = fn−1 − hn−2dn−1, therefore

d′n(fn − hn−1dn) = d′nfn − fn−1dn + hn−2dn−1dn = d′nfn − fn−1dn = 0.

¤

Proposition 1.10.13 Every module A has a projective resolution, which is
unique up to homotopy.

Proof. We know by the comment after Lemma 1.7.5 that A can be covered by
a projective, i.e. there is a projective module P0 and an exact sequence

0 Aoo P0
ε=ε0oo ker(ε0)

ι1oo 0oo

Similarly, the module ker(ε0) gives rise to an exact sequence

0 ker(ε0)oo P1
ε1oo ker(ε1)

ι2oo 0oo

and so on for ker(εn), for each n ∈ Z. By Proposition 1.6.4, we can splice all
these short exact sequences into one long exact sequence:

0 Aoo P0
εoo P1

d1oo

ε1ss

P2
d2oo

ε2
ss

· · ·oo

ker(ε)ι1

bb

ker(ε1)ι2

bb

This gives the desired resolution, and uniqueness follows by Lemma 1.10.12. ¤

The dual of the last two results, for injective resolutions, is also valid. We
will come back to this duality in a more general context in Chapter 4. The
proofs of the following statements are analogous to the previous ones, and are
left as an exercise.

Lemma 1.10.14 Given a map f :A′ //A of modules, an injective resolution

A
η

//I? of A and a resolution A′
η′

//B? of A′, there is a morphism f?:B? //I?

of exact sequences lifting f , in the sense that f0η′ = ηf :

0 // A′
η′

//

f
²²

B0 d′0 //

f0

²²

B1 d′1 //

f1

²²

· · ·

0 // A η
// I0

d0
// I1

d1
// · · · .

Furthermore, the morphism f? is unique up to homotopy.

Proposition 1.10.15 Every module A has an injective resolution, which is
unique up to homotopy.
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Exercises

a) Show the relation∼ of Remark 1.10.3 to be in fact an equivalence relation.
b) Prove Proposition 1.10.4.
c) Prove Corollary 1.10.8.
d) Show by an example that a quasi-isomorphism between chain complexes

need not be a homotopy equivalence.

1.11 Double Complexes

Just as we have exact sequences of chain complexes, we can formalise the concept
of a chain complex of chain complexes. This is usually achieved by using two
indexes. For this reason, we call these structures double complexes.

Definition 1.11.1 A double complex of R-modules C?? is a family {Cp,q} of
modules together with maps:

dh:Cp,q //Cp,q+1 and dv:Cp,q //Cp+1,q

such that dhdh = dvdv = dvdh + dhdv = 0. Pictorially, C?? is a diagram

...

²²

...

²²

...

²²

· · · // Cp−1,q−1
dh //

dv
²²

Cp−1,q
dh //

dv
²²

Cp−1,q+1 //

dv
²²

· · ·

· · · // Cp,q−1
dh //

dv
²²

Cp,q
dh //

dv
²²

Cp,q+1 //

dv
²²

· · ·

· · · // Cp+1,q−1
dh //

²²

Cp+1,q
dh //

²²

Cp+1,q+1 //

²²

· · ·

...
...

...

in which each row C?,q and each column Cp,? is a cochain complex and, further-
more, each square anti-commutes. Morphisms of double complexes are defined
in an obvious way.

A double complex is called bounded, if there are only finitely many non-zero
modules on each diagonal p + q = n. A special case of this situation is when
both the rows and the columns are positive complexes, that is to say, Cp,q = 0
unless p, q ≥ 0. We call C?? positive in this case.

Definition 1.11.2 Given a bounded double complex C??, define the total com-
plex Tot(C)? by:

Tot(C)n =
⊕
p+q=n

Cp,q.

The formula d = dh + dv defines a total differential

D: Tot(C)n // Tot(C)n+1 (1.14)
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making Tot(C)? into a cochain complex. The action ofD on an element x ∈ Cp,q
maps it to (dhx, dvx) ∈ Cp,q+1 ⊕ Cp+1,q. Naively, we could think of the total
complex as “summing up C?? along the diagonals p+ q = n”.

Remark 1.11.3 In the definition of double complexes we could have just as
well required commutativity of each square, instead of anti-commutativity. In
other words, the equation dhdv+dvdh = 0 could be replaced by dvdh−dhdv = 0.
We can always move from one convention to the other by replacing signs in the
appropriate way. For instance, we can replace the maps dh:Ap,q //Ap+1,q by
the maps

δh = (−1)pdh:Cp,q //Cp,q+1,

or analogously for the vertical maps dv. The definition of the differential maps
in the associated total complex will then have to be adjusted according to the
convention.

Remark 1.11.4 Notice that a positive double complex C?? can always be aug-
mented by adding in front of each row and each column the kernel of the appro-
priate map. If we denote them by

H0
h(C

?,0) = ker(d?,0h ) and H0
v (C

0,?) = ker(d0,?
h ),

then the complex takes the shape

H0
v (C

0,0)
dh //

²²

H0
v (C

0,1) //

²²

· · ·

H0
h(C

0,0) //

dv

²²

C0,0
dh //

dv

²²

C0,1 //

dv

²²

· · ·

H0
h(C

1,0) //

²²

C1,0
dh //

²²

C1,1 //

²²

· · ·

...
...

...
.

(1.15)

The top row and the leftmost column of this augmented double complex are
themselves cochain complexes, which we denote by H0

v (C
??) and H0

h(C
??), re-

spectively. The cohomology of these complexes are denoted by Hn
v (H0

h(C
??))

and Hn
h (H0

v (C
??)).

The cohomology of these two cochain complexes is helpful in calculating the
cohomology of the total complex associated to C??.

Lemma 1.11.5 (Double Complex Lemma) If C?? is a positive double com-
plex with exact columns and exact rows, then there are canonical isomorphisms,
for all n ≥ 0:

Hn(Tot(C)?) ' Hn
v (H0

h(C
??)) ' Hn

h (H0
v (C

??)).
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Proof. We picture the double complex Cp,q as in (1.15), with the p’s running
vertically and the q’s horizontally. By symmetry, it is sufficient to show that

Hn(Tot(C)?) ' Hn
v (H0

h(C
??)).

There is a natural group homomorphism

φ:Hn
v (H0

h(C
??)) //Hn(Tot(C)?)

taking the class [an,0] to [(an,0, 0, . . . , 0)]. To prove that φ is an isomorphism,
we are going to produce its inverse ψ. To this purpose, it is enough to show
that any equivalence class x = [(a0, . . . , an)] ∈ Hn(Tot(C)?) can be uniquely
written as [(b0, 0, . . . , 0)] for an opportune b0, and then define ψ(x) = [b0]. More
generally, we prove that if x = [(a0, · · · , ak, 0, · · · , 0)] for some 1 ≤ k ≤ n, then
x = [(b0, · · · , bk−1, 0, · · · , 0)], for opportune bi’s. The thesis will then follow by
iterating the argument n-many times.

So, suppose x = [(a0, · · · , ak, 0, · · · , 0)]; then, post-composing D with the
projection π: Tot(C)n+1 //Cn−k,k+1, we get

dh(ak) = dh(ak) + dv(0) = πD(x) = 0,

and by exactness of the (n − k)-th row, there exists e ∈ Cn−k,k−1 such that
dh(e) = ak. Now we have

[(a0, . . . , ak, 0, . . . , 0)]− [(a0, . . . , ak−1−dv(e), 0, . . . , 0)]
= [(0, . . . , 0, dv(e), ak, 0, . . . , 0)]
= [(0, . . . , 0, dv(e), dh(e), 0, . . . , 0)]
= D[(0, . . . , 0, e, 0, . . . , 0)];

hence, x is represented by the class [(a0, . . . , ak−1−dv(e), 0, . . . , 0)].

We leave it to the reader to check that these maps φ and ψ are well-defined
and inverse to each other.

Note that we only use the fact that the rows are exact. Similarly, in order
to prove Hn(Tot(C)?) ' Hn

h (H0
v (C

??)), it is suffices to have the exactness of
the columns. ¤

To close this section, we give an application of double complexes to the study
of R-modules.

Let A, B be R-modules. Let A P?
εoo be a projective resolution of A and

B
η

//I? an injective resolution of B. We can then form the double complex
HomR(P?, I?). The morphisms ε and η induce maps from HomR(P?, I?) to
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HomR(A, I?) and HomR(P?, B):

HomR(A, I0) //

ε∗

²²

HomR(A, I1) //

ε∗

²²

· · ·

HomR(P0, B)
η∗ //

²²

HomR(P0, I
0) //

²²

HomR(P0, I
1) //

²²

· · ·

HomR(P1, B)
η∗ //

²²

HomR(P1, I
0) //

²²

HomR(P1, I
1) //

²²

· · ·

...
...

...
.

By projectivity of the Pn’s and injectivity of the In’s, we have that all the rows
and columns of the augmented double complex above are exact. Therefore, by
the double complex lemma, we have that

Hn(HomR(A, I?)) ' Hn(HomR(P?, B)).

Definition 1.11.6 The cohomology groups we have just constructed are called
the Ext groups, and are denoted by Extn(A,B). More precisely, for each A, B
in R-mod we define:

Extn(A,B) = Hn(HomR(A, I?)) ' Hn(HomR(P?, B)).

Analogously, given projective resolutions A P?
εoo and B Q?

δoo of two
R-modules A and B, we define the Tor groups Torn(A,B) as the homology
groups

Torn(A,B) = Hn(A⊗R Q?) ' Hn(P? ⊗R B).

Proposition 1.11.7 Let B be an R-module.

(i) For every R-module A we have Tor0(A,B) ' A⊗R B.

(ii) Given a short exact sequence 0→ A′ → A→ A′′ → 0 of R-modules, there
exists a natural long exact ‘Tor-sequence’

· · · → Tor1(A′′, B)→ A′ ⊗R B → A⊗R B → A′′ ⊗R B → 0.

Proof. Let B δ←− Q? be a projective resolution of B. Then, for every R-module
A, the sequence

A⊗R Q1
id⊗d1−−−→ A⊗R Q0

id⊗δ−−−→ A⊗R B → 0

is exact since A⊗− is right-exact. Hence coker id⊗ d1 ' A⊗R B. This proves
item (i) because Tor0(A,B) = coker id⊗ d1.

To prove item (ii) suppose we are given a short exact sequence 0 → A′ →
A → A′′ → 0 of R-modules. Let B δ←− Q? be a projective resolution of B and
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consider the following short exact sequence of chain complexes.

...

²²

...

²²

...

²²

0 // A′ ⊗Q1
//

²²

A⊗Q1
//

²²

A′′ ⊗Q1
//

²²

0

0 // A′ ⊗Q0
//

²²

A⊗Q0
//

²²

A′′ ⊗Q0
//

²²

0

0 0 0

Applying Proposition 1.9.8 on this short exact sequence then gives the desired
Tor-sequence. ¤

Exercise

a) Show, using the double complex lemma, that the Tor groups are well
defined.

b) Working over the ring R = Z, prove that

Tor1(A,Z/n) = {a ∈ A|n · a = 0}.

Use the classification of finitely generated abelian groups to conclude that
A is torsion free if and only if Tor1(A,B) = 0 for every finitely generated
abelian group B.

1.12 The Künneth formula

Let C and C ′ be chain complexes of right and left R-modules respectively. The
total complex of the double complex Cp,q = Cp ⊗R C ′q with boundary maps

d⊗ id:Cp,q //Cp−1,q and (−1)pid⊗ d:Cp,q //Cp,q−1

is called the tensor product of C and C ′ and is denoted by C⊗RC ′. Remember
its boundary formula is given by

D(c⊗ c′) = dc⊗ c′ + (−1)pc⊗ dc′ for c ∈ Cp and c′ ∈ C ′q. (1.16)

Remark 1.12.1 (i) Let A be a right R-module, B an (R,S)-bimodule and
C a left S-module. There is an isomorphism

(A⊗R B)⊗S C → A⊗R (B ⊗S C)

determined by
(a⊗ b)⊗ c 7→ a⊗ (b⊗ c).
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(ii) The above generalizes as follows. Let C ′ and C ′′ be chain complexes of
right R-modules and left S-modules respectively, and let C be a chain
complex of (R,S)-bimodules. Then there is an isomorphism of chain com-
plexes

(C ′ ⊗R C)⊗S C ′′ ' C ′ ⊗R (C ⊗S C ′′).
(iii) Let A and B be R-bimodules. There is an isomorphism

A⊗B → B ⊗A
determined by a⊗ b 7→ b⊗ a. Given two chain complexes of R-bimodules
C and C ′, this generalizes as follows: there is an isomorphism C ⊗ C ′ '
C ′ ⊗ C, determined by

c⊗ c′ 7→ (−1)pqc′ ⊗ c, where c ∈ Cp and c′ ∈ C ′q.
In the remainder of this section we will, when no confusion can arise, suppress

reference to the ring R in the notations for tensor products of R-modules and
tensor products of chain complexes.

Let C and C ′ be chain complexes of right and left R-modules respectively.
From the boundary formula (1.16), it follows that the tensor product c ⊗ c′ of
two cycles is a cycle in C ⊗ C ′ and that the tensor product of a cycle and a
boundary is a boundary. We thus have a well-defined homomorphism

⊕
p+q=n

Hp(C)⊗Hq(C ′)→ Hn(C ⊗ C ′) : [c]⊗ [c′] 7→ [c⊗ c′],

which is called the homology product.

Theorem 1.12.2 (The Künneth formula) Let R be a principal ideal do-
main and let C and C ′ be chain complexes of right and left R-modules respec-
tively. If the R-modules Ci are all free then, for each n, there is a natural short
exact ‘Künneth sequence’

0→
⊕
p+q=n

Hp(C)⊗Hq(C ′)→ Hn(C⊗C ′)→
⊕

p+q=n−1

Tor1(Hp(C),Hq(C ′))→ 0.

Definition 1.12.3 Generalizing the direct sum of modules we define the direct
sum

⊕
i∈I Ci of a family of chain complexes of left (resp. right) R-modules

(Ci)i∈I by
(
⊕

i∈I
Ci)n =

⊕

i∈I
(Ci)n and d(ci) = (dci).

Clearly
⊕

i∈I Ci is a chain complex of left (resp. right) R-modules and it can
easily be shown there exists a canonical isomorphism

Hn(
⊕

i∈I
Ci) '

⊕

i∈I
Hn(Ci)

for each n. Moreover, if all of the Ci are chain complexes of right R-modules
and C ′ is a chain complex of left R-modules then, using Proposition 1.3.5, one
can prove there is a canonical isomorphism of chain complexes

(
⊕

i∈I
Ci)⊗ C ′ '

⊕

i∈I
(Ci ⊗ C ′).

32



Proof of Theorem 1.12.2. We shall use the fact that every submodule of a free
R-module is free if R is a principal ideal domain, see [3, Theorem III.7.1] for
example.

First assume C has trivial boundary morphisms. Then Hp(C) = Cp is free
for all p, hence the Tor1-term vanishes from the Künneth sequence and we have
to show that the homology product is an isomorphism. Since the boundary
maps of C are trivial the boundary formula of C ⊗ C ′ becomes

D(c⊗ c′) = (−1)pc⊗ dc′ for c ∈ Cp and c′ ∈ C ′q,
and one can easily show there is a canonical isomorphism of chain complexes

C ⊗ C ′ '
⊕

p∈Z
Cp ⊗ C ′[p],

where Cp denotes the constant chain complex Cp with trivial boundary maps,
and C ′[p] is given by C ′[p]n = C ′n−p, with boundary maps (−1)pd. Since Cp is
free it can be written as a disjoint sum of a family of R-modules Ri indexed by
a set I, all of which are isomorphic to R. Hence

Hn(Cp ⊗ C ′[p]) '
⊕

i

Hn−p(C ′) ' Cp ⊗Hn−p(C ′) = Hp(C)⊗Hn−p(C ′),

where we have used that Ri ⊗ C ′q ' C ′q and Hn(C ′[p]) = Hn−p(C ′). Summing
over p thus gives an isomorphism

Hn(C ⊗ C ′) '
⊕
p+q=n

(Hp(C)⊗Hq(C ′)),

which one checks to be given by the homology product.
In the general case, denote the kernels and the images of the boundary

homomorphisms of C by Zp ⊂ Cp and Bp ⊂ Cp respectively. They form chain
complexes Z and B with trivial boundary maps and we have a short exact
sequence 0 → Zp → Cp

d−→ Bp−1 → 0 in each degree p. Because Bp−1 is
free, we have Tor1(Bp−1, C

′
q) = 0 in the associated long exact Tor-sequence (cf.

Proposition 1.11.7) and hence

0→ Zp ⊗ C ′q → Cp ⊗ C ′q → Bp−1 ⊗ C ′q → 0

is exact for each pair p and q. Summing over p+ q = n, these assemble to give
short exact sequences

0→ (Z ⊗ C ′)n → (C ⊗ C ′)n → (B ⊗ C ′)n−1 → 0.

Since Z and B are chain complexes with trivial boundary maps we have by the
special case above

Z ⊗ C ′ '
⊕

p∈Z
Zp ⊗ C ′[p] and B ⊗ C ′ '

⊕

p∈Z
Bp ⊗ C ′[p].

For each degree n, these isomorphisms convert the exact sequence above into
an exact sequence that commutes with the respective boundary maps, so they
form an exact sequence of chain complexes

0→
⊕

p∈Z
Zp ⊗ C ′[p]→ C ⊗ C ′ →

⊕

p∈Z
Bp−1 ⊗ C ′[p]→ 0.
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Hence we have a long exact sequence in homology (cf. Proposition 1.9.8)

· · · →
⊕
p+q=n

Bp ⊗Hq(C ′)
δn−→

⊕
p+q=n

Zp ⊗Hq(C ′)→ Hn(C ⊗ C ′)

→
⊕

p+q=n−1

Bp ⊗Hq(C ′)
δn−1−−−→

⊕
p+q=n−1

Zp ⊗Hq(C ′)→ · · · .

Notice that the connecting morphism δn is just the homomorphism given by
the homomorphisms Bp ⊗ Hq(C ′) → Zp ⊗ Hq(C ′) coming from the inclusion
Bp ⊂ Zp. Indeed, let b ⊗ [c′] belong to Bp ⊗ Hq(C ′). Pulling the cycle b ⊗ c′
in Bp ⊗ C ′q back under d ⊗ id gives c ⊗ c′ in Cp+1 ⊗ C ′q, where d(c) = b, and
D(c ⊗ c′) = b ⊗ c′ in Cp ⊗ C ′q since c′ is a cycle. Pulling the latter back under
Zp ⊗ C ′q → Cp ⊗ C ′q, which is induced by the inclusion Zp ⊂ Cp, gives b ⊗ c′,
now seen as a tensor product in Zp ⊗ C ′q. The image of b⊗ [c′] in Bp ⊗Hq(C ′)
under δn is thus b⊗ [c′] in Zp ⊗Hq(C ′).

Now the exactness in Hn(C ⊗C ′) of the long exact sequence above is equiv-
alent to the exactness of the short exact sequence

0→ coker δn → Hn(C ⊗ C ′)→ ker δn−1 → 0,

which we will show to be the sequence of the theorem.
For each p we have an exact sequence 0 → Bp → Zp → Hp(C) → 0, and

tensoring with Hq(C ′) gives the exact sequence

Bp ⊗Hq(C ′)→ Zp ⊗Hq(C ′)→ Hp(C)⊗Hq(C ′)→ 0.

Summing over p+ q = n these assemble to give the exact sequence
⊕
p+q=n

Bp ⊗Hq(C ′)
δn−→

⊕
p+q=n

Zp ⊗Hq(C ′)→
⊕
p+q=n

Hp(C)⊗Hq(C ′)→ 0,

hence coker δn =
⊕

p+q=nHp(C)⊗Hq(C ′).
To determine ker δn−1, again consider the exact sequence 0 → Bp → Zp →

Hp(C) → 0. Since Zp is free we have Tor1(Zp, Hq(C)) = 0 in the associated
long exact Tor-sequence and hence the sequence below is exact.

0→ Tor1(Hp(C),Hq(C))→ Bp⊗Hq(C)→ Zp⊗Hq(C)→ Hp(C)⊗Hq(C)→ 0

Summing over p+ q = n− 1 we thus find

ker δn−1 =
⊕

p+q=n−1

Tor1(Hp(C),Hq(C)),

which completes the proof of the theorem. The reader can check that every step
in the argument above is natural, so that the Künneth sequence itself is natural.

¤

Since every module (vector space) over a field is free, we obtain

Corollary 1.12.4 Let K be a field and C and C ′ be chain complexes left and
right K-modules respectively. Then the homology product

⊕
p+q=n

Hp(C)⊗Hq(C ′)→ Hn(C ⊗ C ′)

is an isomorphism.
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Definition 1.12.5 Let C be a chain complex of left R-modules. If M is any
right R-module, the homology of C with coefficients in M is given by

H∗(C;M) = H∗(C ⊗M).

Theorem 1.12.6 (Universal coefficient theorem for homology) Let C be
a chain complex of free left modules over R and let M be a right R-module. Then
there is a natural short exact sequence

0→ Hn(C)⊗M → Hn(C;M)→ Tor1(Hn−1(C),M)→ 0.

In particular, if R is a field then Hn(C;M) ' Hn(C)⊗M .

Proof. Apply Theorem 1.12.2 on C and C ′, where C ′0 = M and C ′n = 0 for
n 6= 0. ¤

Proposition 1.12.7 The Künneth sequence of Theorem 1.12.2 splits, yielding
a direct sum composition

Hn(C ⊗ C ′) '
( ⊕
p+q=n

Hp(C)⊗Hq(C ′)

)
⊕

( ⊕
p+q=n−1

Tor1(Hp(C),Hq(C ′))

)
.

Proof. We will show that the Künneth sequence splits if both C and C ′ are
free. This suffices for our applications. It is not hard to generalize the argument
below to show splitting when C ′ is not free, see [2, Section V.2].

The exact sequence 0 → Zp → Cp → Bp−1 → 0 splits since Bp−1 is a free.
Hence Cp ' Zp ⊕Bp−1 and we can thus extend the quotient map Zp → Hp(C)
to a homomorphism Cp → Hp(C). Viewing H∗(C) as a chain complex H(C)
with trivial boundary maps, these homomorphisms form a morphism of chain
complexes C → H(C). Similarly we have a morphism of chain complexes C ′ →
H(C ′) and tensoring these morphisms gives a morphism

C ⊗ C ′ → H(C)⊗H(C ′).

Now the chain complex H(C) ⊗ H(C ′) equals its own homology because its
boundary maps are trivial and the induced morphism on homology for the mor-
phism of chain complexes above is the splitting map we sought. ¤

Remark 1.12.8 The splitting of the Künneth sequence is not natural, as is
demonstrated by the following example.

If the splitting were natural then we would have, for any two morphisms of
chain complexes φ:C //D and ψ:C ′ //D′, that (φ ⊗ ψ)∗ = 0 if φ∗ ⊗ ψ∗ = 0
and Tor1(φ∗, ψ∗) = 0. To give a counter-example to this implication, consider
the following situation. Take R = Z, C0 = Z = C1, Cn = 0 for n 6= 0, 1 and
d1(1) = 2; D1 = Z, Dn = 0 for n 6= 1 and φ1 = id; C ′0 = Z/2Z, C ′n = 0 for
n 6= 0, D′ = C ′ and ψ = id. Clearly φ∗ = 0, hence, assuming that the splitting
is natural, we would have (φ⊗ψ)∗ = 0. However, (C⊗C ′)2 = 0 = (D⊗D′)2 and
hence H1(C⊗C ′) = C1⊗C ′0 = Z⊗Z/2Z and H1(C⊗C ′) = D1⊗D′0 = Z⊗Z/2Z,
so that (φ⊗ ψ)∗:H1(C ⊗ C ′) //H1(D ⊗D′) is an isomorphism.
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1.13 Additional exercises

1. Let R be a ring with unit, A a right R-module and B a left R-module.
Prove that R⊗R B ∼= B and A⊗R R ∼= A.

2. Compute Z/n⊗Z Q and Q⊗Z Q.

3. Show that Z/n⊗Z Z/m ∼= Z/d, where d = gcd(n,m).

4. Give an example of R-modules A and {Bi}i∈I such that

A⊗R
(∏

i∈I
Bi

)
6∼=

∏

i∈I
(A⊗R Bi) .
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2. Cohomology of groups

In this Chapter, we use the machinery of cohomology introduced in Chapter 1
in order to study properties of groups. To fix notation, our default group G
(in multiplicative notation) will have elements g, h, and so on; its unit will be
denoted by 1.

2.1 Cohomology of a group

In order to introduce the concept of cohomology for an arbitrary group, we
first need to generate a cochain complex. This will arise from the following
definitions.

Definition 2.1.1 Given a group G, we denote by Z[G] the free abelian group
on the underlying set of G. Multiplication of G clearly extends by distributivity
to a multiplication on Z[G], making it into a ring. We call this the group ring
on G.

There is an obvious ring epimorphism ε:Z[G] //Z, called the augmentation
of G, determined by mapping every g ∈ G to 1. As we saw in Section 1.5, this
induces a functor ε∗:Z-mod = Ab //Z[G]-mod.

Definition 2.1.2 A G-module A is an abelian group A (in additive notation),
equipped with a left action by G for which the distributive law holds, i.e. a map

G×A //A (g, a) 7→ g · a
such that, for all a, b ∈ A and g, h ∈ G,

a) g · (a+ b) = g · a+ g · b;
b) 1 · a = a;
c) g · (h · a) = (gh) · a.

A morphism of G-modules f :A //B is a morphism of abelian groups which
respects the action of G; namely, for all g ∈ G and a, a1, a2 ∈ A:

a) f(a1 + a2) = f(a1) + f(a2);
b) f(g · a) = g · f(a).

G-modules and G-module morphisms form a category, denoted by G-mod.

Remark 2.1.3 Alternatively, we could define an action of a group G on an
abelian group A as a group homomorphism

G // Aut(A),
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where Aut(A) is the group of automorphisms of A, with composition as multi-
plication and the identity on A as unit.

Example 2.1.4 Every abelian group A can be viewed as a trivial G-module,
with the action g · a = a, for all g ∈ G and a ∈ A. This determines a trivial
G-module functor from Ab to G-mod, which is the functor ε∗ of Definition 2.1.1.

Remark 2.1.5 The name G-module for such structures is not inappropriate.
In fact, to give a G-module structure on an abelian group A is the same as
giving a Z[G]-module structure on it. More precisely, there is an isomorphism
of categories G-mod ' Z[G]-mod.

Appealing to this isomorphism, we shall henceforth make no distinction be-
tween a G-module and a Z[G]-module structure on an abelian group A.

Definition 2.1.6 For a G-module A, the subgroup

AG = {a ∈ A | ga = a for all g ∈ G} (2.1)

is called the subgroup of invariants of A. The quotient group

AG = A/〈ga− a | g ∈ G, a ∈ A〉

is the group of coinvariants of A. The assignments A 7→ AG and A 7→ AG define
functors (−)G and (−)G from G-mod to Ab.

You should check that these functors have the property stated in the follow-
ing proposition (cf. Exercise b) below):

Proposition 2.1.7 For a group G with augmentation ε:Z[G] //Z, there is a
chain of adjunctions

(−)G a ε∗ a (−)G.

By uniqueness of adjoints (see Exercise c) in the Appendix) and the results
of Section 1.5, we obtain:

Corollary 2.1.8 For any group G, there are natural isomorphisms

AG ' Z⊗Z[G] A and AG ' HomZ[G](Z, A).

Now, we have all the tools needed to define the homology and cohomology
of groups. If A is a G-module, we can consider it as a Z[G]-module, by Remark
2.1.5. Then, by Proposition 1.10.15, we can take an injective resolution of A

0 //A //I0 //I1 //I2 // · · · .

Applying now the functor (−)G:G-mod //Ab to this resolution, we obtain the
cochain complex

(I0)G // (I1)G // (I2)G // · · · . (2.2)

Definition 2.1.9 We define the cohomology groups of G with coefficients in A
as the cohomology of the cochain complex (2.2), denoted by H∗(G;A).
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Remark 2.1.10 Note that the notion is well-defined, because, by Proposition
1.10.15, the injective resolution of A is unique up to homotopy, and we know
that homotopic maps induce the same morphisms in homology.

Remark 2.1.11 We know from Corollary 2.1.8 that (−)G is naturally isomor-
phic to HomZ[G](Z,−), so it follows that

H∗(G;A) ' H∗(HomZ[G](Z, I?)) = Ext∗Z[G](Z, A).

From the double complex lemma 1.11.5, we know that we can also compute
Ext∗Z[G](Z, A) by considering a projective resolution of Z in the category of
(left) Z[G]-modules

0 Zoo P0
oo P1

oo · · ·oo

and taking the cohomology of the cochain complex HomZ[G](P?, A):

HomZ[G](P0, A) // HomZ[G](P1, A) // HomZ[G](P2, A) // · · · .

It follows, that H∗(G;A) ' Ext∗Z[G](Z, A) ' H∗(HomZ[G](P?, A)), and these
isomorphisms are natural in A.

So far, we considered only cohomology of groups. Using the covariant functor
(−)G:G-mod //Ab, we can define the homology groups of G with coefficients
in A in a dual way.

First, we consider a projective resolution of A as a Z[G]-module

0 Aoo Q0
oo Q1

o o · · · ;oo

then, we apply the functor (−)G to this complex to get

(Q0)G (Q1)Goo · · ·oo (2.3)

Definition 2.1.12 The homology groups of G with coefficients in A, denoted
H∗(G;A), are defined to be the homology of the chain complex (2.3); hence:
H∗(G;A) = H∗((Q?)G).

Remark 2.1.13 As in the case of cohomology, this definition is correct, i.e.
it does not depend on the choice of the projective resolution Q?. In fact, for
any other resolution Q′?, the groups Hn((Q?)G) and Hn((Q′?)G) are naturally
isomorphic.

Moreover, for any projective resolution 0 Zoo P0
oo P1

oo · · ·oo of Z
as a Z[G]-module, we can compute these homology groups from the complex

P0 ⊗Z[G] A P1 ⊗Z[G] Aoo · · ·oo

Again by the double complex lemma, it follows that H∗(G;A) ' Tor∗(Z, A).

In these lectures, we shall focus on the cohomology of groups and leave
homology aside.
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Exercises

a) Let U :Rng //Grp be the functor taking a ring R to the group U(R) of
invertible elements in R (what is its action on maps?). Show that there
is an adjunction Z[−]aU .

b) Complete the definition of the functors (−)G and (−)G and show that
there is a chain of adjunctions (−)G a ε∗ a (−)G, where ε∗ is the trivial
G-module functor of Example 2.1.4. Using uniqueness of adjoints (see
exercise c) in the Appendix), explain how Corollary 2.1.8 follows.

2.2 Functoriality of cohomology

In this Section, we show that the cohomology groups H∗(G;A) are functorial
in both A and G.

2.2.1 Functoriality in A

Suppose the group G is fixed. Then, for every n ∈ N, Hn(G;−):G-mod //Ab
is a functor which takes a G-module A to the n-th cohomology group of G with
coefficients in A, and a G-module morphism ϕ:A //B to the map

ϕ∗ = Hn(G;ϕ):Hn(G;A) //Hn(G;B) (2.4)

induced by HomZ[G](Pn, A) // HomZ[G](Pn, B).
In detail, let 0 Zoo P?oo be a projective resolution of the trivial left

Z[G]-module Z. By applying HomZ[G](−, A) and HomZ[G](−, B) to this se-
quence, and merging the two with the morphism ϕ∗ of Remark 1.2.3, we get a
morphism of cochain complexes

HomZ[G](P0, A) //

ϕ∗
²²

HomZ[G](P1, A) //

ϕ∗
²²

· · ·

HomZ[G](P0, B) // HomZ[G](P1, B) // · · · .

The desired map ϕ∗ is now defined by functoriality of Hn for these chain com-
plexes and this chain map.

Note that ϕ∗ does not depend on the projective resolution of Z, for if there
is an other projective resolution 0 Zoo Q?oo , then we have natural iso-
morphisms

Hn(HomZ[G](Pn, A))
ϕ∗P //

'
²²

Hn(HomZ[G](Pn, B))

'
²²

Hn(HomZ[G](Qn, A))
ϕ∗Q

// Hn(HomZ[G](Qn, B)).

Remark 2.2.1 We could have computed the map ϕ∗ using injective resolutions
of A and B and lifting ϕ to a chain map. However, using a projective resolution
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of Z reveals an important property of the cohomology of groups. Namely, if
there is a short exact sequence of G-modules

0 // A
ϕ

// B
ψ

// C // 0,

then we can construct the short exact sequence of cochain complexes

0 // HomZ[G](P?, A)
ϕ∗ // HomZ[G](P?, B)

ψ∗ // HomZ[G](P?, C) // 0

because each Pi is projective; so, by Proposition 1.9.8, there is a long exact
sequence in cohomology

· · · δ // Hn(G;A)
ϕ∗ // Hn(G;B)

ψ∗ // Hn(G;C) δ // Hn+1(G;A) // · · · .

2.2.2 Functoriality in G

Now, we fix a G-module A, and consider functoriality of cohomology groups in
the first variable. Suppose we have a group homomorphism ρ:G′ //G. Then,
A can be viewed as a G′-module via ρ. More precisely, the action of G′ on A
is defined by g′a = ρ(g′)a for all g′ ∈ G′ and a ∈ A. This determines a functor
ρ∗:G-mod //G′-mod, just as in Section 1.5.

We want to construct maps ρ#:Hn(G;A) //Hn(G′; ρ∗(A)), for n ∈ N. To
this end, consider an injective resolution of the G-module A

0 // A // I0 // I1 // · · ·

Because ρ∗ is an exact functor, this resolution yields a (not necessarily injective)
resolution of the G′-module ρ∗(A):

0 // ρ∗(A) // ρ∗(I0) // ρ∗(I1) // · · · .

Now, we can choose an injective resolution of the G′-module ρ∗(A) and lift
idρ∗(A) to a chain map ρ̃:

0 // ρ∗(A) //

idρ∗(A)

²²

ρ∗(I0) //

eρ
²²

ρ∗(I1) //

eρ
²²

· · ·

0 // ρ∗(A) // J0 // J1 // · · · .
(2.5)

By applying the functor (−)G
′

and taking cohomology, this induces, in turn, a
natural map ρ†:Hn(ρ∗(I?)G

′
) //Hn(G′; ρ∗(A)) for every n ∈ N.

On the other hand, given any G-module B, there is a natural inclusion
i:BG //ρ∗(B)G

′
; so, we have a map of cochain complexes

0 // AG //

i

²²

(I0)G //

i

²²

(I1)G //

i

²²

· · ·

0 // ρ∗(A)G
′ // ρ∗(I0)G

′ // ρ∗(I1)G
′ // · · ·
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which induces a map

i∗:Hn(G;A) //Hn(ρ∗(I?)G
′
).

Composing this map with ρ†, we have the desired canonical map

ρ#: = ρ†i∗:Hn(G;A) //Hn(G′; ρ∗(A)). (2.6)

So, Hn is a contravariant functor in G for all n ∈ N. Similarly to the case of
functoriality in A, the constructed ρ# does not depend on the chosen injective
resolutions I? and J?.

Remark 2.2.2 In the special case where G′ = H is a subgroup of G and ρ is
the inclusion, we call ρ# the restriction from G to H and we write resHG instead
of ρ#.

Exercises

a) Verify the details of Remark 2.2.1.
b) Verify that Hn(−;A), with the action on maps (−)# defined in (2.6)

above, is indeed a contravariant functor.
c) Give a dual proof for projective resolutions of functoriality in G.

2.3 Cohomology of cyclic groups

We shall deal with finite cyclic groups and leave the infinite case as an exercise.
Let Cn = {1, τ, τ2, . . . , τn−1} be the cyclic group of order n generated by τ .
Then, clearly, Z[Cn] ∼= Z[τ ]/(τn − 1). Consider in the group ring Z[Cn] the
elements N = 1 + τ + · · · + τn−1, called the norm element, and D = τ − 1.
Multiplication with N and D induces maps, which we denote again by N and
D, from Z[Cn] to Z[Cn]. These maps determine a free resolution of the trivial
Cn-module Z:

0 Zoo Z[Cn]
εoo Z[Cn]

Doo Z[Cn]
Noo Z[Cn]

Doo · · · .Noo

In fact, this is a chain complex, because DN = ND is the map “multiplication
with τn − 1 = 0”, and εD = 0. To show its exactness, write the elements of
Z[Cn] in the form a =

∑n−1
i=0 aiτ

i. Then, we have:

a) if ε(a) = 0 then a = D(b), where bi = ai+1 + · · ·+ an−1 for 0 ≤ i ≤ n− 2
and bn−1 = 0; so, ker(ε) = im(D);

b) if D(a) = 0 then a = N(b), where b0 = a0 and bi = 0, 1 ≤ i ≤ n− 1; so,
ker(D) = im(N);

c) if N(a) = 0 then ε(a) = 0, hence, ker(N) = ker(ε) = im(D).

We can now compute the cohomology groups Hk(Cn;A) from the cochain com-
plex

HomZ[Cn](Z[Cn];A) D∗ // HomZ[Cn](Z[Cn];A) N∗ // HomZ[Cn](Z[Cn];A) D∗ // · · · ,
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where, of course, D∗ = −◦D and N∗ = −◦N . Under the obvious isomorphism
HomZ[Cn](Z[Cn];A) ∼= A, this becomes the complex of abelian groups

A
D // A

N // A
D // · · · ,

Therefore, we have the following computation for the cohomology groups:

Hk(Cn;A) =





ACn if k = 0

{a ∈ A | Na = 0}/(τ − 1)A if k is odd

ACn/ im(N) if k is even and k ≥ 2,

where ACn is the subgroup of invariants defined in (2.1).

Exercises

a) Let C be the infinite cyclic group generated by τ . Show that we can
identify Z[C] with the Laurent polynomial ring

Z[τ, τ−1] = {∑n
i=−naiτ

i | ai ∈ Z, n ∈ N}.

b) Show that we have a free resolution

0 // Z[C] D // Z[C] ε // Z // 0

of the trivial Z[C]-module Z; use this in order to compute the cohomology
groups Hn(C;A), where A is an arbitrary C-module.

2.4 The bar resolution

Now, let G be a fixed group. We are going to introduce a specific (projective)
resolution of G, namely the bar resolution, which will be useful in calculating
its cohomology. In order to understand the bar resolution, we start with the
following considerations.

We recall first of all that an action of G on a set S is a map

G× S → S, (g, s):= gs

such that, for all g, h ∈ G, s ∈ S,

g(hs) = (g · h)s,
1s = s.

Equivalently, an action is described by a group homomorphism

G→ Aut(S),

where Aut(S) is the group of bijective functions from S to S with composition
as multiplication and the identity as unit.

We denote by G-Set the category whose objects are sets S with an action by
G, and arrows are maps preserving the action, in the sense that f(gs) = g(f(s))
for any g ∈ G and s ∈ S.
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An action of G on a set S is called free, or we say that S is a free G-set,
whenever the equality gs = s for some s ∈ S implies that g = 1. If for any
s, s′ ∈ S there is a g ∈ G such that gs = s′, then the action is called transitive,
or we say that G acts transitively on S.

The orbit of an element s ∈ S is the subset {gs | g ∈ G} of S. Clearly, the
action of G on S restricts to a transitive action on each orbit.

For G-sets, there are analogous constructions to those of the subgroup of
invariants and the quotient group of coinvariants. These are the subset of fix-
points

SG = {s ∈ S | gs = s, ∀g ∈ G}
and the set of orbits S/G, which is the quotient of S by the equivalence relation
∼, defined by s ∼ s′ if and only if there is a g ∈ G such that gs = s′.

Now, observe that for any G-set S the free abelian group Z[S] =
⊕

s∈S Z
can be given the structure of a G-module: the elements of Z[S] have the form

m∑

i=1

nisi,

where m ∈ N, ni ∈ Z, si ∈ S for all 1 ≤ i ≤ m, and G acts on Z[S] as

g

(
m∑

i=1

nisi

)
=

m∑

i=1

ni(gsi), (2.7)

for all g ∈ G.
Therefore, the adjunction

Set

Z[−]
**

⊥ Ab
U

jj

between the forgetful functor U and the free abelian group functor Z[−], extends
to an adjunction

G-Set

Z[−]
,,

⊥ G-mod
U

ll
(2.8)

where Z[S] is the free G-module generated by the G-set S as in (2.7) above, and
U(A) is the underlying G-set of a G-module A.

Proposition 2.4.1 If S is a free G-set, then the G-module Z[S] is projective.

Proof. Let A and B be G-modules and ϕ:B //A a surjective G-module homo-
morphism. We want to show that, for any homomorphism α:Z[S] //A there
is a map of G-modules β making the following triangle commute:

B

ϕ

²²²²

Z[S]

β
66

α
// A.

44



Equivalently, through adjunction (2.8), we show that for any f :S //U(A) in
G-Set there is a map of G-sets g making the following commute:

U(B)

Uϕ
²²²²

S

g
88

f
// U(A).

Now, we write S as a disjoint union of orbits S =
∐
i∈I Si. The group G then

acts transitively and freely on each orbit Si. If we choose an element si ∈ Si
for every i ∈ I, we have that any map of G-sets out of S is completely deter-
mined by its value at the elements si. Now, using the fact that the underlying
map of ϕ is surjective, we can pick, for every i ∈ I, an element bi in B such
that Uϕ(bi) = f(si). The map g will then be determined by the association
g(si) = bi. ¤

Now, we look at the cartesian productGn+1 as aG-set, with the free diagonal
action defined by

g(g0, g1, . . . , gn) = (gg0, gg1, . . . , ggn).

The sets Gn+1, for n ≥ 0, form a simplicial G-set. In fact, there are maps
of G-sets

di:Gn+1 //Gn (0 ≤ i ≤ n)

given by
di(g0, . . . , gn) = (g0, . . . , ĝi, . . . , gn),

where the notation ĝi means that we delete the element gi from the list; more-
over, these satisfy the simplicial identities

didj = dj−1di (i < j). (2.9)

Denote by Bn(G) the G-module Z[Gn+1], for n ≥ 0. Then, the maps di
induce homomorphisms of G-modules, which, by an abuse of notation, we call
again di:

di:Bn(G) //Bn−1(G), (0 ≤ i ≤ n)

and we define, for every n ≥ 1, the map

d =
n∑

i=0

(−1)idi:Bn(G) //Bn−1(G).

Theorem 2.4.2 The sequence

0 Zoo B0(G)εoo B1(G)doo B2(G)doo · · ·doo (2.10)

is a projective resolution of Z by G-modules, called the bar or standard resolution
of G.

Proof. The proof consists of three simple steps:
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a) The sequence (2.10) is a chain complex;
b) The G-modules Bn(G) are projective;
c) The chain complex is exact.

Using relations (2.9), we immediately get εd = dd = 0, hence a) is checked.
As for b), this follows by Proposition 2.4.1, since G acts freely on Gn+1 for all
n ∈ N. So, we can focus on c).

To show exactness of (2.10), we construct a contracting homotopy h of chain
complexes:

0 Zoo

id

²²

h−1

!!D
D

D
D

D B0(G)εoo

id

²²

h0

$$I
I

I
I

I
B1(G)doo

id

²²

h1

$$I
I

I
I

I
B2(G)doo

id

²²

· · ·doo

0 Zoo B0(G)
ε

oo B1(G)
d

oo B2(G)
d

oo · · · ;
d

oo

that is, a homotopy between the identity and the 0 chain maps. By Proposition
1.10.6, this implies that id:Bn(G) //Bn(G) induces both the identity and the
zero map between the homology groups, thus proving that they are trivial and
the chain complex is exact.

Writing B−1(G) for Z, the maps

hn:Bn(G) //Bn+1(G) (n ≥ −1)

are defined as follows.
For n = −1, h−1(m) = m · 1 for every m ∈ Z. When n ≥ 0, we define hn on

generators by
hn(g0, . . . , gn) = (1, g0, . . . , gn).

All we have to do, now, is to check the homotopy condition (1.12). Clearly, εh−1

is the identity map and id = h−1ε + dh0. Moreover, for n > 0 and 0 ≤ i ≤ n,
we have

di+1hn − hn−1di = 0;

hence, hn−1d+ dhn = d0hn +
∑n
i=0(−1)i(di+1hn − hn−1di) = d0hn = id. ¤

The standard projective resolution of Z as a Z[G]-module allows us to calcu-
late explicitly the cohomology Hn(G;A) of G with coefficients in any G-module
A. We are now going to give an alternative description of these cohomology
groups.

Let A be a G-module. We define the positive cochain complex C?(G,A) of
groups as follows. For n ∈ N, we have a group (with pointwise addition)

Cn(G,A) = HomSet(Gn, A);

the boundary map
δ:Cn−1(G,A) //Cn(G,A) (2.11)

is defined as δ =
∑n
i=0(−1)iδi, where the maps δi:Cn−1(G,A) //Cn(G,A) are

defined by

δi(f)(g1, . . . , gn) =





g1f(g2, . . . , gn) i = 0
f(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) i = 1, . . . , n− 1
f(g1, . . . , gn−1) i = n
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Notice that, for n = 0, we have C0(G,A) = A and the boundary map
δ:C0(G,A) //C1(G,A) is given by δ(a)(g1) = g1a − a for every a ∈ A and
g1 ∈ G. The fact that this is really a cochain complex, i.e. that δδ = 0, follows
from the proof of the following theorem.

Theorem 2.4.3 The cohomology group in degree n of the cochain complex
C?(G,A) is isomorphic to Hn(G;A).

Proof. We have the standard projective resolution B?(G) of Z, so Hn(G;A)
can be computed from the complex HomZ[G](B?(G), A) with boundary maps

d∗ = − ◦ d: HomZ[G](Bn−1(G), A) // HomZ[G](Bn(G), A).

In fact, the complex HomZ[G](B?(G), A) is isomorphic to C?(G,A). To see
this, define

α: HomZ[G](Bn(G), A) //Cn(G,A)

by α(c)(g1, . . . , gn) = c(1, g1, g1g2, . . . , g1 . . . gn), and

β:Cn(G,A) // HomZ[G](Bn(G), A)

by β(f)(h0, . . . , hn) = h0f(h−1
0 h1, . . . , h

−1
n−1hn).

It is immediate to see that α and β are mutually inverse, and the result is
proved, once we show that they are homomorphisms of cochain complexes; but
this follows by the fact that the diagram

HomZ[G](Bn−1(G), A)
d∗i // HomZ[G](Bn(G), A)

α

²²

Cn−1(G,A)
δi

//

β

OO

Cn(G,A)

commutes for all n ∈ N and all 0 ≤ i ≤ n. To see this, let f ∈ Cn−1(G,A) and
(g1, . . . , gn) ∈ Gn. Then, we have

(αd∗i β)(f)(g1, . . . , gn) =
= (d∗i β)(f)(1, g1, g1g2, . . . , g1 . . . gn)
= β(f)di(1, g1, g1g2, . . . , g1 . . . gn)

=





β(f)(g1, g1g2, . . . , g1 . . . gn) i = 0
β(f)(1, g1, . . . , ̂g1 . . . gi, . . . , g1 . . . gn) 1 ≤ i ≤ n− 1
β(f)(1, g1, . . . , g1 . . . gn−1) i = n

=





g1f(g2, g3, . . . , gn) i = 0
f(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) 1 ≤ i ≤ n− 1
f(g1, g2 . . . , gn−1) i = n

= δi(f)(g1, . . . , gn).

¤

Using the previous result, we can compute the following homology groups.

Proposition 2.4.4 For a group G and a G-module A,
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a) H0(G,A) = AG;
b) if A is a trivial G-module (i.e. ga = a for all a, g), then

H1(G,A) = HomGrp(G,A),

the set (abelian group) of group homomorphisms from G to A.

Exercises

a) Show naturality of the isomorphisms of Theorem 2.4.3. More specifically,
give the evident functoriality of C?(G,A) in G, and prove it agrees with
that of Hn(G,A) as proved in Section 2.2.2.

b) Check that there is an adjunction as in (2.8). More generally, look for
pairs of adjoint functors relating the following categories, checking for
possible commutativity of the diagram

Set
Z[−]

//
⊥

²²

∗

Ab
U

oo

²²

∗

G-Set
Z[−]

//
⊥

OO

G-mod.
U

oo

OO

To this end, consider the functors

(−)G:G-Set //Set, (−)G:G-mod //Ab,
−/G:G-Set //Set, (−)G:G-mod //Ab.

c) Prove Proposition 2.4.4.

2.5 Group extensions and H2

In this Section, we study the cohomology group in degree 2. We shall prove
that H2(G;A) classifies group extensions, but first, we need to introduce some
new notions.

Definition 2.5.1 Let G be a group and A an abelian group. An extension of
G by A is a short exact sequence of groups of the form

1 // A
i // E

p
// G // 1. (2.12)

Two such extensions (2.12) and

1 // A
i′ // E′

p′
// G // 1,

are said to be equivalent if there is a group homomorphism ϕ:E //E′ such that
the squares of the following diagram commute:

1 // A

idA

²²

i // E

ϕ

²²

p
// G

idG

²²

// 1

1 // A
i′

// E′
p′

// G // 1.

(2.13)
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The relation between extensions and G-modules is given by the following
proposition, which we leave to you to check (see Exercise b) below):

Proposition 2.5.2 An extension as in (2.12) induces a well-defined G-module
structure on A by

i(ga) = g̃i(a)g̃−1,

where g̃ is any element in p−1(g).

If A is already given as a G-module, then by an extension of G by A we un-
derstand an extension as in (2.12), which induces the given G-module structure.
Note that there is always an extension of G by any G-module A; namely, the
one given by the semidirect product E = AoG of G with A. Recall that AoG
is the group whose underlying set is A×G, and multiplication is given by

(a, g) · (b, h) = (a+ gb, gh). (2.14)

It is then a natural question whether there are more extensions of G by a
G-module A. More precisely, we look for extension classes under the equivalence
relation of Definition 2.5.1.

Denote by Ext(G,A) the set of such extension classes. The following theorem
answers the question in a very powerful way.

Theorem 2.5.3 There is a one-to-one correspondence between the extensions
of the group G by a G-module A and H2(G;A); in other words, we have a
bijection of sets

Ext(G;A) ' H2(G;A).

Before giving the proof, we need to make some more considerations about
cocycles in C2(G,A).

Definition 2.5.4 A cocycle c ∈ C2(G,A) is called normal if, for all g ∈ G,

c(1, g) = 0 = c(g, 1).

Notice that, for any cocycle c ∈ C2(G,A), we have δc(g, g−1, g) = 0, and
this rewrites to

gc(g−1, g)− c(1, g) + c(g, 1)− c(g, g−1) = 0;

therefore, when c is normal, we have for all g ∈ G,

gc(g−1, g) = c(g, g−1). (2.15)

Lemma 2.5.5 A cohomology class u ∈ H2(G;A) can always be represented by
a normal cocycle.

Proof. Suppose u = [c] for some c ∈ C2(G,A), and define f :G //A by
f(g) = c(1, g). Now, consider the map c′ = c − δf in C2(G,A). Clearly,
u = [c] = [c′]; then, to prove that c′ is normal, we reason as follows. First,
observe that

(δf)(h, g) = hf(g)− f(hg) + f(h)
= hc(1, g)− c(1, hg) + c(1, h)
= hc(1, g)− δc(1, h, g)
= hc(1, g),
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because δc = 0. Now, instantiating h to 1, we get δf(1, g) = c(1, g). Hence, for
all g ∈ G, we have

c′(1, g) = 0. (2.16)

Analogously, we have that

0 = δc′(g, h, 1) = gc′(h, 1)− c′(gh, 1) + c′(g, h)− c′(g, h)
= gc′(h, 1)− c′(gh, 1);

whence, putting h = 1 and using (2.16), we get c′(g, 1) = 0. ¤

Proof of Theorem 2.5.3. We shall exhibit maps ξ: Ext(G;A) //H2(G;A)
and χ:H2(G;A) // Ext(G;A) and show that they are mutually inverse.

To define ξ, suppose given an extension

1 // A
i // E

p
// G // 1

and choose a section σ:G //E, i.e. a set map with pσ = idG. Note that this
is always possible since p is a surjection. Even more, because p(1) = 1, we can
choose σ such that σ(1) = 1 (and we shall always do that, implicitly).

Now, let c ∈ C2(G,A) be the only 2-cochain such that

ic(g1, g2) = σ(g1)σ(g2)σ(g1g2)−1. (2.17)

(This definition is correct, because σ(g1)σ(g2)σ(g1g2)−1 ∈ ker(p) = im(i).) In a
slogan, we could say that c “measures the failure of σ to be a group homomor-
phism”. From the definition of δ in (2.11), we have

δc(g0, g1, g2) = g0c(g1, g2)− c(g0g1, g2) + c(g0, g1g2)− c(g0, g1).

If we write α, β, γ and ζ for the image under i of the summands in the right
hand-side, then, by Proposition 2.5.2,

α = i(g0 · c(g1, g2)) = g̃0 ·
(
σ(g1)σ(g2)σ(g1g2)−1

) · g̃0−1,

for any g̃0 such that p(g̃0) = g0, so we can choose g̃0 = σ(g0). Then, by (2.17),
we have

α = σ(g0)σ(g1)σ(g2)σ(g1g2)−1σ(g0)−1,

β = σ(g0g1)σ(g2)σ(g0g1g2)−1,

γ = σ(g0)σ(g1g2)σ(g0g1g2)−1,

ζ = σ(g0)σ(g1)σ(g0g1)−1.

Then, αγβ−1 = ζ, and since the image of A is an abelian subgroup of E, also
αβ−1γζ−1 = 1; therefore δ(c) = 0. This shows that c is a cocycle, so we can
define ξ(E) to be the cohomology class [c]. To see that this is a well-defined
map, we need to show that [c] does not depend on the choice of the section σ,
and that equivalent extensions generate the same class in cohomology.

Suppose that ρ:G //E is another section with ρ(1) = 1, giving rise to a
cocycle b ∈ C2(G,A) such that

ib(g1, g2) = ρ(g1)ρ(g2)ρ(g1g2)−1,
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and consider f :G //A defined by if(g) = σ(g)ρ(g)−1. To prove that c and b
define the same cohomology class, we show that i(c− b− δf) = 1, because this
implies c = b+ δf . Let α, β and γ be the elements

α = ic(g1, g2) = σ(g1)σ(g2)σ(g1g2)−1

β = ib(g1, g2) = ρ(g1)ρ(g2)ρ(g1g2)−1

γ = iδf(g1, g2) = i(g1f(g2)− f(g1g2) + f(g1))

=
(
g̃1σ(g2)ρ(g2)−1g̃1

−1
)
· (σ(g1g2)ρ(g1g2)−1

)−1 · (σ(g1)ρ(g1)−1
)
,

= γ1 · γ−1
2 · γ3,

where g̃1 ∈ p−1(g1), so we can choose g̃1 = ρ(g1). It is now easy to compute
that γ−1

3 · α · γ2 · β−1γ−1
1 = 1, whence, again by the fact that the image of A is

an abelian subgroup of E, we get that αβ−1γ−1 = 1, so c = b+ δf .
Finally, consider an equivalence of extensions ϕ:E //E′ as in (2.13), and

σ a section of p. Choosing the section σ′ = ϕσ of p′, it is easy to see that the
induced cocycles c and c′ give the same cohomology class in H2(G;A).

So, we have a function of sets ξ: Ext(G;A) //H2(G;A). Notice that the
cocycle c defined in (2.17) is in fact normal. Now, we focus our attention on
defining an inverse χ for ξ.

Consider a cohomology class u ∈ H2(G;A). By Lemma 2.5.5 we can choose
a normal cocycle c ∈ C2(G,A) such that [c] = u. Then, consider on the cartesian
product A×G the multiplication

(a, g) · (b, h) = (a+ gb+ c(g, h), gh).

This operation gives A×G the structure of a group, which we denote by AocG.
In fact, by the cocycle condition, for g1, g2, g3 ∈ G,

0 = δc(g1, g2, g3) = g1c(g2, g3)− c(g1g2, g3) + c(g1, g2g3)− c(g1, g2)

and we have

g1c(g2, g3) + c(g1, g2g3) = c(g1g2, g3) + c(g1, g2).

Hence, we show associativity by

(a1, g1) · ((a2, g2) · (a3, g3))
= (a1, g1) · (a2 + g2a3 + c(g2, g3), g2g3)
= (a1 + g1a2 + g1g2a3 + g1c(g2, g3) + c(g1, g2g3), g1g2g3)
= (a1 + g1a2 + g1g2a3 + c(g1, g2) + c(g1g2, g3), g1g2g3)
= (a1 + g1a2 + c(g1, g2), g1g2) · (a3, g3)
= ((a1, g1) · (a2, g2)) · (a3, g3).

A simple computation shows the unit of this multiplication to be (0, 1) ∈ AocG
and the inverse of an element (a, g) to be the pair (−g−1a− c(g−1, g), g−1).

Moreover, the sequence

0 // A
i // Aoc G

p
// G // 1,
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where i(a) = (a, 1) and p(a, g) = g, is clearly exact, thus defining an extension
of G by A, which we set as χ(u).

For the map χ to be well-defined, we have to show that χ(u) does not depend
on the choice of the normal cocycle c. To this end, suppose c′ is another normal
cocycle such that [c] = [c′] = u. Then, c′ = c+ δf and, by normality, f(1) = 0.
In order to prove that the extensions corresponding to c and c′ are equivalent,
define a map ϕ:A oc′ G //A oc G by ϕ(a, g):= (a + f(g), g). Since we have
c′ = c + δf , it follows that c′(g1, g2) + f(g1g2) = c(g1, g2) + g1f(g2) + f(g1).
Therefore, for (a1, g1), (a2, g2) ∈ Aoc′ G,

ϕ((a1, g1) · (a2, g2)) = ϕ(a1 + g1a2 + c′(g1, g2), g1g2)
= (a1 + g1a2 + c′(g1, g2) + f(g1g2), g1g2)
= (a1 + g1a2 + c(g1, g2) + g1f(g2) + f(g1), g1g2)
= ϕ(a1, g1)ϕ(a2, g2),

proving that ϕ is a group homomorphism. Moreover, we have

ϕi(a) = ϕ(a, 1) = (a+ f(1), 1) = (a, 1) = i′(a)

and
p′ϕ(a, g) = p′(a+ f(g), g) = g = p(a, g),

showing that ϕ is an equivalence of extensions.
Finally, we are going to show that ξ and χ are mutually inverse. For a normal

cocycle c representing a cohomology class u ∈ H2(G;A), choose the “obvious”
section σ:G //AocG (defined by σ(g) = (0, g)) of the corresponding extension

0 // A
i // Aoc G

p
// G // 1.

This determines another cocycle c′, such that ic′(g1, g2) = σ(g1)σ(g2)σ(g1g2)−1.
Now, using (2.15), we get that

i(c′(g1, g2)) = σ(g1)σ(g2)σ(g1g2)−1

= (c(g1, g2), g1g2) · (−c((g1g2)−1, g1g2), (g1g2)−1)
= (c(g1, g2), 1)
= i(c(g1, g2)),

which proves that ξχ is the identity on H2(G;A).
Conversely, for an extension

0 // A
i // E

p
// G // 1

and a section σ:G //E, we have the normal cocycle c, satisfying the equality
i(c(g1, g2)) = σ(g1)σ(g2)σ(g1g2)−1, and the group extension

0 // A
i′ // Aoc G

p′
// G // 1,

where i′(a) = (a, 1) and p′(a, g) = g. To prove the equivalence of the two
extensions, define the map ψ:AocG //E as ψ(a, g) = i(a)σ(g). Obviously, we
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have

ψ((a1, g1) · (a2, g2)) = ψ(a1 + g1a2 + c(g1, g2), g1g2)
= i(a1)i(g1a2)i(c(g1, g2))σ(g1g2)
= i(a1)σ(g1)i(a2)σ(g1)−1σ(g1)σ(g2)σ(g1g2)−1σ(g1g2)
= ψ(a1, g1)ψ(a2, g2),

showing that ψ is a homomorphism of groups. Moreover, we clearly have that
pψ(a, g) = p(i(a)σ(g)) = g= p′(a, g) and ψ(i′(a)) = ψ(a, 1) = i(a)σ(1) = i(a).
Therefore, ψ is an equivalence of extensions. This shows that χξ is the identity
on Ext(G;A), and the theorem is proved. ¤

It follows from Theorem 2.5.3 that Ext(G;A) has the structure of an abelian
group. This structure can be described explicitly as follows:

Proposition 2.5.6 (The Baer sum) Given two extensions

0 // A
i // E

p
// G // 1

and

0 // A
j

// F
q

// G // 1

inducing the same G-module structure on A, define the set

E ×G F = {(e, f) ∈ E × F | p(e) = q(f)}
and let E ∗ F be the quotient of E ×G F obtained by the identification

(ei(a), f) ∼ (e, fj(a)),

with the notation e ⊗ f for the equivalence class of (e, f). We call E ∗ F the
Baer sum of E and F . This defines on Ext(G;A) the structure of an abelian
group.

The proof is outlined in Exercises e)–h) below.

Exercises

a) Prove that a group homomorphism ϕ:E //E′ as in (2.13) is automati-
cally an isomorphism, and that “being equivalent” in the sense of Defi-
nition 2.5.1 is an equivalence relation.

b) Prove Proposition 2.5.2.
c) Check that A×G with the product operation defined in (2.14) is indeed

a group. Show that the extension

0 // A
i // AoG

p
// G // 1,

where i(a) = (a, 1) and p(a, g) = g for all a ∈ A and g ∈ G, indeed
induces the “old” G-module structure on A.

d) State and prove a “normalisation lemma” analogous to Lemma 2.5.5 for
the cohomology group Hn(G;A) in each dimension n ∈ N; here, we call
an n-cochain c normal if c(g1, . . . , gn) = 0 as soon as one of the gi is 1.
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e) Prove that the operation

(e⊗ f) · (e′ ⊗ f ′) = (ee′ ⊗ ff ′)

is a well defined group structure on the Baer sum of two extensions E
and F . Conclude that E ∗ F fits into an extension

0 // A
s // E ∗ F t // G // 1

where s(a) = i(a)⊗ 1 = 1⊗ j(a) and t(e⊗ f) = p(e) = q(f).
f) Prove that if σ, τ are sections of two extensions E,F giving cocycles c, c′,

then there is a section σ⊗τ of E ∗F giving the cocycle c+c′. Use this to
prove Proposition 2.5.6. Show in particular that the semidirect product
AoG is the neutral element of the group Ext(G;A).

g) Show the following universal property characterising AoG: an extension

O //A //E //G //1

has a section σ which is a group homomorphism if and only if it is equiv-
alent to AoG.

h) Check directly that ∗ defines on Ext(G;A) the structure of an abelian
group. Can you describe the inverse E−1 of an extension E for this group
structure directly in terms of E?

2.6 Additional exercises

1. Show that if G is a non-trivial finite cyclic group, then Z does not admit
a projective resolution of finite length.

2. Let α:H //G be a homomorphism of groups, and write α:Z[H] //Z[G]
for the induced ring homomorphism. Recall that α∗:G-mod //H-mod
has two adjoint functors α! and α∗. (For an H-module M , the modules
α!(M) = Z[G] ⊗Z[H] M and α∗(M) = HomZ[H](Z[G],M) are also called
the induced and coinduced modules in the literature, and denoted IndGHM
and CoindGHM .)

i) Prove that if α is the inclusion of a subgroup, then α∗ preserves epis
hence α∗ preserves projectives.

ii) Conclude that for any H-module M , there are canonical isomor-
phisms

H∗(G,α∗(M))
∼= // H∗(H,M)

and

H∗(H,M)
∼= // H∗(G,α!(M)).

3. Given an extension 0→ A −→ E −→ G −→ 1 and a group homomorphism
α:G′ //G, construct an extension 0 → A −→ E′ −→ G′ −→ 1 by
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pullback, show it is characterized up to equivalence such that the following
diagram commutes

0 // A // E // G // 1

0 // A // E′

OO

// G′ //

α

OO

1

and prove that this map corresponds to the induced map in cohomology

α∗:H2(G,A) //H2(G′, A).

4. [cf. Brown, pp. 102–103] Let E and N be groups. We say that N
is a crossed module over E if there is an action of E on N denoted by
e ∗ n and a homomorphism ∂:N //E such that ∂(e ∗ n) = e∂(n)e−1 and
∂(n) ∗m = nmn−1.

i) Prove that N is a crossed module over Aut(N), the group of au-
tomorphisms of N , where ∂(n) is given by the inner automorphism
associated to n.

A map between two crossed modules (N,E, ∂) and (N ′, E′, ∂′) is a pair of
maps ϕ:N //N ′ and ψ:E //E′ for which the following diagram com-
mutes

N
∂ //

ϕ

²²

E

ψ

²²

N ′
∂′

// E′

and which together respect the action.

ii) For a crossed module (N,E, ∂), with A = ker(∂) and G = coker(∂)
(the latter makes sense, since im(∂) is normal) check that A is a
central subgroup of N (in particular, A is abelian and normal). This
gives an exact sequence

A
i // N

∂ // E
π // G.

iii) Choose set theoretical sections s:G //E and t: im(∂) //N of π and
∂ respectively, and define f :G×G //E by

f(g, h) = s(g) · s(h) · s(gh)−1.

Note that im(f) ⊆ im(∂), and consider F = t ◦ f :G × G //N . Al-
though N is not abelian, we can mimic the definition of the boundary
operator in group cohomology and define c = δ(t ◦ f) by

c(g, h, k) = (s(g) ∗ F (h, k))F (g, hk)F (gh, k)−1F (g, h)−1

Check that ∂c = 1 so that c defines a map G×G×G −→ A. Prove
that c is a cocycle, hence defines a cohomology class [c] ∈ H3(G,A).

iv) Prove that [c] does not depend on the choice of the sections s and t.
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v) For a map between crossed modules (N,E, ∂) and (N ′, E′, ∂′) as
above, with associated cokernels G and G′, and kernels A and A′,
note that there are maps ψ:G //G′ and ϕ:A //A′ respecting the
action, i.e., ψ(g) · ϕ(a) = ϕ(g · a). Prove that for the induced maps

H3(G,A)
ϕ∗ // H3(G,A′) H3(G′, A′)

ψ∗
oo

we have an equality ϕ∗[c] = ψ∗[c′], where [c] is as above, and [c′] is
the class associated similarly to ∂′:N ′ //E′.

Remark. It can be proved that any class in H3(G,A) in fact comes from
a crossed module in this way.
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3. Chain complexes in
algebraic topology

3.1 Simplicial methods

The use of simplexes to associate a chain complex to a topological space is an
important method. In order to describe it properly, we first need to introduce
some notation and some basic properties and constructions regarding simplicial
sets and simplicial abelian groups.

Definition 3.1.1 The category ∆ has as objects all the finite non-empty or-
dered sets

[n] = {0, 1, . . . , n} (n ≥ 0)

and as arrows the monotone maps; i.e. arrows α: [n] //[m] are functions satis-
fying α(i) ≤ α(j) whenever i ≤ j.

Amongst all maps in ∆, a special role is played by the injective functions

δi: [n− 1] //[n] “omit i” (i = 0, . . . , n)

whose image is the set {0, . . . , ı̂, . . . , n}, with the number i missing, and the
surjective functions

σj : [n] //[n− 1] “double j” (j = 0, . . . , n− 1)

which is injective everywhere except at σj(j) = j = σj(j + 1).
These functions, satisfy the following rules for composition:





δjδi = δiδj−1 i < j
σjσi = σiσj+1 i ≤ j
σjδi = δiσj−1 i < j
σiδi = id = σiδj+1

σjδi = δi−1σj i > j + 1.

(3.1)

Furthermore, every arrow α: [n] //[m] in ∆ can be written as a composition of
a surjection followed by an injection, and every surjection (resp. injection) is a
composite of σ’s (resp. δ’s). In this way, ∆ is determined by the σ’s and δ’s,
together with the identities (3.1).
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Definition 3.1.2 A simplicial set is a functor

X: ∆op //Set.

A map X → Y between simplicial sets is a natural transformation. Together,
these data define a category of simplicial sets.

It is common to write Xn for the image X([n]), and α∗:Xm
//Xn for X(α),

where α: [n] //[m]. By functoriality, it is trivial that any simplicial set X is
completely determined by its effect on objects (the sets Xn) and on the δ’s and
σ’s. One writes

di = X(δi) = (δi)∗:Xn
//Xn−1 (i = 0, . . . , n)

sj = X(σj) = (σj)∗:Xn−1
//Xn (j = 0, . . . , n− 1).

These operations satisfy identities dual to those in (3.1); the so-called simplicial
identities: 




didj = dj−1di i < j
sisj = sj+1si i ≤ j
disj = sj−1di i < j
disi = id = di+1si
disj = sjdi−1 i > j + 1.

(3.2)

Example 3.1.3

a) Let S be a set. Define

Sn = Sn+1 = S × · · · × S = HomSet({0, . . . , n}, S),

and α∗:Sm //Sn by composition with α: {0, . . . , n} //{0, . . . ,m}. Then,

di(s0, . . . , sn) = (s0, . . . , ŝi, . . . , sn)
sj(s0, . . . , sn−1) = (s0, . . . , sj , sj , . . . , sn−1).

This construction is functorial, in the sense that a map of sets f :S //T
induces a simplicial map S∗ //T∗.
b) Let C be a (small) category. The nerve of C is the simplicial set N(C),
defined by

N(C)n = {F | F : [n]op //C is a functor },
where we view [n]op as a category pictured as

0 1oo . . .oo n.oo

The operations α∗ are again defined by composition. An element of N(C)n
can be pictured as a string

C0 C1
f1oo . . .f2oo Cn

fnoo

and

di(C0
f1←− · · · fn←− Cn) =





C1
f2←− · · · fn←− Cn, i = 0

C0 ← · · ·Ci−1
fifi+1←−−−− Ci+1 · · · ← Cn, 0 < i < n

C0
f1←− · · · fn−1←−−− Cn−1, i = n
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while

si(C0 ← · · · ← Cn) = (C0 ← · · · ← Ci
id←− Ci ← · · · ← Cn−1).

Note that N(C)0 = |C| and N(C)1 is the set of arrows of C. The construction
is again functorial, in the sense that a functor φ:C //D induces a simplicial
map N(C)→ N(D).
c) Let

∆n = {(x0, . . . xn) ∈ Rn+1 | x0 + · · ·+ xn = 1, 0 ≤ x0, . . . , xn ≤ 1}

be (a model for) the standard Euclidean n-simplex. It has n + 1 vertices,
v0, . . . , vn, given by

vi = (0, . . . , 0,
i
1, 0, . . . , 0).

Each α: [n] //[m] induces a map

α∗: Vertices(∆n) //Vertices(∆m)

by
α∗(vi) = vα(i).

This map α∗ extends uniquely to an affine map

α∗: ∆n //∆m

which makes n 7→ ∆n into a (covariant) functor from ∆ to topological spaces.
For an arbitrary topological space X, define

Sing(X)n = {f : ∆n //X | f continuous}

and α∗: Sing(X)m // Sing(X)n by composition with α∗. This defines a sim-
plicial set Sing(X), called the singular complex of X. The construction is
functorial in X: any continuous map X → Y induces a simplicial map
Sing(X)→ Sing(Y ).
d) Inside the category of simplicial sets, there are objects ∆[n] which play
the rôle of standard simplices. They are defined by

∆[n]k = Hom∆([k], [n]).

Note that this is in fact a special case of Example b), because ∆[n] = N([n]op).
The Yoneda Lemma A.0.15 asserts that there is a bijective correspondence,
for any simplicial setX, between maps ∆[n]→ X in the category of simplicial
sets and elements of Xn:

Hom(∆[n], X) ∼= Xn.

For later use, we also remark that for n = 1, elements of the simplicial
interval ∆[1] can be written as sequences of zeros and ones: α ∈ ∆[1]k is
a sequence α(0), . . . , α(k) of the form 0, . . . , 0, 1, . . . , 1 (and there are k + 2
such sequences).
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Remark 3.1.4 Given two simplicial sets X and Y , we can form their product
X×Y in the evident way, as

(X×Y )n = Xn×Yn.

For a map α: [n] //[m], the simplicial operator α∗: (X×Y )m //(X×Y )n takes
a pair (x, y) to (α∗x, α∗y). Notice that some of the constructions in Example
3.1.3 preserve products; for example,

N(C×D) = N(C)×N(D)
Sing(X×Y ) = Sing(X)×Sing(Y )

for categories C, D and spaces X, Y .

Definition 3.1.5 A simplicial abelian group is a functor

A:∆op //Ab

into the category Ab of abelian groups. Maps between simplicial abelian groups
are again defined as natural transformations.

Remark 3.1.6 Any such simplicial abelian group A gives rise to a (positive)
chain complex

A0
d←− A1

d←− A2 ← . . .

by defining the map d:An //An−1 as the alternating sum

d =
n∑

i=0

(−1)idi.

The condition that dd = 0 follows immediately from the simplicial identity
didj = dj−1di (i < j). The homology of this complex is denoted by H∗(A).

Remark 3.1.7 If X is a simplicial set, we can construct a simplicial abelian
group Z[X] by taking the free abelian group on each of the sets Xn:

Z[X]n: = Z[Xn].

The homology of Z[X] is called the simplicial homology of X, and it is denoted

Hn(X).

(So, Hn(X) = Hn(Z[X]) by definition.) If X is a topological space, the homol-
ogy of Z[Sing(X)] is called the singular homology of the space X, and (again)
it is simply denoted by Hn(X).

Exercises

a) For a topological space X, prove that H0(X) is the free abelian group
Z[π0(X)] on the set π0(X) of path-components of X;

b) Define the set of connected components π0(C) for a category C, and prove
a similar statement for H0(N(C)).
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c) Let X be a connected topological space, and let x0 ∈ X be a base-point.
Let Ω(X,x0) be the set of “loops at x0”, i.e. maps α: [0, 1] //X such
that α(0) = x0 = α(1). Recall that the fundamental group π1(X,x0) is
the quotient of Ω(X,x0) obtained by identifying homotopic loops.

1.Show that the inclusion Ω(X,x0) ⊆ Sing(X)1 induces a well-defined
group homomorphism π1(X,x0)→ H1(X);

2.For any group G, let [G,G] be the normal subgroup generated by
the commutators ghg−1h−1, and let Gab = G/[G,G] be the quotient
group. Show that G 7→ Gab defines a left adjoint to the inclusion of
the category of abelian groups into that of all groups;

3.(Poincaré isomorphism) Show that the map π1(X,x0)ab → H1(X)
is an isomorphism.

3.1.1 Simplicial homotopies

Recall that, for two maps f, g:X //Y between topological spaces, a homotopy
from f to g is a continuous map

H:X×[0, 1] //Y

with H(x, 0) = f(x) and H(x, 1) = g(x) (for all x ∈ X).
Amongst simplicial sets, the standard simplex ∆[1] of Example 3.1.3 d) plays

the rôle of the “unit interval”. The rôle of the point is played by ∆[0], and the
two end points of ∆[1] are the maps

δ0, δ1:∆[0] //∆[1]

corresponding to the sequences 1 and 0 of length 1.

Definition 3.1.8 A simplicial homotopy from a map f :X∗ //Y∗ between sim-
plicial sets to another one g:X∗ //Y∗ is defined as a map

H:X×∆[1] //Y

with the property that the diagram

X×∆[0]
id×δ1

//

∼=
²²

X×∆[1]

H

²²

X×∆[0]
id×δ0

oo

∼=
²²

X
f

// Y Xg
oo

commutes. In other words, for any x ∈ Xn,

H(x, 0, . . . , 0) = f(x) and H(x, 1, . . . , 1) = g(x).

Example 3.1.9

a) If F and G are functors C→ D, then a natural transformation between F
and G can be viewed as a functor τ :C×(0← 1) //D, hence gives a simplicial
homotopy

N(τ):N(C×(0← 1)) = N(C)×N(0← 1) = N(C)×∆[1] //N(D)

between the maps NF and NG.
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b) For topological spaces X and Y , let H:X× [0, 1] //Y be a homotopy
between two continuous maps f, g:X //Y . Then, we obtain a simplicial
homotopy between Sing(f) and Sing(g) with the natural map of simplicial
sets

∆[1]→ Sing[0, 1]

determined by the condition that is sends the identity id ∈ ∆[1]1 to the
identity in Sing([0, 1])1.

The following theorem expresses one of the basic properties of singular ho-
mology, namely its homotopy invariance.

Theorem 3.1.10 Let f, g:X //Y be two maps between simplicial sets. If there
exists a simplicial homotopy between f and g, then they have the same effect in
homology; i.e.

Hn(f) = Hn(g):Hn(X) //Hn(Y )

for all n ≥ 0.

Notice that Example 3.1.9 b) above immediately gives the homotopy invari-
ance of singular homology for topological spaces:

Corollary 3.1.11 Two homotopic maps f, g:X //Y between topological spaces
have the same effect in singular homology: Hn(X)→ Hn(Y ).

We shall say that two topological spaces X and Y are homotopy equivalent
if there are maps f :X //Y and g:Y //X such that gf and fg are homotopic
to the identity (on X and Y , respectively). A space X is called contractible if it
is homotopy equivalent to a one point space. It follows by Corollary 3.1.11 that
Hn(X) ∼= Hn(Y ) if X and Y are homotopy equivalent, and that Hn(X) = 0 for
n > 0 (and H0(X) = Z) if X is contractible.

Proof of Theorem 3.1.10. We will show that H induces a chain homotopy H ′

between the maps of chain complexes Z[X] //
// Z[Y ] induced as in Remarks

3.1.6 and 3.1.7. The statement is then proved by Proposition 1.10.6. Define

H ′n:Z[Xn] //Z[Yn+1]

on a generator x ∈ Xn by

H ′n(x) =
n∑

i=0

(−1)iH(si(x), 0, . . . ,
i
0, 1, . . . , 1).

Here, (0, . . . ,
i
0, 1, . . . , 1) ∈ ∆[1]n+1 is a sequence of length n + 2, with zeros in

places 0, . . . , i and ones in places i+ 1, . . . , n+ 1. (So, the sequences with zeros
only or ones only do not occur in the formula for H ′n(x).) One now calculates
that

dH ′n(x) +H ′n−1(dx) = f(x)− g(x) (3.3)
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by spelling out the definitions. For dH ′n(x), use the formulas for dj and si, and
write

dH ′n(x) =
n+1∑

j=0

(−1)j
n∑

i=0

(−1)iH(djsi(x), dj(0, . . . ,
i
0, 1, . . . , 1))

=
∑

0≤j<i≤n
(−1)i+jH(si−1dj(x), dj(0, . . . ,

i
0, 1, . . . , 1))

+
n∑

i=0

(−1)2iH(x, di(0, . . . ,
i
0, 1, . . . , 1))

+
n∑

i=0

(−1)2i+1H(x, di+1(0, . . . ,
i
0, 1, . . . , 1))

+
∑

0≤i
i+1<j≤n+1

(−1)i+jH(sidj−1(x), dj(0, . . . ,
i
0, 1, . . . , 1)).

On the other hand,

H ′n−1(dx) =
n−1∑

i=0

(−1)i
n∑

j=0

(−1)jH(sidj(x), 0, . . . ,
i
0, 1, . . . , 1)

=
∑

0≤j≤i≤n−1

(−1)i+jH(sidj(x), 0, . . . ,
i
0, 1, . . . , 1)

+
∑

0≤i<j≤n
(−1)i+jH(sidj(x), 0, . . . ,

i
0, 1, . . . , 1).

Substituting i + 1 for i in the first term and j + 1 for j in the second, we see
that dH ′n(x)−H ′n−1(dx) is

n∑

i=0

(H(x, di(0, . . . ,
i
0, 1, . . . , 1))−H(x, di+1(0, . . . ,

i
0, 1, . . . , 1))).

Since di+1(0, . . . ,
i+1
0 , 1, . . . , 1) = (0, . . . ,

i
0, 1, . . . , 1) = di+1(0, . . . ,

i
0, 1, . . . , 1), all

terms cancel except H(x, 0, . . . , 0) − H(x, 1, . . . , 1), and we obtain the desired
formula, (3.3). This proves Theorem 3.1.10. ¤

3.2 The Mayer-Vietoris sequence

Another basic property of homology is the existence of a long exact sequence
for the union of two simplicial sets or topological spaces. As we shall see, this
property is quite easy to prove in the simplicial context, but much harder in the
context of topological spaces.

In order to define the Mayer-Vietoris sequence, we first need to introduce
the following:

Definition 3.2.1 A simplicial subset of a simplicial set X is a simplicial set Y
for which Yn ⊆ Xn for all n ≥ 0, and for which the simplicial operators of Y
are the restrictions of those of X.

63



Theorem 3.2.2 (Mayer-Vietoris) Let X = Y ∪ Z be the union of two sim-
plicial subsets Y and Z. Then, there is a long exact sequence

0←− H0(X)←− H0(Y )⊕H0(Z)←− H0(Y ∩ Z)
β←− H1(X)←− . . .

. . .←− Hi(X)←− Hi(Y )⊕Hi(Z)←− Hi(Y ∩ Z)
β←− Hi+1(X)←− . . . .

Proof. Consider for each n the sequence

0←− Z[Xn]
p←− Z[Yn]⊕Z[Zn]

i←− Z[Yn ∩ Zn]←− 0

where the maps are defined on generators by i(y) = (y,−y) and p(y) = y,
p(z) = z (or p(y, z) = y + z, depending on notation). We claim that the
sequence is exact. Clearly, p ◦ i = 0, and p is surjective, while i is injective.
To show the inclusion ker(p) ⊆ im(i), consider an element a ∈ ker(p), and
write a = (

∑k
i=1 kiyi,

∑l
j=1 ljzj), where k ≥ 0, ki 6= 0, and the yi ∈ Yn are all

different, and similarly for l, lj , zj . Then, if p(a) = 0, i.e.
∑
i kiyi +

∑
j ljzj = 0

in Z[Xn], each yi must be cancelled by exactly one zj . So, changing the order
of the zj and lj as necessary, we find k = l, ki = −li and yi = zi. So, a belongs
to the image of i.

The short exact sequences above, for all n, are compatible with the simpli-
cial operators, hence induce a short exact sequence of chain complexes. The
theorem now follows by Proposition 1.9.8. ¤

We would like to conlcude a similar fact for singular homology of topological
spaces, but we cannot do so immediately, because if a space X is the union of
two subspaces X = Y ∪ Z, then

Sing(Y ) ∪ Sing(Z) ⊆ Sing(Y ∪ Z) = Sing(X) (3.4)

is in general a strict inclusion of simplicial sets. With a bit of work, however,
we will be able to deduce the following theorem.

Theorem 3.2.3 (Mayer-Vietoris) Let X be a topological space, and consider
two open subspaces U, V ⊆ X such that X = U ∪V . Then, there is a long exact
sequence in singular homology

0←− H0(X)←− H0(U)⊕H0(V )←− H0(U ∩ V )
β←− H1(X)←− . . .

. . .←− Hi(X)←− Hi(U)⊕Hi(V )←− Hi(U ∩ V )
β←− Hi+1(X)←− . . . .

The maps in the sequence are all induced by the inclusions. More ex-

plicitly, denote these inclusions by U ∩ V i //U
j

//X and U ∩ V k //V
l //X.

Then, for every n, the morphism Hn(U ∩ V ) → Hn(U)⊕Hn(V ) is induced by
the map ZSingn(U ∩ V ) → ZSingn(U)⊕ZSingn(V ), sending a generator x to
(i(x),−k(x)), and likewise, the morphism Hn(U)⊕Hn(V )→ Hn(X) is induced
by ZSingn(U)⊕ZSingn(V )→ ZSingn(X), which takes (y, z) to j(y) + l(z).

Together with the homotopy invariance property of Theorem 3.1.10, the
Mayer-Vietoris sequence is an important tool for calculating homology groups.
We give some examples before embarking on the proof of Theorem 3.2.3.
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Corollary 3.2.4 Let Sn = {x ∈ Rn+1 | |x| = 1} be the n-sphere. Then, for
each n > 0 and each i ≥ 0,

Hi(Sn) =
{
Z i = 0, n
0 otherwise.

Proof. Note first that for n = 0 the space S0 is the union of two points, so
H0(S0) = Z⊕Z while Hi(S0) = 0 for i > 0. Also, H0(Sn) = Z for n > 0,
because Sn is connected (this follows from Exercise Section 3.1-1), as can easily
be checked). We now use induction on n. Consider, for n > 0 the north and
south poles N,S ∈ Sn, and write U = Sn − N and V = Sn − S. Then,
Sn = U ∪ V , while U ∼= Rn ∼= V and U ∩ V ∼= Rn − {0}. This last space
is homotopy equivalent to Sn−1 (check this directly!), so the Mayer-Vietoris
sequence for Sn = U ∪ V takes the form

0←− H0(Sn)←− H0(Rn)⊕H0(Rn)←− H0(Sn−1) . . .

. . .←− Hi(Rn)⊕Hi(Rn)←− Hi(Sn−1)
β←− Hi+1(Sn)

←− Hi+1(Rn)⊕Hi+1(Rn)←− . . . .

Since Rn is contractible, we haveHi(Rn) = 0 for i > 0, soHi+1(Sn) ∼= Hi(Sn−1)
for i > 0. This gives the formula by induction on n, once we have proved it for
S1. For n = 1, the beginning of the sequence looks like

0←− Z p←− Z⊕Z w←− Z⊕Z←− H1(S1)←− 0,

where p(y, z) = y+ z and w(x1, x2) = (x1,−x1) + (x2,−x2). So, w is not injec-
tive but has kernel Z. ¤

Corollary 3.2.5 (Brouwer fixed point theorem) Let Bn be the n-disk:

Bn = {x ∈ Rn : |x| ≤ 1}.

Every continuous map f :Bn //Bn has a fixed point, i.e. a point x ∈ Bn with
f(x) = x.

Proof. Suppose f(x) 6= x for every x. Then, define a map g:Bn //Sn−1,
where Sn−1 is viewed as the boundary of Bn, as follows: for a given point x,
draw a half-line starting at f(x) and in the direction of x, and let g(x) be the
point where this half-line hits the boundary of the disk.

•
f(x)

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

•g(x)

•
x
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It is easy to check that g is a continuous map. Moreover, g(x) = x if x it-
self already lies on the boundary. It follows that g is a retraction of Bn onto
Sn−1; or, in other words, g ◦ i = idSn−1 , where i:Sn−1 //Bn is the inclusion.
But then, Hk(Sn−1) is also a retract of Hk(Bn), for each k > 0. However, for
k = n − 1 > 0, we have Hk(Sn−1) = Z and Hk(Bn) = 0, which is a contradic-
tion. Similarly, if k = n− 1 = 0, we have Hk(Sn−1) = Z⊕Z, and Hk(Bn) = Z,
again leading to a contradiction. Finally, for n = 0 there is nothing to prove. ¤

Now, consider a topological space X. The cone on X is the space CX
obtained from X×[0, 1] by identifying X×{1} to a point:

CX:

²²²²²²²²²²²²²²²²² //
//

//
//

//
//

//
//

/•

X

The suspension SX of X is the space obtained from X×[−1, 1] by identifying
X×{−1} to a point and X×{1} to another one. Thus, SX is the union of two
cones:

SX:

²²²²²²²²²²² //
//

//
//

//
/•

²²
²²
²²
²²
²²
²///////////

•

X

Corollary 3.2.6 (Freudenthal suspension theorem) For every connected
space X, there is a natural isomorphism

Hn(X)
∼=−→ Hn+1(SX).

This is proved by applying the Mayer-Vietoris sequence to the open cover
SX = U ∪ V , where U is the image of X×[−1, ε) and V that of X×(−ε, 1] (for
some ε > 0). Thus, U is homotopy equivalent to CX, as it is V , while U ∩ V
is homotopy equivalent to X. Now, one uses that CX is contractible. Further
details are left as an exercise (What happens if X is not connected?).

We now start to work towards the proof of Theorem 3.2.3. Recall that the
singular homology of a topological space X is defined by means of the complex
Z[Sing(X)]. In topology, one usually writes

Cn(X) = Z[Singn(X)]

and calls the elements of Cn(X) singular n-chains on X. The problem noted
just above Theorem 3.2.3 can thus be phrased by saying that the sequence

0 Cn(X)oo Cn(U)⊕Cn(V )
p

oo Cn(U ∩ V )ioo 0oo (3.5)
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is in general not exact. (compared to (3.4), we have replaced Y by U and Z by
V here, and X = U ∪ V as in Theorem 3.2.3.) We will force it to be exact by
changing Cn(X) a little, without changing its homology.

The generators of Cn(X) are the maps α:∆n //X. Call such an α small
(relative to the open cover X = U ∪ V ) if the image of α is contained either in
U or in V . Write

C ′n(X) ⊆ Cn(X)

for the (free) abelian subgroup generated by these small maps ∆n → X. Since
the boundary d:Cn(X) //Cn−1(X) obviously maps small generators to small
chains (elements of C ′n(X)), the C ′n(X) together form a subcomplex of C(X).
(In fact, the small α themselves form a simplicial subset of Sing(X).)

Now, the following modification of the sequence (3.5),

0 C ′n(X)oo Cn(U)⊕Cn(V )
p

oo Cn(U ∩ V )ioo 0oo

is evidently exact, and induces a long exact sequence in homology, of the form

. . .← H ′n(X)← Hn(U)⊕Hn(V )← Hn(U ∩ V )
β←− H ′n+1(X)← . . .

This is the desired Mayer-Vietoris sequence, except that H∗(X) has been re-
placed by the homologyH ′∗(X) of the small chain complex C ′(X). The following
proposition thus suffices to prove Theorem 3.2.3.

Proposition 3.2.7 The inclusion of chain complexes C ′(X) → C(X) induces
an isomorphism in homology.

We shall prove the result by showing how cocycles in C(X) can be “subdi-
vided” in such a way that they become small, without changing their homology
class. We shall do this by means of the so-called cone construction.

If K ⊆ Rn is a convex set and B ∈ K is a chosen point, we can construct a
group homomorphism

ConeB :Cn(K) //Cn+1(K) (all n ≥ 0)

by defining, for a generator α:∆n //K, the map ConeB(α):∆n+1 //K by

(t0, . . . , tn+1) 7→
{
B if t0 = 1
(1−t0)α((1−t0)−1t1, . . . , (1−t0)−1tn+1) + t0B if t0 < 1.

In other words, ConeB(α) sends the 0-th vertex of ∆n+1 to B, the face opposite
to the 0-th vertex is mapped by α, and ConeB(α) is defined by convex com-
bination on lines in ∆n+1 connecting the 0-th vertex to the opposite face. We
observe the following evident formula (Exercise: check this!):

d(ConeB(α)) = α− ConeB(dα). (3.6)

By induction on n, we will now define the barycentric subdivision

bs = bsXn :Cn(X) //Cn(X)
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for an arbitrary spaceX, and natural inX, in the sense that each map f :X //Y
induces a commutative diagram

Cn(X)
bsX

n //

f∗
²²

Cn(X)

f∗
²²

Cn(Y )
bsY

n

// Cn(Y ).

In particular, if we take for f a generator α:∆n //X of Cn(X), we find

Cn(∆n)
bs∆

n

n //

α∗
²²

Cn(∆n)

α∗
²²

Cn(X)
bsX

n

// Cn(X).

The identity idn:∆n −→ ∆n can be viewed as an element of Cn(∆n), and
α∗(idn) = α. So,

bsXn (α) = α∗bs∆
n

n (idn). (3.7)

Thus, naturality implies that the bsXn for all spaces are completely determined
by bs∆

n

n (idn).
Using this observation, we will now define bsXn by induction on n. We start

the induction by
bs∆

0

0 (id0) = id0:∆0 //∆0.

This determines bsX0 for all X, as said. Suppose bsXn−1 has been defined for all
X and all α. Then, set

bs∆
n

n (idn) = ConeBn(bs∆
n

n−1(d(idn)))

where Bn ∈ ∆n is the barycenter of the n-simplex. By (3.7), this then defines
bsXn (α) for any α:∆n //X. The pictures for n = 1, 2 are:

id1: v0 v1

// ÂÂ
bs(id1): v0 v1

//
+ ÂÂ Âoo

−

id2:

°°
°°
°°
°°
°°
°°
°1111111111111

v0 v1
//

v2

XXFF

bs(id2):

OO

qqqqqqqq
xx

MMMMMMMM
&&

v2

v0 v1

²²

qqqq 88
MMMMff

oo
−

//
+

1111111
XX +

11
11

11
1

»» −

°°°°°°°

FF−

°°
°°
°°
°

§§+

Lemma 3.2.8 bsX :C(X) //C(X) is a chain map.

Proof. We have to prove that d bsn = bsn−1d for each n ≥ 0. (The reader
should check this first for n = 1, 2 on the basis of the pictures above.) We prove
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by induction on n. We omit the superscript X on bsXn . Take α:∆n //X. Then,

d bsn(α) = d α∗bsn(idn) (cf (3.7))
= α∗(d bsn(idn))
= α∗d ConeBn

(bsn−1(d idn))

just by spelling out the definition. Now, write d idn =
∑n
j=0(−1)jδj , where

δj :∆n−1 //∆n, so that we can write

d bsn(α) = α∗(
n∑

j=0

d ConeBn
(bsn−1δ

j))

= α∗(
n∑

j=0

(−1)jbsn−1(δj))− α∗
n∑

j=0

(−1)jConeBn
(d bsn−1(δj)),

where the second equality follows from (3.6). The first term here is

n∑

j=0

(−1)jbsn−1(α ◦ δj) = bsn−1(d α),

while, by induction hypothesis, the second is α∗(Cone bsn−2(dd(idn))) = 0. So,
d bsn(α) = bsn−1(d α), as desired. ¤

Lemma 3.2.9 For any topological space X, the chain map bsX :C(X) //C(X)
is homotopic to the identity, by a homotopy which is natural in X.

More explicitly, for every X and every n ≥ 0, there is a homomorphism

RXn :Cn(X) //Cn+1(X)

for which
bsXn (α)− α = d RXn (α) +RXn−1(d α) (3.8)

for every α ∈ Cn(X). Naturality in X is expressed by the commutativity of the
diagram

Cn(X)
RX

n //

f∗
²²

Cn+1(X)

f∗
²²

Cn(Y )
RY

n

// Cn+1(Y )

for every map f :X //Y .
Proof. Just like for the maps bsXn , naturality implies that the maps RXn for all
X are determined completely by

R∆n

n (idn) ∈ Cn+1(∆n).

We define RXn by induction on n. For n = 0 there is only one choice for
R∆0

0 (id0):∆1 //∆0, and this determines all RX0 . Suppose RXn has been defined
for all X, and satisfies the homotopy relation (3.8). Consider

α = bs∆
n+1

n+1 (idn+1)− idn+1 −R∆n+1

n (d idn+1) ∈ Cn+1(∆n+1).
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We want to choose an element β = R∆n+1

n+1 (idn+1) with d β = α. Since ∆n+1 is
contractible, Hn+1(∆n+1) = 0, so such a β will exist if we show that d α = 0.
But, using the homotopy relation (3.8) in degrees n and n−1 and Lemma 3.2.8,
we find

d α = bsn(d(idn+1))− d(idn+1)− dRn(d(idn+1))
= Rn−1(dd idn)
= 0.

Thus, there is a β with d β = 0, and we set R∆n+1

n+1 (idn+1) = β, which determines
RXn+1 for all X, in a way for which the homotopy relation (3.8) holds in degrees
n+ 1, n. ¤

Proof of Proposition 3.2.7. Recall that this proposition states that the
inclusion C ′(X) → C(X) induces an isomorphism H ′n(X) → Hn(X) for every
n ≥ 0.

First, note that if α:∆n //X is a generator of Cn(X), then, after suffi-
ciently many repetitions of the barycentric subdivision operation bs, we obtain
an element bsm(α) = bs ◦ · · · ◦ bs(α) ∈ C ′n(X). Indeed, for m large enough, the
diameter of the simplices in bsm(idn) becomes arbitrarily small, hence each of
these simplices must lie entirely in α−1(U) or entirely in α−1(V ) (by compact-
ness of ∆n: see the following exercise).

Now, we show that the map H ′n(X)→ Hn(X) is surjective. Take α ∈ Cn(X)
with d α = 0, so that α represents an element [α] ∈ Hn(X). By Lemma 3.2.9,
the same class [α] is also represented by bs(α), and by bs(bs(α)), and, in general
by bsm(α) for every m. But bsm(α) represents an elements of H ′n(X), if m is
large enough. This shows surjectivity.

Injectivity of H ′n(X)→ Hn(X) is proved similarly: if α ∈ C ′n(X) represents
a class [α] in H ′n(X) which becomes zero in Hn(X), then α is small, d α = 0,
and α = d β for a not necessarily small β ∈ Cn+1(X). For a large enough m,
however, bsm(β) will be small, and d(bsm(β)) = bsm(α), so [bsm(α)] = 0 in
H ′n(X). But [bsm(α)] = [α] in H ′n(X), because the homotopy R maps small
chains to small chains. This closes the proof. ¤

Exercise

a) Let X be a compact metric space.

1.Show that every descending chain of non-empty closed subsets of X

C0 ⊇ C1 ⊇ C2 ⊇ . . .

has a non-empty intersection.

2.Use the previous observation to show that every sequence (xn)n∈N
in X has a converging subsequence.

3.Finally, conclude that, for every finite open cover Ui (i = 1, . . . , n)
of X, there is an ε > 0 such that, for any x ∈ X, the ball B(x, ε) is
contained in some Ui.
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3.3 The Eilenberg-Zilber isomorphism

Let X and Y be simplicial sets. Recall the product X × Y is the simplicial set
given by (X × Y )n = Xn × Yn and α∗(x, y) = (α∗(x), α∗(y)). We will denote
the chain complex computing the homology of this product by Z[X × Y ], its
boundary maps are determined by

d(x, y) =
∑

i

(−1)i(di(x), di(y)).

Let C be the double chain complex given by Cp,q = Z[Xp] ⊗ Z[Yq], with
boundary maps

d⊗ id:Cp,q //Cp−1,q, (−1)pid⊗ d:Cp,q //Cp,q−1.

The total complex of C will be denoted by Z[X]⊗ Z[Y ].
Now let f :X //Y be a simplicial map, i.e., a natural transformationX //Y .

Then the induced morphisms fn:Z[Xn] //Z[Yn] commute with the boundary
maps since f commutes with the di’s, so they form a chain map Z[f ]:Z[X] //Z[Y ].
Similarly, two simplicial maps f :X1

//X2 and g:Y1
//Y2 induce chain maps

Z[f × g]:Z[X1 × Y1] //Z[X2 × Y2]

and
Z[f ]⊗ Z[g]:Z[X1]⊗ Z[Y1] //Z[X2]⊗ Z[Y2].

Thus, the assignments

(X,Y ) 7→ Z[X × Y ] and (X,Y ) 7→ Z[X]⊗ Z[Y ]

determine functors from the category of tuples of simplicial sets to the category
of positive chain complexes Ch+(Z), which we will denote by Z[− × −] and
Z[−]⊗ Z[−] respectively.

In this section we will prove the following.

Theorem 3.3.1 (Eilenberg-Zilber) For any two simplicial sets X and Y
there is a homotopy equivalence

Z[X]⊗ Z[Y ] ' Z[X × Y ].

Hence the homologies H∗(Z[X]⊗ Z[Y ]) and H∗(X × Y ) are isomorphic.

We prove this theorem by what is called the method of acyclic models.

Proposition 3.3.2 The standard simplices ∆[n] and their products ∆[n]×∆[m]
are contractible: the homology groups Hi(∆[n]) and Hi(∆[n]×∆[m]) vanish for
all i > 0 and H0(∆[n]) and H0(∆[n]×∆[m]) are both isomorphic to Z.

Proof. See additional exercise 2 at the end of this chapter. ¤

Let X be a non-empty simplicial set. Let ε:Z[X0] //Z be the morphism
that is determined by mapping each generator of Z[X0] to 1. Clearly εd = 0
holds, so

0 Zoo Z[X0]
εoo Z[X1]

doo · · ·oo

is a chain complex, called the augmented chain complex of X. Its homology
groups are denoted by H̃∗(X); they form the reduced homology of X. Note that
H̃−1(X) is the zero group since X is assumed to be non-empty.
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Proposition 3.3.3 The homology groups H̃i(X) and Hi(X) are equal for i > 0.
Furthermore, H0(X) ' H̃0(X)⊕ Z.

Proof. To prove the second statement, consider the following short exact se-
quence.

0 // ker ε // Z[X0]
ε // Z // 0

This sequence splits: any chosen simplex x ∈ X0 induces a section of ε deter-
mined by n 7→ nx. Hence Z[X0] ' ker ε ⊕ Z, recall that this isomorphism is
determined by s 7→ (s − ε(s)x, ε(s)) and (s, n) 7→ s + nx. Now note that the
boundary map d:Z[X1] //Z[X0] rewrites as s 7→ (d(s), 0) under this isomor-
phism, and conclude

H0(X) ' (ker ε⊕ Z)/ im d ' (ker ε/ im d)⊕ Z = H̃0(X)⊕ Z.
¤

Thus, the reduced homologies of the simplicial sets ∆[n] and ∆[n] ×∆[m] are
both zero in all degrees.

We now turn to the chain complex Z[X] ⊗ Z[Y ]. It can be augmented in a
similar way by mapping every generator x⊗ y of Z[X0]⊗ Z[Y0] to 1, giving the
following chain complex.

0 Zoo Z[X0]⊗ Z[Y0]
εoo Z[X1]⊗ Z[Y0]⊕ Z[X0]⊗ Z[Y1]

Doo · · ·oo

The homology of this complex is again called the reduced homology of Z[X]⊗
Z[Y ] and its homology groups are denoted by H̃∗(Z[X]⊗Z[Y ]). A proof similar
to the one above shows that, whenever both X and Y are non-empty,

Hi(Z[X]⊗ Z[Y ]) '
{
H̃i(Z[X]⊗ Z[Y ])⊕ Z if i = 0,
H̃i(Z[X]⊗ Z[Y ]) otherwise.

To compute the ordinary homology of the complex Z[X] ⊗ Z[Y ] in case
X = ∆[n] and Y = ∆[m], consider the following augmentation of the double
complex (Z[∆[n]p]⊗ Z[∆[m]q]).

Z[∆[n]0]⊗ Z Z[∆[n]1]⊗ Zd⊗id
oo . . .oo

Z⊗ Z[∆[m]0] Z[∆[n]0]⊗ Z[∆[m]0]
ε⊗id

oo

id⊗ε
OO

Z[∆[n]1]⊗ Z[∆[m]0]
d⊗id

oo

−id⊗ε
OO

. . .oo

Z⊗ Z[∆[m]1]

−id⊗d
OO

Z[∆[n]0]⊗ Z[∆[m]1]
ε⊗id

oo

id⊗d
OO

Z[∆[n]1]⊗ Z[∆[m]1]
d⊗id

oo

−id⊗d
OO

. . .oo

...

OO

...

OO

...

OO

Since the rows in the degrees ≥ 0 are exact, one can translate the proof (or
rather its dual) of the Double Complex Lemma (1.11.5) to a proof showing that
the homology groups of Z[∆[n]]⊗ Z[∆[m]] are isomorphic to those of

0 Z[∆[n]0]⊗ Zoo Z[∆[n]1]⊗ Zd⊗id
oo Z[∆[n]2]⊗ Zd⊗id

oo · · · .oo
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Clearly this chain complex is isomorphic to Z[∆[n]] and therefore

Hi(Z[∆[n]]⊗ Z[∆[m]]) ' Hi(Z[∆[n]]) '
{
Z if i = 0,
0 otherwise,

which shows that the reduced homology of Z[∆[n]]⊗ Z[∆[m]] vanishes.
The other fact we need is the following. By applying the Yoneda Lemma

(A.0.15) on a simplicial set X, we find that every n-simplex x ∈ Xn corresponds
bijectively to the simplicial map x̃:∆[n] //X given by x̃(α) = α∗x. This
is useful in the following kind of situation. Suppose φ is a chain map Z[X] ⊗
Z[Y ] //Z[X×Y ], natural in both X and Y . In particular, for any two simplices
x ∈ Xp and y ∈ Yq the diagram below commutes for every n.

Z[X]⊗ Z[Y ]n
φn // Z[X × Y ]n

Z[∆[p]]⊗ Z[∆[q]]n
φn

//

Z[x̃]⊗Z[ỹ]n
OO

Z[∆[p]×∆[q]]n

Z[x̃×ỹ]n
OO

Taking n = p + q, the simplex id[p] ⊗ id[q] is mapped to x ⊗ y by Z[x̃] ⊗ Z[ỹ]n,
hence

φn(x⊗ y) = Z[x̃× ỹ]n ◦ φn(id[p] ⊗ id[q]).

This shows that φn, for all X and Y , is completely determined by its images of
the simplices id[p] ⊗ id[q] in Z[∆[p]]⊗ Z[∆[q]]n, for all p, q ≥ 0 with p+ q = n.

We are now ready to prove the theorem.

Proof of Theorem 3.3.1. We will define chain maps

Z[X]⊗ Z[Y ]
φ

// Z[X × Y ]
ψ

oo

which are each other’s inverse up to homotopy: we will also define homotopies

h:Z[X]⊗ Z[Y ] //Z[X]⊗ Z[Y ] and k:Z[X × Y ] //Z[X × Y ]

such that
ψφ− id = Dh+ hD and φψ − id = dk + kd. (3.9)

The idea is to first define φ and ψ between the corresponding augmented
chain complexes Z Z[X]⊗ Z[Y ]εoo and Z Z[X × Y ]εoo , together with ho-
motopies h and k such that the equations above hold. This will be done by
induction on the degree, for all X and Y at the same time, and naturally in X
and Y . Notice that to define φn it suffices, by the remark preceding this proof,
to define the images of the simplices id[p] ⊗ id[q] under φn in case X = ∆[p]
and Y = ∆[q], for all p, q ≥ 0 with p + q = n. Similarly, ψ, h and k are also
completely determined by their components in special cases where X and Y
are standard simplices. We can thus restrict the definitions to these cases, and
make use of the fact that for such X and Y the reduced homologies of the chain
complexes Z[X×Y ] and Z[X]⊗Z[Y ] vanish. It will be clear that afterwards, by
replacing φ−1, ψ−1, h−1 and k−1 with zero maps, we can obtain the chain maps
between Z[X]⊗Z[Y ] and Z[X×Y ] that we seek, together with the homotopies.

73



First of all, note that there is a canonical identification

Z[X0]⊗ Z[Y0] ' Z[X0 × Y0],

so we can define φ0 and ψ0 to be the corresponding mutually inverse isomor-
phisms, and define h0 and k0 to be the zero maps. Also define φ−1 and ψ−1 to
be the identities on Z, and set h−1 = 0 = k−1. It is clear that defined in this
way, φ and ψ commute with the augmentation maps, and h and k satisfy (3.9)
in the degrees −1 and 0.

Now suppose φm and ψm have been defined for all m < n, together with
homotopies hm and km so that

ψmφm − id = Dhm + hmD and φmψm − id = dkm + kmd,

for all X and Y , and naturally in X and Y . As we have noticed, to define φn it
suffices to define the image of the simplices id[p] ⊗ id[q] under φn for X = ∆[p]
and Y = ∆[q], for all p, q ≥ 0 with p + q = n. Now φn must also satisfy the
definition of a chain map, so φn(id⊗ id) has to satisfy

dφn(id⊗ id) = φn−1D(id⊗ id)

in Z[∆[p]×∆[q]]n−1. But

dφn−1D(id⊗ id) = φn−1D
2(id⊗ id) = 0,

and H̃n−1(Z[∆[p]]⊗Z[∆[q]]) = 0, so there exists an s in Z[∆[p]]⊗Z[∆[q]]n with
ds = φn−1D(id ⊗ id). We let φn(id ⊗ id) be any such s. This defines φn for all
X and Y .

The map ψn is defined similarly: using the same argument as before, we
see that ψn is completely determined, for all X and Y , by its image of (id, id)
in case X = ∆[n] = Y . Now define ψn(id, id) to be any element s such that
Ds = ψn−1d(id, id), i.e., so that ψn commutes with the boundary map. Such an
element exists because

Dψn−1d(id, id) = ψn−2d
2(id, id) = 0,

and H̃n−1(Z[∆[n]×∆[n]]) = 0. This defines ψn for all X and Y .
The homotopies are constructed in the same way. For example, for the com-

position ψφ, we want to define hn:Z[X]⊗ Z[Y ]n //Z[X]⊗ Z[Y ]n+1, so that
ψnφn − id = Dhn + hn−1D. Again, by naturality, we have the following com-
mutative diagram for any two simplices x ∈ Xp and y ∈ Yq.

Z[X]⊗ Z[Y ]n
hn // Z[X]⊗ Z[Y ]n+1

Z[∆[p]]⊗ Z[∆[q]]n
hn

//

Z[x̃]⊗Z[ỹ]n
OO

Z[∆[p]]⊗ Z[∆[q]]n+1

Z[x̃]⊗Z[ỹ]n+1

OO

So it is enough to consider the special case X = ∆[p] and Y = ∆[q], with
p+ q = n, and define hn(id[p] ⊗ id[q]) so that

Dhn(id⊗ id) = ψnφn(id⊗ id)− id⊗ id− hn−1D(id⊗ id).
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We take hn(id ⊗ id) to be any element whose boundary is the left-hand side of
this equation. Such an element exists, because

D(ψnφn(id⊗ id)− id⊗ id− hn−1D(id⊗ id))
= ψn−1φn−1D(id⊗ id)−D(id⊗ id)−Dhn−1D(id⊗ id)
= (ψn−1φn−1 − id−Dhn−1)(D(id⊗ id))

= hn−2D
2(id⊗ id) = 0.

The definition of the map kn is left to the reader. ¤

Given a simplicial set X and an abelian group A, we define

H∗(X;A) = H∗(Z[X]⊗A).

Theorem 3.3.4 (The Künneth formula for homology) For simplicial sets
X and Y the Künneth formula yields the following decomposition.

Hn(X × Y ) '
( ⊕
p+q=n

Hp(X)⊗Z Hq(Y )

)
⊕

( ⊕
p+q=n−1

Tor1(Hp(X),Hq(Y ))

)

Moreover, for a principal ideal domain R, the Künneth formula yields a direct
sum decomposition of Hn(X × Y ;R) into

⊕
p+q=n

Hp(X;R)⊗R Hq(Y ;R) and
⊕

p+q=n−1

Tor1(Hp(X;R), Hq(Y ;R)).

In particular, if K is a field then

Hn(X × Y ;K) '
⊕
p+q=n

Hp(X;K)⊗K Hq(Y ;K).

Proof. The first statement follows directly from the Künneth formula (1.12.2).
Let X and Y be simplicial sets and let R be a principal ideal domain. Ap-

plying the Künneth formula on C = Z[X] ⊗Z R and C ′ = Z[Y ] ⊗Z R we find
that Hn(C ⊗R C ′) is isomorphic to the direct sum of

⊕
p+q=n

Hp(X;R)⊗R Hq(Y ;R) and
⊕

p+q=n−1

Tor1(Hp(X;R),Hq(Y ;R)).

It follows that to prove the second statement of the theorem we have to show
that Hn(C ⊗R C ′) is isomorphic to Hn(X × Y ;R).

Remember that the chain complexes Z[X×Y ] and Z[X]⊗Z[Y ] are equivalent.
That is, there exist chain maps

Z[X]⊗ Z[Y ]
φ

// Z[X × Y ],
ψ

oo

together with homotopies h and k on Z[X]⊗ Z[Y ] and Z[X × Y ] such that

ψφ− id = Dh+ hD and φψ − id = dk + kd.
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Applying the functor −⊗Z R on φ and ψ we obtain chain maps

Z[X]⊗Z Z[Y ]⊗Z R
φ⊗id

// Z[X × Y ]⊗Z R
ψ⊗id

oo

and one can easily check that the morphisms h⊗ id and k⊗ id give homotopies

(ψ ⊗ id)(φ⊗ id) ∼ id⊗ id,

(φ⊗ id)(ψ ⊗ id) ∼ id⊗ id.

This shows the chain complexes Z[X × Y ] ⊗Z R and Z[X] ⊗Z Z[Y ] ⊗Z R are
equivalent and hence

H∗(X × Y ;R) ' H∗(Z[X]⊗Z Z[Y ]⊗Z R).

On the other hand,

C ⊗R C ′ = (Z[X]⊗Z R)⊗R (Z[Y ]⊗Z R)
' (Z[X]⊗Z R)⊗R (R⊗Z Z[Y ]) ' (Z[X]⊗Z (R⊗R R))⊗Z Z[Y ]
' (Z[X]⊗Z R)⊗Z Z[Y ] ' Z[X]⊗Z Z[Y ]⊗Z R,

where we used Remark 1.12.1. We conclude H∗(X × Y ;R) is isomorphic to
H∗(C ⊗R C ′), which is what we wanted.

Clearly the last statement follows immediately using Corollary 1.12.4. ¤

Exercise

a) In this exercise the explicit formulas for the chain maps

Z[X]⊗ Z[Y ]
φ

// Z[X × Y ]
ψ

oo

will be given.

(i) First note that the chain maps φ and ψ are to some extent unique.
Indeed, prove that if φ′:Z[X]⊗ Z[Y ] //Z[X × Y ] is another chain
map which agrees with φ in degree zero and is natural in X and Y ,
then φ′ is chain homotopic to φ. (Hint: show that ψ is a homotopy
inverse of φ′ by defining homotopies ψφ′ ∼ id and φ′ψ ∼ id in
the same way as h and k are defined in the proof of Theorem 3.3.1.)
Likewise any natural chain map Z[X×Y ] //Z[X]⊗Z[Y ] that agrees
with ψ in degree zero is chain homotopic to ψ.

The map ψ, the so called Alexander-Whitney map, is defined for a simplex
(x, y) ∈ (X × Y )n by

ψ(x, y) =
n∑

i=0

x̃(0 . . . i)⊗ ỹ(i . . . n).

Here (0 . . . i) denotes the inclusion [i] //[n], and (i . . . n) denotes the
injection [n − i] //[n] sending k to i + k, for k = 0, . . . , n − i. Notice
that

x̃(0 . . . i) = di+1 · · · dn(x),
ỹ(i . . . n) = d0 · · · di−1(y).
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(ii) Prove that ψ is a chain map, i.e., Dψ = ψd, prove that ψ is natural
in X and Y , and note that ψ0 is the canonical isomorphism.

The map φ is sometimes called the Mac Lane map. It is determined
by its components φp,q:Z[Xp]⊗ Z[Yq] //Z[Xp+q × Yp+q], which are de-
fined as follows. For p, q ≥ 0 look at all pairs of monotone injections
α: [p] //[p+ q − 1] and β: [q] //[p+ q − 1] whose images together cover
all of [p+ q− 1]. Such a pair (α, β) is called a p, q-shuffle. Define φp,q on
a generator x⊗ y, where x ∈ Xp and y ∈ Yp, by

φ(x⊗ y) =
∑

(α,β)

sg(α, β)(sα(x), sβ(y))

Here sα:Xp
//Xp+q and sβ :Yq //Yp+q are given by

sα(x) = sα(p) · · · sα(0)(x),
sβ(y) = sβ(q) · · · sβ(0)(y).

Furthermore sg(α, β) denotes the sign of the permutation

(α(0) . . . α(p)β(0) . . . β(q)).

(iii) Prove that φ is a chain map which is natural in X and Y , and that
φ0 is the canonical isomorphism.

3.4 Additional exercises

1. (Homology of pairs and Excision). Let Y ⊆ X be simplicial sets. Define
Z[X,Y ]n as the cokernel of the injective map

Z[Y ]n // Z[X]n.

Note that Z[X,Y ]• is a chain complex. Its homology is denoted H∗(X,Y )
and is called the homology of the pair (X,Y ).

i) Prove that there is a long exact sequence

· · · //Hn(Y ) //Hn(X) //Hn(X,Y ) //Hn−1(Y ) // · · ·

ii) (Excision). Suppose that Z ⊆ X is another simplicial subset and
assume that Y ∪ Z = X. Prove that there is an isomorphism

H∗(X ∩ Z, Y ∩ Z) // H∗(X,Y ).

Can you deduce this formally from the Mayer-Vietoris sequence of
Theorem 3.2.2?

Now, we move to topological spaces and we use the notation C∗(X) =
Z[Sing(X)]∗. Let X be a topological space and Y ⊂ X a subspace.

iii) Define C∗(X,Y ) to be the cokernel of the map C∗(Y ) //C∗(X).
Deduce from i) that there is a similar long exact sequence for the
pair of topological spaces (X,Y ).
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iv) Let K be a subspace such that K ⊂ Int(Y ). Show that there is an
isomorphism

Hn(X −K,Y −K) //Hn(X,Y ).

One way to prove this is to observe that the Mayer-Vietoris sequence
for spaces (Theorem 3.2.3), remains true if U, V ⊆ X are (not nec-
essarily open) subsets for which X = Int(U) ∪ Int(V ). The excision
isomorphism follows from this by general homological algebra.
(This isomorphism is called “excision”. It expresses that we can
“excise” (cut out) K without changing the homology.)

2. Suppose that F : C //
D:Goo are a pair of adjoint functors between small

categories.

i) Prove that they induce an isomorphism in the homology of the nerves:

H∗(N(C))
∼ //

H∗(N(D)).oo

(Hint: Use part a) of Example 3.1.9.)

ii) Conclude that if C has an initial or a terminal object, then N(C) is
acyclic, in the sense that

Hi(N(C)) =
{
Z if i = 0
0 if i > 0

iii) Conclude that for each n1, . . . , nk ∈ N, the product

∆[n1]× . . .×∆[nk]

is an acyclic simplicial set. (∆[n] is defined in Example 3.1.3 d).)

3. Using only the Mayer-Vietoris sequence, excision, homotopy invariance
and the homology of the spheres Sn, compute the homology of the follow-
ing topological spaces:

i) The figure eight. (It consists of a pair of S1 connected at a single
point.)

ii) The quotient of the sphere S2 obtained by identifying the poles to a
point.

iii) The 2-dimensional torus.

iv) The surface of genus 2.
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4. Abelian categories and
derived functors

It should be clear, by now, how useful and important the machinery of homology
and cohomology is in mathematics. In developing this theory, we relied on the
structure of categories of modules for a ring, or on “module-like” structures. In
Chapter 1 (in particular, in Section 1.6), we had already anticipated the notion
of a “category of modules”, leaving the concept vague, and promising to make
it precise at a later stage. The idea behind it was that such categories have
enough structure to make it possible to formalise the notions of kernel of a map,
of exact sequence and, in general, of homology and cohomology.

It is the purpose of this Chapter to explore the category theory behind ho-
mology, bringing out the key categorical concepts involved. We shall introduce
the notion of an abelian category, and that of a derived functor. Using these,
we shall formalise the study of homology and cohomology. As an example, we
shall study the cohomology of small categories and sheaf cohomology.

4.1 Abelian categories

The first step in our process of abstraction is that of identifying the properties
of a category that make it possible to formulate the fundamental homological
notions. Recall from the Appendix the notions of monic, epic and isomorphic
map.

In categories of modules, we had defined the concepts of product and direct
sum of objects. These had universal properties, which are stated purely in
diagrammatic form (cf. Propositions 1.1.7 and 1.1.8). It is therefore possible to
extend them to the context of any category.

Definition 4.1.1 A product of two objects A and B in a category C is an object
P equipped with two maps p:P //A and q:P //B, called projections, with
the property that for any object C and morphisms f :C //A and g:C //B,
there is a unique morphism h:C //P with ph = f and qh = g:

C
f

¨¨

g

ºº

h

²²

A P q
//

p
oo B.

A sum of two objects A and B in a category C is an object S equipped with
two maps i:A //S and j:B //S, called injections, with the property that for
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any object C and morphisms f :A //C and g:B //C, there exists a unique
morphism h:S //C such that hi = f and hj = g:

A

f ''

i // S

h

²²

B

g
ww

j
oo

C.

It is immediate, from the definition, that these notions are dual to each
other; that is, an object X in a category C is a product of A and B if and only
if it is their coproduct in Cop, and vice versa. The sum and product of two
objects A and B, when they exist, are unique up to isomorphism and we denote
them by A⊕B and A × B, respectively. In the literature, the notation A + B
or A

∐
B is also used for the sum of A and B.

Definition 4.1.2 An object Z in a category C is called a zero object if for
any other object A in C there is a unique morphism Z //A and a unique
morphism A //Z. It then follows that the zero object in a category, when it
exists, is unique up to isomorphism, and we denote it by 0. When C has a
zero object, then between any two objects A and B there is a unique morphism
0A,B ∈ HomC(A,B) which factors through 0; namely, the composite

A // 0 // B.

We call this the zero morphism between A and B.

Remark 4.1.3 For any object A in a category C with zero object 0, the mor-
phism 0 //A is monic and the morphism A //0 is epic.

Another property we encountered for categories of modules was that of hav-
ing an abelian group structure on the hom-sets. Categories with such structure
are called linear.

Definition 4.1.4 A category L is called linear if for any two objects A and B,
HomL(A,B) is an abelian group, and composition is a bilinear operation; that
is, for any f, f ′ ∈ HomL(A,B) and g, g′ ∈ HomL(B,C),

(g + g′)f = gf + g′f and g(f + f ′) = gf + gf ′.

Proposition 4.1.5 Let L be a linear category. Then:

a) for any object A in L, HomL(A,A) is an associative ring, with composition
as product and idA as unit;
b) if L has a zero object, then the zero morphism 0A,B ∈ HomL(A,B) is the
zero element of the abelian group HomL(A,B);
c) for a zero object 0, id0: 0 //0 is the zero element of HomL(0, 0). Con-
versely, any object A for which idA = 0, is a zero object.

The proof of this Proposition is left to you as Exercise a) below.
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Definition 4.1.6 The kernel of a map f :A //B is a morphism i:K //A such
that fi = 0K,B and for any other map i′:K ′ //A such that fi′ = 0K′,B there
exists a unique morphism e:K ′ //K such that ie = i′:

K ′

e

²²

i′

»»

K
i

// A
f

// B.

We denote the kernel of f by ker(f) i //A, when it exists.
Dually, the cokernel of a morphism f as above is a morphism j:B //L such

that jf = 0A,L and for any other map j′:B //L′ such that j′f = 0A,L′ , there
is a unique morphism e:L //L′ such that ej = j′:

A
f

// B

j′ ''

j
// L

e

²²

L′.

We denote the cokernel of f by B
j

// coker(f), when it exists.

The following basic properties are left to you to prove (as Exercise b) below).

Proposition 4.1.7 Let L be a linear category and f :A //B a map in it.
Then:

a) the kernel (cokernel) of f , when it exists, is unique up to isomorphism;
b) the sequences

0 // HomL(C, ker(f))
i∗ // HomL(C,A)

f∗ // HomL(C,B)

and
HomL(A,C)

f∗←− HomL(B,C)
j∗←− HomL(coker(f), C)← 0

are exact sequences of abelian groups;
c) the morphism i: ker(f) //A is monic;
d) the morphism j:B // coker(f) is epic.

Proposition 4.1.8 In a linear category L, the sum A⊕B of the objects A and
B (with injections i:A //A ⊕ B and j:B //A ⊕ B) is also the product of A
and B.

Proof. Consider the morphisms idA:A //A and 0B,A:B //A. By the defi-
nition of sum, they determine a morphism p:A ⊕ B //A such that pi = idA
and pj = 0B,A. Similarly, there exists a morphism q:A ⊕ B //B such that
qi = 0A,B and qj = idB .

Now, let C be an object in L with maps f :C //A and g:C //B. Then, by
putting h: = if + jg, we get

ph = p(if + jg) = (pi)f + (pj)g = f,

qh = q(if + jg) = (qi)f + (qj)g = g;
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Hence, h fits in the commutative diagram

C
f

¥¥

g

¾¾

h

²²

A A⊕B p
//

q
oo B.

To show that h is the unique map with this property, notice that, by the univer-
sal property of sums, the map ip+jq:A⊕B //A⊕B is the identity morphism,
since (ip + jq)i = i and (ip + jq)j = j. Therefore, if k:C //A ⊕ B is any
morphism which satisfies pk = f and qk = g, then

k = idA⊕Bk = (ip+ jq)k
= i(pk) + j(qk) = if + jg = h.

¤

When, in a linear category L, products and sums coincide as in Proposition
4.1.8, it is common to call the object A⊕B the direct sum of A and B.

Definition 4.1.9 A linear category A is called additive if it has a zero object
0 and a direct sum A⊕B for any two objects A and B in A.

A functor F : A //B between linear categories is called additive if for all
A,A′ in A, the function FA,A′ : HomA(A,A′) // HomB(F (A), F (A′)) is a group
homomorphism.

Proposition 4.1.10 Every additive functor F : A //B between additive cate-
gories preserves the zero object and direct sums.

Proof. This Proposition is true, essentially because the sum/product A ⊕ B
together with its inclusions i and j and its projections p and q as in the proof
of Proposition 4.1.8, is characterised by equations (such as pi = idA, etc.), of
which the universal properties are a consequence. We leave a detailed proof to
you as Exercise c) below. ¤

In an additive category, we can use zero maps to detect mono- and epimor-
phisms.

Remark 4.1.11 Let A be an additive category and f :A //B a map in it.
Then, f is monic if and only if, for any map g:C //A, fg = 0 implies g = 0.
Analogously, f is epic if and only if, for any map h:B //D, hf = 0 implies
h = 0.

Definition 4.1.12 An abelian category is an additive category A in which

a) every morphism has a kernel and a cokernel;
b) every monomorphism f is the kernel of its cokernel; i.e. the unique mor-
phism e filling the following diagram is an isomorphism:

A ))
f

½½

e

²²

ker(p)
i

// B p
// coker(f);
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c) every epimorphism f is the cokernel of its kernel; i.e. the unique morphism
e filling the diagram below is an isomorphism:

ker(f) i // A
p

//

f )) ))

coker(i)

e

²²

B.

An evident but important feature of this definition is that it is self-dual, in
the following sense.

Proposition 4.1.13 If A is an abelian category, so is Aop.

Notice in particular that sums in A are products in Aop, kernels in A are
cokernels in Aop, etc. Abelian categories also have the following important
property:

Proposition 4.1.14 A map in an abelian category is an isomorphism if and
only if it is both monic and epic.

Proof. See Exercise d) below. ¤

Definition 4.1.15 The image of a morphism f :A //B is a factorisation

A
e // //

f
((

im(f)
²²

i

²²

B.

where i is monic, e is epic and f = ie.

Next, we want to show that every abelian category A has images. In fact,
given such a category and a map f :A //B in it, we can form its cokernel
p:B // coker(f) and the kernel of this, i: ker(p) //B. These fit in the following
diagram:

A
f

½½

e

²²

ker(p)
i

// B p
// coker(f).

(4.1)

Since pf = 0, there is a unique morphism e:A // ker(p) with ie = f . We will
show that e is an epimorphism, thus proving that in every abelian category
images exist; but first, we need the following result.

Lemma 4.1.16 For a given morphism f :A //B in an abelian category A,
form maps i and e as in (4.1). Then, i is the “smallest” monomorphism through
which f factors. More precisely, for any factorisation f = mg of f as a mor-
phism g:A //I followed by a monomorphism m: I //B, there is a morphism
v: ker(p) //I such that i = mv.
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Proof. Since m is monic, by condition b) in Definition 4.1.12, there is an object
C in A and a morphism ϕ:B //C such that m is the kernel of ϕ. From ϕm = 0
we obtain ϕf = 0, so there is a morphism ψ: coker(f) //C with ψp = ϕ:

A
g

// I
m // B

p

²²

ϕ
// C.

ker(p)

v

OO

i

@@

coker(f)
ψ

BB

Thus, ϕi = 0 and by definition of kernel, there is a morphism v: ker(p) //I
with mv = i. ¤

Proposition 4.1.17 Let A be an abelian category. Then, every morphism
f :A //B has an image, which is unique up to isomorphism; that is, for any

two image factorisations A e //I
i //B and A e′ //I ′ i′ //B of f , there is an iso-

morphism δ: I //I ′ such that δe = e′ and i′δ = i.

Proof. Let p, i and e be as in (4.1), so that f = ie. If we show that e is
epic, then we have given an image of f . For this, we shall use the character-
isation of Remark 4.1.11; so, let g: ker(p) //T be a morphism with ge = 0,
and let k: ker(g) // ker(p) be its kernel. Since ge = 0, there is a morphism
w:A // ker(g) such that kw = e:

ker(g)

k

²²

A

w
88

e
// ker(p)

g

²²

i // B
p

// coker(f)

T.

We then have (ik)w = i(kw) = ie = f , and ik is a monomorphism. Therefore,
by Lemma 4.1.16, there is a morphism v: ker(p) // ker(g) with (ik)v = i. Since
i is monomorphism, kv = idker(p) and hence g = g(kv) = (gk)v = 0.

To prove uniqueness of the image, suppose we are given another factorisation

A
e′ //I ′ i′ //B. Then, by Lemma 4.1.16, there is a morphism δ: ker(p) //I ′ such

that i′δ = i:
ker(p)

i

½½

δ

²²

A

e
88

e′
// I ′

i′
// B.

We then have i′(δe) = (i′δ)e = ie = f = i′e′, and since i′ is monomorphism,
δe = e′. The morphism δ is epic because e′ is, and it is monic because i is a
monomorphism. Therefore, δ is an isomorphism by Proposition 4.1.14, and the
proof is closed. ¤
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Having recovered the notion of kernel, image and zero map, we can now re-
formulate in any abelian category the definition of an exact sequence. Formally,
this is the same as Definition 1.6.2. So, we shall say that a (possibly infinite)
sequence

· · · // Ai+1
φi+1

// Ai
φi // Ai−1

// · · ·
of objects and maps in an abelian category A is exact at Ai if ker(φi) = im(φi+1),
and that it is exact if it is exact at Ai for all i. Likewise, a short exact sequence
will be an exact sequence of the special form

0 // A′
φ

// A
ψ

// A′′ // 0.

The notions of left exact, right exact and exact functor as introduced in Definition
1.6.9 readily translate in the present context, for any additive functor between
abelian categories. Notice that the notion of exactness is self-dual, in the sense
that a sequence in A is exact if and only if the same sequence is exact in Aop.

Many arguments which we saw in Chapter 1 can be recovered in this more
general context, just by chasing arrows in a diagram, instead of elements.

Example 4.1.18 Just as for categories of modules, we can characterise mono-
and epimorphisms in terms of exact sequences, in any abelian category:

a) the sequence 0 //A
ϕ

//B is exact if and only if ϕ is monic;

b) the sequence A
ϕ

//B //0 is exact if and only if ϕ is epic.

Example 4.1.19 If T is any object in an abelian category A, then the functors
HomA(T,−): A //Ab and HomA(−, T ): Aop //Ab are left exact.

The contravariant Hom functor is also useful in detecting exactness of se-
quences, as made precise by the following result.

Lemma 4.1.20 If a sequence A
f

//B
g

//C in an abelian category A has the
property that for every object T , HomA(−, T ) sends it to the exact sequence

HomA(C, T )
g∗

// HomA(B, T )
f∗

// HomA(A, T )

of abelian groups, then the sequence is itself exact.

Proof. Take T = C, then the sequence

HomA(C,C)
g∗

// HomA(B,C)
f∗

// HomA(A,C)

is exact, so f∗g∗ = 0 and hence gf = 0, because gf = f∗g∗(idC). Therefore,
im(f) ⊆ ker(g) as subobjects of B, i.e. the inclusion of im(f) in B factors
through the monomorphism j: ker(g) //B. For the opposite inclusion, take
T = coker(f). This determines an exact sequence

HomA(C, coker(f))
g∗

// HomA(B, coker(f))
f∗

// HomA(A, coker(f));
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thus, ker(f∗) = im(g∗). Consider the following diagram:

im(f) = ker(p)

i

²²

A
f

//

e
66

B
g

//

p

²²

C

tvv

coker(f).

By definition of cokernel, we have 0 = pf = f∗(p). So, p ∈ ker(f∗) = im(g∗),
i.e. there exists a morphism t:C // coker(f) such that g∗(t) = p. This means
that ker(g) ⊆ ker(p) = im(f). ¤

Theorem 4.1.21 Suppose L:A //B and R:B //A are additive functors be-
tween abelian categories, with LaR (i.e. L is left adjoint to R). Then, L is
right exact and R is left exact.

Proof. Let

0 // B′
f

// B
g

// B′′ // 0

be a short exact sequence in B and A an object in A. We have the commu-
tative diagram, where the first row is exact by b) of Proposition 4.1.7:

HomB(L(A), B′)
f∗ //

τ

²²

HomB(L(A), B)
g∗ //

τ

²²

HomB(L(A), B′′)

τ

²²

HomA(A,R(B′))
R(f)∗

// HomA(A,R(B))
R(g)∗

// HomA(A,R(B′′)),

and since τ is bijection, the bottom row is exact too, for any A in A. Then, by
Lemma 4.1.20, the sequence

R(B′)
R(f)

// R(B)
R(g)

// R(B′′)

is exact. Now, apply the same argument to the exact sequence 0 //B′
f

//B

to show the exactness of 0 //R(B′)
R(f)

// R(B). Therefore, R is left exact, and
by duality we deduce at once that L is right exact. ¤

Remark 4.1.22 We close this Section by noticing that, having introduced the
notions of kernel, image, and zero map, we can read many definitions given in
Chapter 1 in the context of any abelian category. We shall henceforth speak of
chain complex, cochain complex, homotopy between them, homology, cohomology
etc. Most of the results concerning them are still valid in this more general
setting. In what follows, we shall feel free to appeal to Proposition 1.6.4 on
splicing of exact sequences, Proposition 1.6.6, the 5-lemma 1.6.8, Proposition
1.9.8 or Proposition 1.10.6. However, we shall not give any proof here. Part of
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the motivation for this choice is that the arguments are easy formal adaptations
of the original proofs in the case of modules (see exercise h) below). Moreover,
such proofs are made unnecessary by Freyd’s embedding theorem [1, 5], to which
we refer any interested reader.

Exercises

a) Prove the properties of linear categories expressed in Proposition 4.1.5.
b) Prove the properties of kernel and cokernel maps stated in Proposition

4.1.7.
c) Prove Proposition 4.1.10.
d) Prove Proposition 4.1.14.
e) Prove a) and b) of Example 4.1.18.
f) Show functoriality and exactness of the Hom functors in Example 4.1.19.
g) Show that any abelian category A admits pullbacks, i.e. that, for any

diagram of the form
B

f

²²

A g
// C

in A, there exists an object P and maps i and j fitting in a commutative
square

P
i //

j

²²

B

f

²²

A g
// C,

with the universal property that, for any other pair of maps j′:X //A
and i′:X //B with fi′ = gj′, there is a unique morphism e:X //P such
that je = j′ and ie = i′. (Hint: build P as the kernel of an appropriate
map from A⊕B to C.)

h) In light of Remark 4.1.22, give a categorical proof of some of the results
in Chapter 1 concerning exact sequences and (co)homology, such as the
5-lemma or Proposition 1.10.6.

4.2 Derived functors

In this Section, we shall study the notion of derived functors. Given a left
exact functor F : A //X between abelian categories, and a short exact sequence
0 //A //B //C //0 in A, we know that there is an exact sequence

0 // FA // FB // FC, (4.2)

but the rightmost map need not be an epimorphism. The right derived functors
of F provide a suitable extension of (4.2) to a long exact sequence. Left derived
functors provide the dual extension for right exact functors.

We shall henceforth assume all functors to be additive.
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4.2.1 Left derived functors

As made clear in Remark 4.1.22, most notions introduced for modules in Chapter
1 can be formulated in any abelian category. This is the case also for the notion
of a projective module (Definition 1.7.1).

Definition 4.2.1 An object P in an abelian category A is projective if the
functor HomA(P,−): A //Ab is (right) exact. Equivalently, P is projective if,
for any epimorphism f :A //B, every map g:P //B factors through f :

A

f
²²²²

P

66

g
// B.

We say that A has enough projectives if every A in C can be covered by a
projective; that is, if there exists an epimorphism f :P //A, where P is a
projective object.

Example 4.2.2 For any ring R, the category R-mod of left R-modules has
enough projectives, by Lemma 1.7.5.

Remark 4.2.3 The arguments given for Lemma 1.10.12 and Proposition 1.10.13
readily extend to any abelian category A, showing that if A has enough projec-
tives, then every object admits a projective resolution, which is unique up to
homotopy of chain complexes.

Definition 4.2.4 Let A and X be abelian categories such that A has enough
projectives. Let F : A //X be a right exact functor. Then, the left derived
functors of F are the functors Li(F ): A //X (i ∈ N) which, for an object A in
A with a projective resolution 0 Aoo P?oo , are defined as

Li(F )(A) = Hi(F (P?)) for i ≥ 0.

Given a morphism f :A //B in A, where 0 Aoo P?oo and 0 Boo Q?oo

are two projective resolutions of A and B, respectively, there exists a (unique,
up to homotopy) chain complex map f?:P? //Q? which extends f . The action
of the derived functor Li(F ) on f is then defined as

Li(F )(f) = Hi(F (f?)). (i ≥ 0)

Remark 4.2.5 The next proposition will make the properties of left derived
functors clear. However, before moving forward, we have to understand what
we mean by homology group in Definition 4.2.4. Given a chain complex A? in
an abelian category A, the condition dd = 0 implies that, for every i ∈ N, there
exists a monomorphism im(di+1) // ker(di). The i-th homology group Hi(A?)
of A? is defined as the cokernel of this monomorphism.

Proposition 4.2.6 Let A be an abelian category with enough projectives and F
a right exact functor. Then:
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a) the object Li(F )(A) is independent (up to a canonical isomorphism) of
the projective resolution P? of A, and the image along Li(F )(−) of a map
f :A //B is independent of the chain map f? lifting f . Moreover, Li(F )(−)
is a covariant functor;
b) for any A in A, we have L0(F )(A) ∼= FA. More precisely there is a
natural isomorphism L0(F ) ∼= F ;
c) any short exact sequence in A

0 //A
f

//B
g

//C //0

gives rise to a long exact sequence in X

· · · //L1(F )(C) δ //L0(F )(A) //L0(F )(B) //L0(F )(C) //0;

d) If A is projective in A, then Li(F )(A) = 0 for i > 0.

Proof. a) Consider a morphism f :A //B in A, and suppose two projective
resolutions P? → A and Q? → B are given. Then, by Lemma 1.10.12 we know
that f lifts to a morphism of exact sequences f?:P? //Q?. Moreover, f? is
unique up to homotopy. Therefore, it induces a unique map in homology:

Hi(F (f?)):Hi(F (P?)) //Hi(F (Q?)).

This shows that the action of Li(F ) on maps is well-defined. Moreover, by
taking f = idA, we show that, up to isomorphism, Li(F )(A) = Hi(F (P?)) does
not depend on the choice of the projective resolution P? of A. Functoriality now
follows immediately.

b) Let A P?oo be a projective resolution of A. Then, by right exactness of

F , we get the exact sequence F (P1)
F (d1)

// F (P0)
F (d0)

// F (A) //0, showing that
F (A) ∼= coker(F (d1)). However, we know by the definition of the left derived
functor that L0(F )(A) = H0(F (P?)) = coker(F (d1)), hence L0(F )(A) ∼= F (A).

c) By Lemma 4.2.7 below, we can derive projective resolutions P?, Q? and
R? for A, B and C, respectively, with the sequence 0 //P? //Q? //R? //0
exact and pointwise split. Since additive functors preserve split exact sequences,
it follows that 0 //F (P?) //F (Q?) //F (R?) //0 is also exact (and pointwise
split). Hence, by Proposition 1.9.8, there is a long exact sequence in homology:

· · · // H1(F (R?))
δ // H0(F (P?)) // H0(F (Q?)) // H0(F (R?)) // 0.

d) If A is a projective object, then 0 // A
idA // A // 0 is a projective res-

olution of A; so, this part of the statement follows immediately from a). ¤

Lemma 4.2.7 Let 0 //A
f

//B
g

//C //0 be a short exact sequence in an

abelian category A, and suppose A P?
doo and C R?

loo are two projective
resolutions of A and C, respectively. Then, there is a projective resolution

B Q?
eoo and two chain maps f?:P? //Q? and g?:Q? //R? (lifting f and

g, respectively), such that the following sequence is exact and poinwise split:

0 // P?
f? // Q?

g? // R? // 0. (4.3)
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Proof. Since g:B //C is epic and R0 is projective, there exists a morphism
α:R0

//B such that gα = l. Consider the direct sum Q0 = P0⊕R0, with
injections i and j, and projections p and q from and to P0 and R0, respectively.
Then, the composite fd and the map α determine, via the universal property
of Q0, a unique map e:Q0

//B such that ei = fd and ej = α:

0 // A
f

//// B
g

// C // 0

0 // P0
i //

d

OO

P0 ⊕R0

q
//

e

OO

R0
j

oo //

l

OO

α

ddIIIIIIIIII
0.

(4.4)

We have ge = ge(idQ0) = (ge)(ip + jq) = g(ei)p + g(ej)q = gfd + (gα)q = lq;
moreover, the map e is epic. To see this, suppose h:B //E is a morphism
such that he = 0; we then have 0 = hei = hfd, and hf = 0, because d is an
epimorphism. Therefore, h factors through a map y:C //E, so that yg = h,
and we have 0 = he = yge = ylq. Since l and q are epic, we get y = 0, and
therefore h = 0.

Now, form the kernel of the maps d, e and l, with inclusions i1, i2 and i3,
respectively. Then, the maps i and q restrict to maps i′ and q′, which form the
sequence

0 // ker(d) i′ // ker(e)
q′

// ker(l) // 0. (4.5)

The map i′ is clearly monic, since i and i1 are. Moreover, q′ is epic. To see
this, notice first that there is an obvious epimorphism l′:R1

// ker(l). Then,
we have geji3l′ = 0, hence the composite eji3l′ factors as fγ, for some map
γ:R1

//A, and because R1 is projective, this factors in turn as γ = dβ, for
a map β:R1

//P0. Now, consider the map φ = ji3l
′ − iβ. We have that

qφ = qji3l
′− qiβ = i3l

′; also, eφ = eji3l
′− eiβ = eji3l

′−fdβ = eji3l
′−fγ = 0,

hence φ = i2ψ, for some ψ:R1
// ker(e). Therefore, i3q′ψ = qi2ψ = qφ = i3l

′,
and since i3 is monic, we have l′ = q′ψ. This shows that q′ is epic, because l′

is. This proves exactness of (4.5) at ker(d) and ker(l).
To prove that it is exact also at ker(e), notice that i3q′i′ = qi2i

′ = qii1 = 0,
and because i3 is monic, q′i′ = 0, which implies im(i′) ⊆ ker(q′). Conversely,
given a map h:X //Q0 such that eh = 0 (i.e. h factors through ker(e)) and
qh = 0, we have h = idQ0h = (ip + jq)h = iph, hence fdph = eiph = eh = 0.
Because f is monic, we get that dph = 0, so we have factored h through i via ph,
which in turn factors through ker(d). This shows that ker(q′) ⊆ im(i′), hence
(4.5) is an exact sequence. We then have the following diagram in which d′, l′

are epimorphisms and the map e′ is determined in the same way as the map e
in (4.4) above:

0 // P0
i // P0 ⊕R0

q
// R0

// 0

0 // ker(d)

i1

OO

i′ // ker(e)

i2

OO

q′
// ker(l)

i3

OO

// 0

0 // P1

d′

OO

i
// P1 ⊕R1

e′

OO

q
// R1

l′

OO

// 0.
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We now set Q1 = P1⊕R1 and e = i2e
′, and proceed by induction in defining the

objects Qi = Pi⊕Ri and the morphism e. It is clear by construction that the
chain complex B Q?oo is a projective resolution of B, and the maps i and q
form a pointwise split exact sequence. ¤

Remark 4.2.8 Notice that the sequence (4.3) in the previous statement is a
short exact sequence of chain complexes, which is pointwise split. However, this
does not mean that it is itself a split sequence of chain complexes.

Definition 4.2.9 Let A and X be abelian categories. A (homological) δ-functor
is a sequence of functors Gn: A //X (n ≥ 0) such that, for any short exact
sequence 0 //A //B //C //0, there exist morhisms δ:Gn(C) //Gn−1(A)
(n ≥ 0) which satisfy the following properties:

a) there is a long exact sequence

· · · //G1(C) δ //G0(A) //G0(B) //G0(C) //0;

b) the morphisms δ are natural; that is, for any commutative diagram

0 // A //

²²

B //

²²

C //

²²

0

0 // A′ // B′ // C ′ // 0

of short exact sequences, the following diagram is commutative for all n > 0:

Gn(C) δ //

²²

Gn−1(A)

²²

Gn(C ′)
δ′

// Gn−1(A′).

Example 4.2.10 For any right exact functor F : A //X, the derived functors
and the connecting morphism described in Proposition 4.2.6 c) form a (homo-
logical) δ-functor (Li(F ), δ).

Definition 4.2.11 A morphism φ: (G, δ) //(G′, δ′) between δ-functors is a se-
quence of natural transformations φn:Gn //G′n which are compatible with δ’s,
that is, for any short exact sequence 0 //A //B //C //0, the following
square commutes:

Gn(C) δ //

φn

²²

Gn−1(A)

φn−1

²²

G′n(C)
δ′

// G′n−1(A).

Now, we are ready to give a universal characterisation of left derived functors.

Theorem 4.2.12 (Universal property of left derived functors) Let F be
a right exact functor A //X between abelian categories, where A has enough
projectives, and let (G, δ′): A //X be a (homological) δ-functor. Then:
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a) any natural transformation φ0:G0
//L0(F ) extends uniquely to a mor-

phism φ: (G, δ′) //(L?(F ), δ) of homological δ-functors;
b) if Gn(P ) = 0 for all n > 0 and all projective objects P , and φ0 is a
(natural) isomorphism, then so is each φi.

Proof. a) Since A has enough projectives, we can build a short exact sequence
0 //K //P //A //0, with P projective. Given φ0:G0

//L0(F ) = F , we
define φn:Gn //Ln(F ) by induction on n, as follows. Consider the following
diagram:

· · · // L1(F )(P ) // L1(F )(A) δ // L0(F )(K)
d0 // L0(F )(P )

· · · // G1(P ) // G1(A)

φ1

OO

δ′
// G0(K)

d′0

//

φ0

OO

G0(P ).

φ0

OO

(4.6)

Since P is projective, L1(F )(P ) = 0 by part d) of Proposition 4.2.6. Therefore,
δ = ker(d0) and because d0φ0δ

′ = 0, the composite φ0δ
′ factors through a

unique map φ1:G1(A) //L1(F )(A) such that δφ1 = φ0δ
′. Now, suppose we

have constructed φ1, φ2, · · · , φi; Then, we construct φi+1 analogously, from the
following diagram:

· · · // Li+1(F )(P ) // Li+1(F )(A) δ // Li(F )(K)
di // Li(F )(P )

· · · // Gi+1(P ) // Gi+1(A)

φi+1

OO

δ′
// Gi(K)

d′i

//

φi

OO

Gi(P ).

φi

OO

We leave to the reader the proof of the fact that this definition of the φi’s does
not depend on the chosen projective P (or on the object K) and that they
actually define a morphism of homological δ-functors.

b) Consider diagram (4.6) above. Since G1(P ) = 0, we have δ′ = ker(d′0).
Hence, there is a morphism φ′1:L1(F )(A) //G1(A) with δ′φ1 = φ−1

0 δ, because
φ0 is an isomorphism. By the definition of the kernel, it follows at once that
φ1 and φ′1 are mutually inverse, hence φ1 is an isomorphism. The same holds
for all φi, by induction. (Alternatively, one can use the 5-lemma, Proposition
1.6.8.) ¤

4.2.2 Right derived functors

The notion of right derived functor is dual to that of a left derived one. In
particular, we shall start with a left exact functor, and we shall need injective
objects instead of projective ones. The following results are also dual to the
ones in the previous section, therefore we shall omit their proofs (see exercise
c) at the end of this Section).

Definition 4.2.13 An object I in an additive category A is injective if the
functor HomC(−, I): C //Ab is exact. Equivalently, I is injective if, for all
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monomorphisms f :A //B and maps g:A //I there is an extension of g along
f :

A
g

//

f

²²

I.

B

GG

We say that A has enough injectives if, for any object A in A, there exists a
monomorphism f :A //I, where I is an injective object.

Definition 4.2.14 (Dual of Definition 4.2.4) Let A and X be abelian cate-
gories such that A has enough injectives. Let F : A //X be a left exact functor.
Then, the right derived functors of F are the functors Ri(F ): A //X (i ∈ N)
which, for an object A in A with an injective resolution 0 //A //I?, are de-
fined as

Ri(F )(A) = Hi(F (I?)) for i ≥ 0.

Given a morphism f :A //B in A, where 0 //A //I? and 0 //B //J? are
two injective resolutions of A and B, respectively, there exists a (unique, up to
homotopy) chain complex map f?: I? //J? which extends f . The action of the
derived functor Ri(F ) on f is then defined as

Ri(F )(f) = Hi(F (f?)).

Lemma 4.2.15 (Dual of Lemma 4.2.7) Let 0 // A
f

// B
g

// C // 0 be
a short exact sequence in an additive category A. Suppose A //I? and C //K?

are two injective resolutions of A and C, respectively. Then, there is an injec-
tive resolution B //J? and two chain maps f?: I? //J? and g?: J? //K?

such that the sequence

0 // I?
f?

// J?
g?

// K? // 0

is exact and pointwise split.

Proposition 4.2.16 (Dual of Proposition 4.2.6) Let A be an abelian cate-
gory with enough injectives and F a left exact functor. Then:

a) the object Ri(F )(A) is independent of the injective resolution I? of A,
and the image along Ri(F )(−) of a map f :A //B is independent of the
chain map f? lifting f . Moreover, Ri(F )(−) is a covariant functor;
b) for any A in A, we have R0(F )(A) ∼= FA. More precisely there is a
natural isomorphism R0(F ) ∼= F ;
c) any short exact sequence in A

0 //A
f

//B
g

//C //0

gives rise to a long exact sequence in X

0 //R0(F )(A) //R0(F )(B) //R0(F )(C) δ //R1(F )(A) // · · · ;

d) if A is injective in A, then Ri(F )(A) = 0 for i > 0.
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Definition 4.2.17 A (cohomological) δ-functor between abelian categories A
and X is a sequence of functors Gn: A //X (n > 0) such that for any short exact
sequence 0 //A //B //C //0, there exist morphisms δ:Gn(C) //Gn+1(A)
satisfying the following properties:

a) there is a long exact sequence

0 //G0(A) //G0(B) //G0(C) δ //G1(A) // · · · ;

b) the morphism δ is natural; that is, for any commutative diagram

0 // A //

²²

B //

²²

C //

²²

0

0 // A′ // B′ // C ′ // 0

of short exact sequences, the following square commutes for all n > 0:

Gn(C) δ //

²²

Gn+1(A)

²²

Gn(C ′)
δ′

// Gn+1(A′).

Example 4.2.18 For any left exact functor F : A //X, the right derived func-
tors and the connecting morphisms of Proposition 4.2.16 c) form a (cohomolog-
ical) δ-functor (Ri(F ), δ).

Definition 4.2.19 Let (G, δ) and (G′, δ′) be two (cohomological) δ-functors. A
morphism φ: (G, δ) //(G′, δ′) consists of a sequence of natural transformations
φn:Gn //G′n which are compatible with δ’s; that is, for every short exact
sequence 0 //A //B //C //0, the following commutes:

Gn(C) δ //

φn

²²

Gn+1(A)

φn+1

²²

G′n(C)
δ′

// G′n+1(A).

Theorem 4.2.20 (Universal property of right derived functors) Let F
be a left exact functor A //X between abelian categories, where A has enough
injectives, and (G, δ′): A //X a (cohomological) δ-functor. Then:

a) any natural transformation φ0:R0(F ) //G0 extends uniquely to a mor-
phism φ: (R?(F ), δ) //(G, δ′) of cohomological δ-functors;
b) if Gn(I) = 0 for all n > 0 and all injective objects I, and φ0 is a (natural)
isomorphism, then so is each φi.

Exercises

a) Give an argument for the statement of Remark 4.2.3.

94



b) Reformulate Theorem 4.2.12 a) in terms of an adjunction between the
category of right exact functors from A to X and that of homological
δ-functors between the same categories.

c) Check that the definition and results of Section 4.2.2 are reformulations
of those of Section 4.2.1 for the dual category Aop, hence do not need to
be proved again.

d) Reformulate Theorem 4.2.20 a) in terms of an adjunction between the
category of left exact functors from A to X and that of cohomological
δ-functors between the same categories.

4.3 Cohomology of Small Categories

In this Section, we shall apply the machinery of derived functors to the study
of cohomology of small categories. Starting with a fixed small category C,
we shall associate an abelian category Ab(C) to it, and a left exact functor
Γ:Ab(C) //Ab. The right derived functors RnΓ will then describe the coho-
mology of C, as obtained from its nerve.

So, we start by defining the category Ab(C) of presheaves of abelian groups on
C. This is the functor category [Cop,Ab], whose objects are contravariant func-
tors from C to Ab and whose arrows are natural transformations (see Remark
A.0.13 in the Appendix).

For an arrow u:C //D in C and a presheaf A: Cop //Ab in Ab(C), the arrow
A(u):A(D) //A(C) will be sometimes denoted by u∗. Recall that the natural-
ity condition in the definition of morphisms in Ab(C) reads as commutativity of
the following diagram:

A(D)
A(u)

//

fD

²²

A(C)

fC

²²

B(D)
B(u)

// B(C).

For every object C in C, there is an evaluation functor evC : Ab(C) //Ab, de-
fined on a presheaf A as evC(A) = A(C), and on a presheaf morphism f :A //B
as evC(f) = fC .

Example 4.3.1

a) Consider a group G as a category G with just one object ? and one arrow
g: ?→ ? for every element g ∈ G. Then, Ab(G) = mod-G = mod-Z[G];
b) Consider the category ∆, whose objects are ordered initial segments of
the natural numbers [n] = {0, 1, ..., n}, n ≥ 0, and arrows are non decreasing
functions. Then, Ab(∆) is the abelian category of simplicial abelian groups.
c) Let X be a topological space with a basis B of open sets. View B as a
category whose arrows are inclusions. Many “geometric structures” on X
give rise to objects of Ab(B); for example, if E //X is a vector bundle, then
there is a functor Γ(E) in Ab(B), where Γ(E)(U) = Γ(U,E), the sections of
E|U , for U ∈ B.

Proposition 4.3.2 Let C be a small category. Then:
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a) Ab(C) is an abelian category;
b) for each C in C, evC is an exact functor;
c) Ab(C) has enough projectives.

The category Ab(C) also has enough injectives, but we will not prove this here.

Proof. In order to prove a) we need to construct finite direct sums, kernels
and cokernels of functors. We do this pointwise; for example, if A and B
are presheaves in Ab(C), put (A ⊕ B)(C):= A(C) ⊕ B(C), for a morphism
f :A //B in Ab(C), put (ker f)(C):= ker(A(C) //B(C)) and so on. We
may take these as a definition and check that they have the required uni-
versal properties. As an illustration, we derive the existence of cokernels:
let (coker f)(C):= coker(A(C) //B(C)) and, for an arrow u:C //D in C,
(coker f)(u) is the unique arrow coker f(D) // coker f(C) making the follow-
ing commute:

A(D)

A(u)

²²

fD // B(D)

B(u)

²²

PD // (coker f)(D)

²²

A(C)
fC

// B(C)
PC

// (coker f)(C).

(4.7)

The mappings C 7→ (coker f)(C) and u 7→ (coker f)(u) determine a contravari-
ant functor from C to Ab, i.e. an object in Ab(C), which we denote by coker f .
Moreover, the collection of maps PC (C in C) form a natural transformation;
that is, an arrow in Ab(C). It is immediate from (4.7) that the object coker f
and the arrow P form the cokernel of f in Ab(C).

It is now immediate that b) holds, since we just saw that kernels and cokernels
in Ab(C) are computed pointwise.

The proof of c) goes via a reduction to the category of sets. First of all, notice
that, similarly to the definition of Ab(C), we may define Set(C) as the category of
contravariant functors S:Cop //Set and natural transformations between them.
As before, we have for each C in C an evaluation functor evC : Set(C) //Set.
The important category of simplicial sets is of this type: it is the category
Set(∆). Now, we need a couple of results.

Lemma 4.3.3 An arrow f :S //T in Set(C) is an epimorphism if and only if
fC :S(C) //T (C) is surjective for all C in C.

Proof. See Exercise a) below. ¤

Now, notice that there is an obvious adjunction Z[−]aU between the for-
getful functor U :Ab //Set and the free abelian group functor Z[−]: Set //Ab.
Composition with these two functors induces an adjunction

Ab(C)
U //
> Set(C),
Z[−]

oo (4.8)

where, by an abuse of notation, we denote again by U the functor which point-
wise forgets the abelian group structure, and by Z[−] the functor which point-
wise takes the free abelian group; in other words, Z[S](C) = Z[S(C)] for any
functor S: Cop //Set and any C in C.

From Lemma 4.3.3, it then follows (see Exercise b) below) that:
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Remark 4.3.4

a) For any A in Ab(C), the A-th component of the counit

εA:Z[U(A)] //A

is epic;
b) by the dual of Lemma 1.8.12, since Z[−] is left-adjoint to U and the latter
clearly preserves epimorphisms, Z[−] preserves projectives;
c) if P //S is an epimorphism in Set(C), then Z[P ] //Z[S] is epic in Ab(C)
(see exercise e) in the Appendix).

Now, in order to prove that Ab(C) has enough projectives, it is enough
to show that Set(C) does; for, if this is the case, then, given any presheaf
A:Cop //Ab, we can cover its image U(A) in Set(C) with a projective P , and
then, by Remark 4.3.4, the composite

Z[P ] // Z[U(A)] ε // A

is a covering of A by an epimorphism from the projective Z[P ].
To show that Set(C) has enough projectives, recall from the Appendix the

notion of representable functor in Set(C) and Yoneda’s lemma A.0.15. Then,
the following result closes the proof of Proposition 4.3.2. ¤

Proposition 4.3.5 For a small category C:

a) each representable presheaf in Set(C) is projective;
b) Set(C) has enough projectives.

Proof.

a) Let B in C and consider the diagram in Set(C)

T

g

²²

HomC(−, B)
f

// S,

where g is an epimorphism. Then, by Yoneda’s Lemma, a natural trans-
formation HomC(−, B) //T corresponds to an element of T (B). Since gB
is surjective, we may take any element in the preimage of fB(idB).

b) Let S in Set(C) and consider the coproduct P =
∐
B∈C,s∈S(B) HomC(−, B).

Then, by a) P is projective in Set(C). For each B in C and s ∈ S(B),
Yoneda’s Lemma gives an arrow HomC(−, B) //S, so by the universal
property of coproducts we obtain an arrow P //S, which is epic by Lemma
4.3.3.

¤
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Now that we have established the fact that Ab(C) is an abelian category
and has enough projectives, we can turn our attention to describing a left exact
functor from Ab(C) to Ab.

This will be the functor Γ: = HomAb(C)(Z̃,−): Ab(C) //Ab, where Z̃ is the
constant functor mapping every object of C to Z.

Recall that, for every abelian group B, we have HomAb(Z, B) ' B; there-
fore, for A in Ab(C) and a natural transformation α in HomAb(C)(Z̃, A), we can
identify the C-th component of α (for C in C) with an element in A(C). It fol-
lows that Γ(A) is the set of functions α (also called sections) assigning to each
object C ∈ C an element α(C) ∈ A(C) such that, for each arrow u:D //C,
u∗(α(C)) = α(D).

Remark 4.3.6 The functor Γ has a left adjoint K: Ab //Ab(C), sending an
abelian group to the corresponding constant presheaf. In particular, by Theorem
4.1.21, Γ is left exact.

Example 4.3.7 Looking back at Example 4.3.1, we have:

a) When G is the category associated to a group G, we recover (−)G as
Γ; indeed, we have already seen in Example 4.3.1 a) that Ab(G) = G-mod.
Moreover, the functor K above is just the trivial module functor. Hence, by
exercise b) of Section 2.4 and uniqueness of adjoints, (−)G and Γ are naturally
isomorphic;
b) for C = ∆, we see that Γ(A) ' A([0]) = A0 (the set of vertices).

4.3.1 The nerve of a category

Our next goal is to give an explicit description of RnΓ, the right derived functors
of Γ. To this end, we recall from Example 3.1.3 b) that the nerve of a (small)
category C is the simplicial set N?(C) defined as N0(C) = |C| and for n ≥ 1 as
Nn(C) = {C0

u1←− · · · un←−− Cn}, with maps di:Nn(C) //Nn−1(C) which “omit
Ci”; that is:

di(C0
u1←− · · · un←−− Cn) =





C1
u2←− · · · un←−− Cn, i = 0

C0 ← · · ·Ci−1
uiui+1←−−−− Ci+1 · · · ← Cn, 0 < i < n

C0
u1←− · · · un−1←−−− Cn−1, i = n

The di’s satisfy the simplicial identities didj+1 = djdi, for i ≤ j.
For a presheaf A in Ab(C), we can build a cochain complex C?(C, A) using

the nerve N?(C), by putting

Cn(C, A):=
∏

C0
u1←−··· un←−−Cn

A(Cn),

with boundary maps

d =
n∑

i=0

(−1)iδi:Cn−1(C, A) //Cn(C, A),

where δi is defined on a tuple α = {a
C0

u1←−··· un−1←−−−Cn−1

} ∈ Cn−1(C, A) as

δi(α)
C0

u1←−··· un←−−Cn

=

{
a
di(C0

u1←−··· un←−−Cn)
, i < n

u∗n(adn(C0
u1←−··· un←−−Cn)

), i = n.
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The cohomology of this cochain complex gives an explicit description of the
right derived functors of Γ:

Theorem 4.3.8 For any object A in Ab(C), there is a natural isomorphism
RnΓ(A) ' Hn(C?(C, A)). We denote this group by Hn(C, A).

Proof. By definition, RnΓ(A) = Hn(HomAb(C)(Z̃, I?)), where I? is an injec-
tive resolution of A in Ab(C). But, by the double complex lemma 1.11.5, the
cohomology can also be computed as Hn(HomAb(C)(P?, A)), for any projective
resolution

· · · → P0 → Z̃→ 0 (4.9)

of Z̃ in Ab(C). In particular, the following is a projective resolution of Z̃: define

Pn =
∐

C0
u1←−··· un←−−Cn

Z[HomC(−, Cn)],

where Z[−] is as in (4.8). The maps d:Pn //Pn−1 of this complex are defined
as

d =
n∑

i=0

(−1)iδi,

where δi:Pn //Pn−1 takes the summand Z[HomC(−, Cn)] indexed by the chain
C0

u1←− · · · un←−− Cn to the summand indexed by di(C0
u1←− · · · un←−− Cn), for

i = 0, . . . , n.
Clearly, by Remark 4.3.4 b) and Proposition 4.3.5 a), the Pn’s are projective.

Once we show that they form an exact sequence, Yoneda lemma proves the
theorem, since

HomAb(C)(Pn, A) ∼=
∏

C0←···←Cn

HomAb(C)(Z[HomC(−, Cn)], A)

∼=
∏

C0←···←Cn

HomSet(C)(HomC(−, Cn), U(A))

∼=
∏

C0←···←Cn

U(A(Cn)) = Cn(C, A).

So, all we have to do is to show exactness of (4.9) in Ab(C), and for this it
is enough to show the exactness of · · · → P0(B)→ Z→ 0 for each B in C. But
first, we make some general remarks.

If B is a small category, then N?(B) gives a chain complex

· · · → Z[Nn(B)] ∂−→ Z[Nn−1(B)]→ · · ·

where ∂n =
∑n
i=0(−1)idi, the di’s being as in the definition of the nerve of a

category, above.

Lemma 4.3.9 If B has an initial object, then Z[N?(B)] is a contractible chain
complex (hence its homology is zero).

Proof. Recall that a chain complex C? is contractible if idC? is homotopic
to the zero map of complexes; that is, if the equality id = ∂h + h∂ holds for
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opportune maps hn:Z[Nn−1(B)] //Z[Nn(B)]. Let I be the initial object of B.
Then, the maps defined by

hn(C0 ← · · · ← Cn−1) = (−1)n(C0 ← · · · ← Cn−1 ← I)

satisfy the condition dihn+1 = −hndi for i = 0, . . . , n and dnhn = (−1)nid.
Therefore, id = ∂h+ h∂. ¤

Now, fix an object B in C. The slice category B/C has as objects all pairs
(u,C) with C in C and u:B //C, and as arrows f : (u,C) //(v, C ′) all those
arrows f :C //C ′ for which fu = v. The definition of arrows in B/C allows
us to identify Nn(B/C) with the set Sn of strings C0 ← · · · ← Cn ← B,
hence S? is exactly the nerve N?(B/C). Also, the sum of all abelian groups
Z[HomC(B,Cn)], indexed over the strings C0 ← · · · ← Cn, is isomorphic to
Z[Sn], hence Pn(B) ∼= Z[Sn]. From this we derive (see Exercise c) below)

Proposition 4.3.10 The complexes P?(B) and Z[N?(B/C)] are isomorphic.

Now, since (idB , B) is an initial object for B/C, Lemma 4.3.9 and Proposition
4.3.10 imply the exactness of:

· · · → P1(B)→ P0(B)→ Z→ 0.

This finishes the proof of Theorem 4.3.8. ¤

Exercises

a) For an object C in C, show that the evaluation functor evC :Set(C) //Set
has a right adjoint defined by

RC(S) = HomSet(HomC(C,−), S);

Use this adjunction to prove Lemma 4.3.3.
b) Give a proof of a), b) and c) in Remark 4.3.4.
c) Prove Proposition 4.3.10 in detail.

4.4 Sheaf cohomology

For a fixed topological space X, we shall construct an abelian category Sh(X)
of sheaves on X, together with a left exact functor Γ: Sh(X) //Ab. Then, we
shall define the sheaf cohomology of the space X as Hn(X,A) = (RnΓ)(A), for
A in Sh(X).

As a starting point, consider the partial order O(X), the set of open sub-
sets of X as a small category. We can form the abelian category Ab(O(X))
of presheaves of abelian groups on X, just like in Section 4.3. Its objects are
contravariant functors from O(X) to Ab; for an inclusion U ⊆ V of open sub-
sets of X, such a presheaf A in Ab(O(X)) determines a map A(V ) //A(U),
called a restriction morphism. The image of an element a ∈ A(V ) along such a
restriction morphism will be denoted by a|U .
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Just as in Section 4.3, for any open set U ∈ O(X), there is an exact eval-
uation functor evU :Ab(O(X)) //Ab. The definition of the functor Γ stands
also in this context, and one can check that, for any presheaf A in Ab(O(X)),
Γ(A) = evX(A) = A(X).

Now, we define Sh(X) as a full subcategory of Ab(O(X)) and, with an abuse
of notation, we still write Γ for the restriction Γ: Sh(X) //Ab. It is important
to note that this restriction will not be exact; in particular, the inclusion functor
i: Sh(X) //Ab(O(X)) is not exact.

Definition 4.4.1 Let A ∈ Ab(O(X)) be a presheaf of abelian groups on X,
U ∈ O(X) and consider an open cover {Ui}i∈I of U . A family {ai ∈ A(Ui)}i∈I
is called compatible if ai|Uij = aj |Uij for all i, j, where Uij = Ui ∩ Uj . An
amalgamation, or glueing, of the family {ai} is an a ∈ A(U) with a|Ui

= ai for
all i.

We say that A is a sheaf if for every open cover {Ui} of an open U ∈ O(X),
every compatible family has a unique amalgamation.

Example 4.4.2 Classical examples of sheaves are:

a) Define R̃(U):= C0(U,R), the set of continuous functions from U to R,
and for U ⊆ V let the map R̃(V )→ R̃(U) be the usual restriction of functions.
Then, R̃ is a sheaf.
b) For any topological abelian group A, we have a similar sheaf Ã, where
Ã(U) = C0(U,A). If A has the discrete topology, we also denote the sheaf
Ã by K(A), and in this case K(A)(U) is the set of locally constant functions
U → A.
c) Let p:E //X be a vector bundle on X. We define a sheaf Ẽ by

Ẽ(U):= Γ(U,E) = {s:U → E | s continuous and ps = id}.
This construction makes sense for any bundle of abelian groups A→ X.

4.4.1 Germs of functions

Let U be an open subset of X, f :U //R a continuous map and x ∈ U . The
germ of f at x, germx(f), is the equivalence class of all those functions whose
behaviour in a neighbourhood of x is equal to that of f . More precisely, we define
the set Germ(x) of germs of continuous functions at x as the set of equivalence
classes of pairs (f, U), where f ∈ C0(U,R) and x ∈ U , modulo the equivalence
relation defined by (f, U) ∼ (g, V ) iff there is W ∈ O(X) with x ∈ W ⊆ U ∩ V
such that f |W = g|W .

Using the group structure of R, we can induce on the set Germ(x) an abelian
group structure, by letting

[(f, U)] + [(f ′, U ′)] = [(f |U∩U ′ + f ′|U∩U ′ , U ∩ U ′)].
Categorically, we can present this construction as a colimit: if U is an open

neighbourhood of x, then

Germ(x) = lim−−−→
U⊆X

C0(U,R) = lim−−→
x∈U

R̃(U).

In fact, this expression makes sense for any sheaf A:

101



Definition 4.4.3 The stalk of A at the point x ∈ X is the abelian group

Ax = lim−−→
x∈U

A(U).

In other words, the elements of Ax are equivalence classes of pairs (a, U), where
x ∈ U and a ∈ A(U), under the relation (a, U) ∼ (b, V ) iff a|W = b|W for some
W ∈ O(X) with x ∈W ⊂ U ∩ V . These classes add up as:

[(a, U)] + [(b, V )] = [(a|W + b|W ,W )] (4.10)

for some W ∈ O(X) with x ∈W ⊆ U ∩ V .

We now have all the elements to state the following result, which collects all
the properties of Sh(X) necessary in order to define and study sheaf cohomology.

Theorem 4.4.4 Let X be a topological space. Then:

a) Sh(X) is an abelian category;
b) the inclusion functor i: Sh(X) ↪→ Ab(O(X)) is additive and left exact;
c) for each U ∈ O(X), the functor evU : Sh(X) //Ab is additive and left
exact;
d) For each x ∈ X, there is an exact functor (−)x: Sh(X) //Ab, taking each
sheaf to its stalk at x;
e) Sh(X) has enough injectives (hence right derived functors like RnΓ are
defined).

Proof. We shall give an admittedly sketchy proof, here, and advise the reader to
fill in the details. First of all, note that b) and c) are equivalent, by Proposition
4.3.2 b).

For c) to hold, we must be able to compute the sum of f, g:A //B pointwise,
as (f+g)U =fU+gU :A(U) //B(U). Likewise, kernels and direct sums must be
defined as (ker f)(U)=ker(fU ) and (A⊕B)(U)=A(U)⊕B(U)'A(U)

∏
B(U).

Indeed, it is easy to check that these operations define a linear structure on
Sh(X). So, we have kernels and direct sums in Sh(X). We now focus on coker-
nels. Let f :A //B and U ∈ O(X). Say that b ∈ B(U) is locally in the image of
f if there is a cover U = ∪Ui and elements ai ∈ A(Ui) such that b|Ui = fUi(ai).
For an open cover U = ∪Ui, we call a family {bi ∈ B(Ui)} locally f -compatible
if, for all i, j, the element bi|Uij − bj |Uij is locally in the image of f . We de-
fine coker f(U) as the set of equivalence classes of pairs ({Ui}, {bi}), where the
Ui form an open cover of U and {bi ∈ B(Ui)} is a locally f -compatible fam-
ily, two such pairs ({Ui}, {bi}) and ({Vj}, {cj}) being equivalent if and only if
bi|Ui∩Vj−cj |Ui∩Vj is locally in the image of f ; that is, ({Ui}, {bi}) ∼ ({Vj}, {cj})
if and only if ({Ui} ∪ {Vj}, {bi} ∪ {cj}) is still locally f -compatible. The group
structure on coker f(U) is

[({Ui}, {bi})] + [({Vj}, {cj})] = [({Ui ∩ Vj}, {bi|Ui∩Vj + cj |Ui∩Vj})].

For an inclusion V ⊆ U of open subsets in X, the action of the restriction
morphism coker f(U) // coker f(V ) making coker f into a presheaf is given by

[({Ui}, {bi})] 7→ [({Ui ∩ V }, {bi|Ui∩V })].
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There is an obvious map q:B // coker f in Ab(O(X)), whose components are
the maps qU :B(U) // coker f(U) defined as qU (b) = [({U}, {b})].

One should now check that coker f as defined above is indeed a sheaf, and
that the pair (coker f, q) has the required universal property. This then proves
b) and c). With these explicit constructions of kernels, cokernels, etc. a) also
follows.

We now prove e), leaving d) aside. For this, we look at the category∏
x∈X Ab, whose objects are families {Ax}x∈X of abelian groups and arrows are

families of groups homomorphisms. Note that, if X has the discrete topology,
then Sh(X) '∏

x∈X Ab. In the more general case, there is only an adjunction

Sh(X)
Stalk

-- ∏
x∈X Ab,⊥

G

ll

where Stalk(A)x = Ax and G({Ax})(U) =
∏
x∈U Ax. To see that G is well

defined, let {Ui} be an open cover of U and {ai = {aix} ∈
∏
x∈Ui

Ax}i be a
compatible family; this means that for all i, j, aix = ajx if x ∈ Ui∩Uj . Therefore,
a = {ax}x∈U defined by ax = aix for any i with x ∈ Ui is well defined, and is an
amalgamation of {ai}.

To establish the adjunction, let A and B = {Bx} be objects in Sh(X) and∏
x∈X Ab, respectively. Then, for any open U ⊆ X, a map from Stalk(A) to

B, specifies a family of maps Ax → Bx (for x ∈ U). These compose with
the canonical maps τU,x:A(U) //Ax to give a map A(U)→∏

x∈U Bx, which is
natural in U . Conversely, for a presheaf morphism f :A //G(B) and an element
x ∈ X, application of the functor Stalk(−)x gives a map

Ax
fx //G(B)x = lim−−→

x∈U
(
∏

y∈U
By).

For each U ∈ O(X) containing x, we have a map pUx :
∏
y∈U By //Bx, and these

form a compatible family. Therefore, by the universal property of the colimit,
we obtain a map G(B)x //Bx, hence a map Ax → Bx. It is easy to see that
these associations are inverse to each other.

Let nowA be a sheaf onX. Since Ab has enough injectives, for each x ∈ X we
can find an injective object Ix ∈ Ab and a monomorphism fx:Ax //Ix. Then,
for each U ∈ O(X), we obtain, as above, a map gU :A(U) //G({Ix})(U). Since
Stalk preserves monomorphisms, G preserves injectives (see Lemma 1.8.12).
So, we only have to show that the morphism g:A //G({Ix}) is monic, and by
part b), This amounts to show that gU is injective for any open U ∈ O(X): if
gU (a) = 0, then τU,x(a) = 0, hence there is Vx ∈ O(X) with x ∈ Vx ⊆ U , such
that a|Vx = 0. The sets Vx form an open cover of U , so a = 0 since A is a sheaf.

This finishes the proof of the theorem. ¤

Exercises

a) Show that A(∅) = {0} for any sheaf A on a topological space X.
b) Verify that the operation (4.10) in Definition 4.4.3 defines on the stalk

Ax the structure of an abelian group.
c) Give a proof of d) in Theorem 4.4.4.
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4.5 Additional exercises

1. Assume that an abelian category A has enough injectives.

i) Prove the following sharpening of Lemma 4.1.20: A sequence

A //B //C

is exact if and only if for every injective object I, the sequence:

HomA(C, I) // HomA(B, I) // HomA(A, I)

is an exact sequence of abelian groups.

ii) Formulate the dual statement.

2. Let sAb be the category of simplicial abelian groups. It is an abelian
category of the form Ab(C), discussed in Section 4.3, hence has enough
projectives.

i) Prove that every projective object P is up to isomorphism of the
form P ∼= ⊕Pi, where Pi = Z[∆[ni]] is the free abelian group on the
standard simplex ∆[ni] (cf. Example 3.1.3 d)).

ii) Let Hk: sAb //Ab be the homology functor defined in Remark 3.1.6.
Prove that the Hk form a homological δ-functor.

iii) Prove thatHk vanishes on projectives if k > 0. (Hint: Use Additional
exercise 2 iii) from Chapter 3.)

iv) Conclude that H∗(A) ∼= H∗(∆op, A). Here we use the following defi-
nition of the homology of small categories: let

lim
→

:Ab(Cop) //Ab

be the colimit functor, mapping a functor A: C //Ab to the cokernel
of the morphism

⊕

f :C→D
A(C)

α−β
//
⊕

E∈C

A(E)

where αf (a) = a ∈ A(C) and βf (a) = A(f)(a) ∈ A(D). Check that
lim
→

is right exact, and define

Hi(C, A) ∼= Li(lim→ )(A).
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A. Categories and Functors

We have collated in this Appendix all the background definitions about category
theory which provide the language to express and formalise the arguments in
the course. For further reading on this topic, we refer to Mac Lane’s classic
book [4].

The very basic observation lying behind the definition of a category, is that
whenever we study some class of mathematical objects and their interactions,
we have to restrict our attention to the “right kind of maps” between them.
So, for example, when we compare groups, it is not interesting to look at any
function between their underlying sets. Rather, we have to focus on the maps
that do preserve the group structure. Starting from this remark, we formulate
the following.

Definition A.0.1 A category C consists of the following data:

a) a class |C| whose elements are the objects of C;
b) a set HomC(A,B) of morphisms from A to B for every ordered pair (A,B)
of objects in C;
c) a composition function

HomC(B,C)×HomC(A,B) // HomC(A,C)

for any objects A, B and C in C;
d) an identity morphism idA in HomC(A,A) for every object A in C;

We use the words arrow, map, or morphism to denote elements of the Hom
sets. We write f :A //B to indicate that f is a morphism in HomC(A,B) (or a
map from A to B), and we write g ◦ f (or even gf , when there is no ambiguity)
for the composite of two morphisms f :A //B and g:B //C.

These data will have to satisfy the following conditions:

a) identity morphisms are left and right units for composition; that is, for
any f in HomC(A,B),

idB ◦ f = f = f ◦ idA;

b) composition of morphisms is associative; namely, for any maps f in
HomC(A,B), g in HomC(B,C) and h in HomC(C,D), one has

h ◦ (g ◦ f) = (h ◦ g) ◦ f

in HomC(A,D).
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In a category C, we say that two objects A and B are isomorphic when there
are maps f :A //B and g:B //A such that gf = idA and fg = idB .

Example A.0.2 Examples of categories come mainly in two forms. On the one
hand, we have categories whose objects are sets with some structure, and arrows
are functions between the underlying sets that preserve the structures; on the
other, there are some mathematical structures that carry within themselves the
inherent structure of a category.

The most obvious example of a category of the first kind, of course, is Set
itself. Its objects are sets, its morphisms are functions between sets, composition
of morphisms is the usual composition of functions, and the identity morphisms
are given by the identity function on each set. Another example is the category
Ab of abelian groups, whose objects are abelian groups, morphisms are group
homomorphisms, composition and identities are those in Set. Likewise, for rings
R and S we have seen the categories R-mod, mod-S, R-mod-S of left R-modules,
right S-modules, and (R,S)-bimodules, and their homomorphisms.

However, it is restrictive to think of objects in a category as sets with some
structure, for there are examples of categories where this is not true. Examples
of this second kind are the following. Every partially ordered set (A,≤) can
be viewed as a category, where the objects are the elements of A and there is
precisely one arrow between a and b when a ≤ b. Conversely, one can show
that any (small) category where Hom(a, b) has at most one element for any two
objects a and b is a partially ordered set. Also, given a unary ring R, we can
define a category R as follows. R has only one object: •. The set HomR(•, •) is
defined to be R. Composition is given by the product operation in R, and the
identity is defined to be the unit 1.

The gain in abstracting the notion of category, has a price in that, not dealing
with sets, we can no longer formulate certain properties. For example, it makes
no sense to say that a map f :A //B is injective any more. This is because A
is no longer a set, and therefore does not have elements.

One of the major challenges in category theory is that of defining notions
that capture in this new and abstract formalism all the classical set-theoretic
notions that are needed in developing a certain argument.

For example, it is not hard to see that injective functions between sets can
be equivalently characterised as those maps f :A //B such that, for any two
maps g, h:X //A, if fg = fh then g = h. Now, this is a property that makes
sense in any category, and therefore we take this as a definition.

Definition A.0.3 A map f :A //B in C is called monic, or a mono(morphism),
when for any pair of parallel maps g, h:X //A, if fg = fh then g = h. We
sometimes express this by saying that f has the left cancellation property. The
map f is called epic, or an epi(morphism), if for any pair of parallel maps
d, e:B //Y , d = e whenever df = ef . In this case, we shall also say that f has
the right cancellation property.

Example A.0.4 It is an easy verification that monic and epic maps in Set are
precisely injective and surjective functions. Likewise, in Ab monomorphisms are
precisely injective homomorphisms of abelian groups. This holds more generally
for the category R-mod, for any ring R.
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In R-mod it is obvious that every surjective module homomorphism is also
an epimorphism. The converse is also true, since for any module homomorphism
f :A //B the two composites in

A
f

// B
p

//

0
// B/f(A)

are both the null map 0; hence, whenever f is epic, p = 0, proving that f(A) = B
and f is surjective.

In the category Rng of unary rings and ring homomorphisms (preserving
units), however, the inclusion Z //Q is epic but clearly not surjective.

Remark A.0.5 In Set it is clearly the case that if a map is injective and sur-
jective, then it is an isomorphism. Note that this is not true in general. In
a partially ordered set, considered as a category, every map is trivially monic
and epic (the conditions being vacuously satisfied), but this does not mean that
every two elements are equal!

As for all other mathematical structures, we can identify the right notion of
morphism between categories as well.

Definition A.0.6 Let C and D be two categories. By a covariant functor
F :C //D we mean a rule that assigns to each object A in |C| an object F (A)
in |D|, and to each map f :A //B in C a morphism F (f):F (A) //F (B) in D,
such that the following conditions hold:

a) For each object A in |C|, F (idA) = idF (A).
b) For each f in HomC(A,B) and g in HomC(B,C), F (g ◦ f) = F (g) ◦F (f).

Remark A.0.7 Given two functors F : C //D and G: D //E, we can define
their composite to be the functor G ◦ F : C //E taking an object A in C to
the object G(F (A)) in E, and a map f in HomC(A,B) to the map G(F (f))
in HomE(G(F (A)), G(F (B))). This composite operation is clearly associative.
Moreover, there is an obvious identity functor IdC: C //C for any category C.
So, we can consider the category Cat, whose objects are categories, arrows are
functors, and composition and identities are the ones just defined.

Definition A.0.8 The opposite category Cop of a category C has as objects
the same as C, but arrows “reversed”; more precisely, the set HomCop(A,B)
is the same as HomC(B,A). Identities are the same, and composition is itself
“reversed”: if f :A //B and g:B //C are maps in Cop, then they are maps
in C from B to A and from C to B, respectively. Therefore, we can form the
composite f ◦ g:C //A in C, and this is a map from A to C in Cop, which we
define as the composite g ◦ f . It is easy to verify that the necessary conditions
hold; in fact, they are inherited from C.

Definition A.0.9 A contravariant functor F :C //D is a covariant functor
from Cop to D. Naively, we can think of it as a functor that “reverses ar-
rows”. More formally, it maps objects of C to objects of D, and an takes an
arrow f in HomC(A,B) to a map F (f) in HomD(FB,FA). For composition,
we have that F (g ◦ f) = F (f) ◦ F (g); identities are preserved as usual.

Notice that the composite of two contravariant functors is covariant. Gen-
erally, we refer to covariant functors simply as functors, and specify explicitly
only the contravariant case.
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Example A.0.10 The inner structure of any category C determines both a
covariant and a contravariant Hom functor. For a fixed object A in C, the
functor HomC(A,−): C //Set maps an object B to the set HomC(A,B) of maps
in C between A and B. For a given map f :B //B′ in C, the Set-function
HomC(A, f): HomC(A,B) // HomC(A,B′) is defined just as composition with
f , and takes a map g:A //B to the composite fg:A //B′. Functoriality of
HomC(A,−) is determined by associativity of composition and the properties of
the identity maps.

Likewise, A determines a contravariant functor HomC(−, A): C //Set, tak-
ing an object B in C to the set HomC(B,A) and a map f :B′ //B to the
Set-function HomC(f,A): HomC(B,A) // HomC(B′, A) that is defined by pre-
composition with f .

Example A.0.11 We saw in Section 1.2 how the Hom sets between R-modules
can be given different algebraic structures, therefore determining different Hom
functors relating R-mod to Ab, or other categories, according to the structured
considered. We also saw the tensor product functor of Section 1.3 and the
(co)homology functors of Section 1.9.

It is also possible to introduce a notion of morphism between functors.

Definition A.0.12 Given two parallel functors F,G: C //D, a natural trans-
formation α:F //G is a collection of maps

(αA:F (A) //G(A))A in |C|

in D, indexed by the objects of C and such that, for any map f :A //B in C,
the following square commutes in D:

F (A)

F (f)

²²

αA // G(A)

G(f)

²²

F (B)
αB

// G(B).

If all the components αA of a natural transformation α:F //G are isomor-
phisms, then we say that α is a natural isomorphism between F and G.

Remark A.0.13 We can also define the (vertical) composition of two natural
transformation. That is, for any three parallel functors F,G,H:C //D and
two natural transformations α:F //G and β:G //H there is a natural trans-
formation β ◦ α:F //H whose component on an object A in C is the map
βA ◦ αA:F (A) //H(A) in D.

It easy to show that composition of natural transformations is associative
and that the collection (idF (A))A in C defines the identity natural transformation
from F to itself. Therefore, we can form the category of functors, denoted [C,D],
whose objects are functors from C to D, and arrows are natural transformations
between them, with the composition and identities just defined.

It is easy to see that, when α:F //G is a natural isomorphism in [C,D],
then the collection (α−1:G(A) //F (A))Ain|C| defines a natural transformation
from G to F , which is inverse to α. Therefore, natural isomorphisms between
F and G are precisely isomorphisms in the functor category [C,D].
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When we work in the particular functor category [Cop,Set] of contravariant
functors from a category C to Set, we can identify a special collection of objects.

Definition A.0.14 A functor F : Cop //Set is called representable if it is (up
to isomorphism) of the form HomC(−, B) for a fixed object B in C.

The Yoneda embedding functor Y : C //[Cop,Set] maps an object A to the
functor HomC(−, A), and a morphism f :A //B to the natural transformation
f∗: HomC(−, A) // HomC(−, B).

Lemma A.0.15 (Yoneda Lemma) There is an isomorphism

Hom[Cop,Set](Y (A), F ) ' F (A)

natural in A in C and F in [Cop, Set].

When working in Cat, the notion of isomorphism is often too strict. In fact, it
is often the case that the composites of two functors F : C //D and G: D //C
are not exactly the identity functors; rather they may be just isomorphic to
them in the functor categories [C,C] and [D,D]. In this case, we say that the
categories C and D are equivalent. More concretely, this means that there are
natural isomorphisms η: IdC

//GF and ε:FG //IdD.
The notion of equivalence of categories can be further relaxed, by asking for

η and ε to be merely natural transformations.

Definition A.0.16 Let C and D be two categories. Two functors L: C //D
and R: D //C are said to be adjoint if there are two natural transformations:

η: IdC
//RL and ε:LR //IdD

satisfying the triangular identities:

RLR
Rε

½½

LRL
εF

¼¼

R

ηR
88

idR

// R, L

Lη
88

idL

// L.

When this is the case we shall say that L is left adjoint to R (denoted LaR),
and vice versa that R is right adjoint to L. Finally, the maps η and ε are called
the unit and counit of the adjunction, respectively.

Proposition A.0.17 The following are equivalent for a functor L: C //D:

a) L has a right adjoint R;
b) there is a functor R: D //C and, for any object A in C and B in D there
are isomorphisms

τA,B : HomD(L(A), B) // HomC(A,R(B));

moreover, these are natural in A and B, in the sense that for all f in
HomC(A,A′) and g in HomD(B,B′) the following diagram commutes:

HomD(L(A′), B)
−◦L(f)

//

τA′,B
²²

HomD(L(A), B)
g◦−

//

τA,B

²²

HomD(L(A), B′)

τA,B′

²²

HomC(A′, R(B)) −◦f
// HomC(A,R(B))

R(g)◦−
// HomC(A,R(B′));
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c) for any B in D there is an object R(B) in C and a map εB :L(R(B)) //B
with the universal property that, for any A in C and any map f :L(A) //B in
D, there is a unique morphism f̂ :A //R(B) making the following commute:

A

bf
²²

L(A)

L( bf)

²²

f

¿¿

R(B) L(R(B))
εB

// B.

Remark A.0.18 Dually to point c) in Proposition A.0.17, one can describe an
adjunction in terms of the right adjoint R: D //C and, for any A in C, an object
L(A) in D and a map ηA:A //R(L(A)) with the universal property that, for
any other map f :A //RB there is a unique morphism f̂ :L(A) //B making
the following commute:

A
ηA //

f
''

R(L(A))

R( bf)
²²

L(A)

bf
²²

R(B) B.

Exercises

a) Given a category C and a functor F :D //E, show that post-composition
with F determines a functor

F ◦ −: [C,D] //[C,E].

b) Prove the Yoneda lemma A.0.15. (Hint: define the isomorphism in one
direction by taking α ∈ Hom[Cop,Set](Y (A), F ) to fA(idA); for its inverse,
map an element x ∈ F (A) to the natural transformation defined by
αC(f) = F (f)(x), where f :C //A is an element of HomC(C,B))

c) Prove Proposition A.0.17.
d) Show that the left and right adjoints to a functor F :C //D, when they

exist, are unique up to natural isomorphism.
e) Show that a map f :A //B is monic in C if and only if it is epic in Cop,

and deduce from this the dual statement, that f is epic in C if and only
if it is monic in Cop.

f) Show that right adjoint functors preserve monics and left adjoint preserve
epics.
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