
ERRATA

The following is a list of errata for our book ‘Simplicial and dendroidal homotopy
theory’. We thank Thomas Blom, Vladimir Hinich, Francesca Pratali, and Sven
van Nigtevecht for pointing out some of the inaccuracies addressed below.

p.107, Example 3.20(c). In the sentence following the display, e should be x.

p.486, paragraph before Lemma 12.6. Here it is claimed that for a Reedy cofibrant
dendroidal space A, the cosimplicial object A � ∆[•] is a cosimplicial resolution
of A, with a reference to Example 11.15. However, that example concerns the
projective model structure, not the Reedy one. Nonetheless, the same argument
given there will apply here. Indeed, to check that A � ∆[•] is a Reedy cofibrant
cosimplicial object it suffices to show that for each n ≥ 0 and each Reedy cofibration
of dendroidal spaces i : U → V , the map

U � ∆[n] ∪ V � ∂∆[n]→ V � ∆[n],

is again a Reedy cofibration of dendroidal spaces. One can take i to be a generating
Reedy cofibration of the form

T � ∂∆[m] ∪ ∂T � ∆[m]→ T � ∆[m],

in which case the map above becomes

T � (∂∆[m]×∆[n] ∪∆[m]× ∂∆[n]) ∪ ∂T � (∆[m]×∆[n])→ T � (∆[m]×∆[n]).

Clearly this is again a Reedy cofibration.

p.508. The proof of Corollary 12.42 has a gap. We are checking associativity
of the derived tensor product ⊗L on the homotopy category Ho(dSpacesRSC).
For dendroidal spaces X and Y , we have defined X ⊗L Y by taking projectively
cofibrant replacements of X and Y and then taking the tensor product of those.
To prove associativity of the derived tensor product, it will suffice to check that
for projectively cofibrant X, Y , and Z and a projectively cofibrant replacement
W → X ⊗ Y , the composite ‘associator map’

W ⊗ Z → (X ⊗ Y )⊗ Z → X ⊗ Y ⊗ Z

is a weak equivalence. Note that the current proof of Corollary 12.42 does not take
the cofibrant replacement W into account and only deals with the second map.
By the usual skeletal induction we may reduce to the case where X and Y are
represented by trees S and T respectively. (If desired, one can reduce to the case
where Z is a tree as well.) It remains to argue the following:

Lemma 1. The map

W ⊗ Z → (S ⊗ T )⊗ Z
is a weak equivalence in dSpacesRS.

The proof of the lemma relies on the observation that certain colimit diagrams
are actually homotopy colimits. To be precise, we call a diagram f : I → E in a
cofibrantly generated model category E a homotopy colimit diagram if the natural
map hocolimIf → colimIf is a weak equivalence. (Of course the term hocolimIf is
only well-defined up to weak equivalence, but for the definition it does not matter.)
To state our preparatory lemma, write S ⊗ T as a union ∪iAi of shuffles Ai with
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1 ≤ i ≤ n. Write P (n) for the poset of nonempty subsets of {1, . . . , n}, ordered by
reverse inclusion. If we set AU := ∩i∈UAU , then we can write

S ⊗ T ∼= colimU∈P (n)AU .

Lemma 2. The diagrams

U 7→ AU and U 7→ AU ⊗ Z
are homotopy colimit diagrams in dSpacesR (or, equivalently, in dSpacesP ).

Proof. Since the identity functor gives a Quillen equivalence between the projec-
tive and the Reedy model structures on dSpaces, the notion of homotopy colimit
diagram is indeed the same with respect to both model structures. Interpret P (n)
as a Reedy category in which every morphism is positive. For a general model
category E , we observe that the projective and Reedy model structures agree on
EP (n). Thus, a diagram f : P (n)→ E is projectively cofibrant precisely if for every
U ∈ P (n), the latching map

colimU(V f(V )→ f(U)

is a cofibration in E . In the specific case where E = dSpacesR and f(U) = AU ,
this becomes the inclusion ⋃

U(V

AV ⊆ AU .

This is a normal monomorphism of dendroidal sets (since AU is representable, hence
normal) and therefore a Reedy cofibration of dendroidal spaces. It follows that the
diagram is projectively cofibrant and its colimit is ‘the’ homotopy colimit.

For the second diagram, first note that −⊗Z preserves intersections between shuf-
fles, so that AU ⊗ Z = ∩i∈U (Ai ⊗ Z). It follows that in this case the latching map
may be identified with the inclusion of the subobject⋃

U(V

(AV ⊗ Z) ⊆ AU ⊗ Z.

Again, this is a normal monomorphism and the proof is complete. �

Proof of Lemma 1. It follows from Lemma 12.45 that the tensor product with Z
defines a left Quillen functor

−⊗ Z : dSpacesPS → dSpacesRS .

In particular, it preserves weak equivalences between projectively cofibrant objects
and it suffices to prove the lemma for a single choice of cofibrant replacement
W → S ⊗ T . Take a projectively cofibrant replacement Y of the diagram U 7→ AU

in the functor category dSpaces
P (n)
P . The colimit is a left Quillen functor, so that

lim−→P (n)
Y is a projectively cofibrant dendroidal space. Moreover, it is a model for

the homotopy colimit of U 7→ AU , so that the map lim−→P (n)
Y → A is a projective

weak equivalence by Lemma 2. Thus, we may take W = lim−→P (n)
Y as our cofibrant

replacement.

Since − ⊗ Z is left Quillen it preserves homotopy colimits, so that W ⊗ Z is the
homotopy colimit of the diagram

P (n)→ dSpacesRS : U 7→ AU ⊗ Z.
From the second part of Lemma 2 we conclude that the map

W ⊗ Z → colimU∈P (n)AU ⊗ Z ∼= (S ⊗ T )⊗ Z
is a weak equivalence. �
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Finally, for a different approach to constructing a symmetric monoidal structure
on the homotopy category of dendroidal spaces we refer to the appendix of ‘On the
equivalence of Lurie’s ∞-operads and dendroidal ∞-operads’ by Hinich–Moerdijk.

p.516. The proof of Theorem 12.60 and its Corollary 12.61 only apply to open
reduced dendroidal spaces, rather than closed ones. The reason is that the ‘reduc-
tion functor’ introduced above the theorem is only well-defined on open trees. In
particular, Theorem 12.62 remains valid.

p.574. Lemma 14.24: The proof is an inductive argument on the generating sparse
cofibrations. However, it doesn’t explicitly address the base case of the induction,
which is the evident observation that for the dendroidal space X = Ck � ∆[n] the
map X → Nτ(X) is an isomorphism.


