Surface water hydraulics

Exercise 5.4.3

The discharge of a river at an upstream measuring station A equals $100 \text{ m}^3 \text{ s}^{-1}$. The discharge at a downstream measuring station B equals $120 \text{ m}^3 \text{ s}^{-1}$. In one hour, the storage in the river between these two stations reduces by 45000 m³. The discharge at the upstream station A after one hour is $110 \text{ m}^3 \text{ s}^{-1}$.

Assuming a linear change of the discharge with time, determine the discharge in m³ s⁻¹ at the downstream station B after one hour.

Surface water hydraulics

Answer 5.4.3

Set up a water balance for the river in-between A and B for the time interval $\Delta t = 1$ hour: $\overline{Q}_{IN} = \overline{Q}_{OUT} + \frac{\Delta S}{\Lambda t}$ Q_A at start = 100 m³ s⁻¹; Q_A after one hour = 110 m³ s⁻¹ Average Q_{IN} during $\Delta t = 1$ hour equals 105 m³ s⁻¹ $Q_{\rm B}$ at start = 120 m³ s⁻¹; $Q_{\rm B}$ after one hour = $Q_{\rm B}$ m³ s⁻¹ Average Q_{OUT} during $\Delta t = 1$ hour equals $(120 + Q_{\text{B}}) / 2 \text{ m}^3 \text{ s}^{-1} = 60 + \frac{1}{2} Q_{\text{B}} \text{ m}^3 \text{ s}^{-1}$ Change in storage $\Delta S/\Delta t = -45000 \text{ m}^3 / 3600 \text{ s} = -12.5 \text{ m}^3 \text{ s}^{-1}$ $105 = 60 + \frac{1}{2}Q_{B} - 12.5$ $\frac{1}{2}Q_{B} = 57.5 \text{ m}^{3}\text{ s}^{-1}$

Answer: $Q_{\rm B} = 115 \,{\rm m}^3\,{\rm s}^{-1}$