Surface water hydraulics

Exercise 5.4.3

The discharge of a river at an upstream measuring station A equals $100 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. The discharge at a downstream measuring station B equals $120 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
In one hour, the storage in the river between these two stations reduces by $45000 \mathrm{~m}^{3}$. The discharge at the upstream station A after one hour is $110 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

Assuming a linear change of the discharge with time, determine the discharge in $\mathrm{m}^{3} \mathrm{~s}^{-1}$ at the downstream station B after one hour.

Surface water hydraulics

Answer 5.4.3

Set up a water balance for the river in-between A and B for the time interval $\Delta t=1$ hour: $\bar{Q}_{\text {IN }}=\bar{Q}_{\text {OUT }}+\frac{\Delta S}{\Delta t}$ Q_{A} at start $=100 \mathrm{~m}^{3} \mathrm{~s}^{-1} ; Q_{\mathrm{A}}$ after one hour $=110 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ Average Q_{IN} during $\Delta t=1$ hour equals $105 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Q_{B} at start $=120 \mathrm{~m}^{3} \mathrm{~s}^{-1} ; Q_{\mathrm{B}}$ after one hour $=Q_{\mathrm{B}} \mathrm{m}^{3} \mathrm{~s}^{-1}$

Average $Q_{\text {OUT }}$ during $\Delta t=1$ hour equals $\left(120+Q_{B}\right) / 2 \mathrm{~m}^{3} \mathrm{~s}^{-1}=60+1 / 2 Q_{\mathrm{B}} \mathrm{m}^{3} \mathrm{~s}^{-1}$
Change in storage $\Delta S / \Delta t=-45000 \mathrm{~m}^{3} / 3600 \mathrm{~s}=-12.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
$105=60+1 / 2 Q_{B}-12.5 \quad 1 / 2 Q_{B}=57.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
Answer: $Q_{B}=115 \mathrm{~m}^{3} \mathrm{~s}^{-1}$

