Prof. dr. G.R. (Gil) Cavalcanti

Hans Freudenthalgebouw
Budapestlaan 6
Kamer 607
3584 CD Utrecht

Prof. dr. G.R. (Gil) Cavalcanti

Hoogleraar
Fundamental Mathematics
030 253 1512
g.r.cavalcanti@uu.nl

You can also find all my research papers in Google Schoolar and most of them are also available from the ArXiv

Publicaties

2020

Wetenschappelijke publicaties

Cavalcanti, G. R., Klaasse, R. L., & Witte, A. (2020). Fibrations in semi-toric and generalized complex geometry. (pp. 1-41). arXiv. https://doi.org/10.48550/arXiv.2012.13282
https://dspace.library.uu.nl/bitstream/handle/1874/415140/2012.13282v2.pdf?sequence=1
Cavalcanti, G. R., Klaasse, R. L., & Witte, A. (2020). Self-crossing stable generalized complex structures. (pp. 1-42). arXiv. https://doi.org/10.48550/arXiv.2004.07559
Cavalcanti, G. R. (2020). Hodge theory of SKT manifolds. Advances in Mathematics, 374, [107270]. https://doi.org/10.1016/j.aim.2020.107270

2019

Wetenschappelijke publicaties

Bailey, M., Cavalcanti, G. R., & Durán, J. V. D. L. (2019). A neighbourhood theorem for submanifolds in generalized complex geometry. (pp. 1-35). arXiv. https://doi.org/10.48550/arXiv.1906.12069
Cavalcanti, G. R., & Klaasse, R. L. (2019). Fibrations and log-symplectic structures. Journal of Symplectic Geometry, 17(3), 603-638. https://doi.org/10.4310/JSG.2019.v17.n3.a1
Bailey, M., Cavalcanti, G. R., & Duran, J. V. D. L. (2019). Blow-ups in generalized complex geometry. Transactions of the American Mathematical Society, 371, 2109-2131. https://doi.org/10.1090/tran/7412

2018

Wetenschappelijke publicaties

Behrens, S., Cavalcanti, G. R., & Klaasse, R. L. (2018). Classification of boundary Lefschetz fibrations over the disc. In Geometry and Physics: A Festschrift in Honour of Nigel Hitchin (Vol. 2, pp. 399-418). Oxford University Press. https://doi.org/10.1093/oso/9780198802020.003.0015
Cavalcanti, G. R., & Klaasse, R. L. (2018). Fibrations and stable generalized complex structures. Proceedings of the London Mathematical Society, 117(6), 1242-1280. https://doi.org/10.1112/plms.12199
Cavalcanti, G. R., & Gualtieri, M. (2018). Stable generalized complex structures. Proceedings of the London Mathematical Society, 116(5), 1075-1111. https://doi.org/10.1112/plms.12093

2017

Wetenschappelijke publicaties

Bailey, M., Cavalcanti, GR. R., & Gualtieri, M. (2017). Type one generalized Calabi–Yaus. Journal of Geometry and Physics, 120, 89-95. https://doi.org/10.1016/j.geomphys.2017.03.012
Cavalcanti, G. R. (2017). Examples and counter-examples of log-symplectic manifolds. Journal of Topology, 10(1), 1-21. https://doi.org/10.1112/topo.12000

2015

Wetenschappelijke publicaties

Bursztyn, H., Gualtieri, M., & Cavalcanti, G. R. (2015). Generalized Kähler Geometry of Instanton Moduli Spaces. Communications in Mathematical Physics, 333(2), 831-860. https://doi.org/10.1007/s00220-014-2170-2

2014

Wetenschappelijke publicaties

Cavalcanti, G. (2014). Goto’s generalized Kähler stability theorem. Indagationes Mathematicae, 25(5), 948-956. https://doi.org/10.1016/j.indag.2014.07.006
https://dspace.library.uu.nl/bitstream/handle/1874/306721/gkdeformations_poisson.pdf?sequence=1

2011

Wetenschappelijke publicaties

Cavalcanti, G. R., & Gualtieri, M. (2011). Blowing up generalized Kähler 4-manifolds. Bulletin of the Brazilian Mathematical Society, 42(4), 537-557. https://doi.org/10.1007/s00574-011-0028-1

2010

Wetenschappelijke publicaties

Cavalcanti, G. R., & Gualtieri, M. (2010). Generalized complex geometry and T-duality. In P. R. Kotiuga (Ed.), A celebration of the mathematical legacy of Raoul Bott (pp. 341-365). American Mathematical Society.

2009

Wetenschappelijke publicaties

Cavalcanti, G. R. (2009). Computations of generalized Dolbeault cohomology. In O. Garay, M. Fernández, L. C. Andrés, & L. Ugarte (Eds.), AIP Conference Proceedings (Vol. 1093, pp. 57-69). (AIP Conference Proceedings; Vol. 1093). https://doi.org/10.1063/1.3089208
Cavalcanti, G. R., & Gualtieri, M. (2009). Blow-up of generalized complex 4-manifolds. Journal of Topology, 2(4), 840-864.

2008

Wetenschappelijke publicaties

Cavalcanti, G. R., Fernández, M., & Muñoz, V. (2008). On non-formality of a simply-connected symplectic 8-manifold. In Geometry and Physics - XVI International Fall Workshop (pp. 82-92). (AIP Conference Proceedings; Vol. 1023). https://doi.org/10.1063/1.2958181
Cavalcanti, G. R., Fernandez, M., & Munoz, V. (2008). Symplectic resolutions, Lefschetz property and formality. Advances in Mathematics, 218(2), 576-599.
Bursztyn, H., Cavalcanti, G. R., & Gualtieri, M. (2008). Generalized Kähler and hyper Kähler quotients. In G. Dito, J. H. Lu, Y. Maeda, & A. Weinstein (Eds.), Poisson Geometry in mathematics and physics (pp. 61-77). (Contemporary Mathematics; No. 450). American Mathematical Society.

2007

Wetenschappelijke publicaties

Cavalcanti, G. R. (2007). Formality in generalized Kähler geometry. Topology and its Applications, 154(6), 1119-1125. https://doi.org/10.1016/j.topol.2006.11.002
Cavalcanti, G. R. (2007). The lefschetz property, formality and blowing up in symplectic geometry. Transactions of the American Mathematical Society, 359(1), 333-348. https://doi.org/10.1090/S0002-9947-06-04058-X
Cavalcanti, G. R., & Gualtieri, M. (2007). A surgery for generalized complex structures on 4-manifolds. Journal of Differential Geometry, 76(1), 35-43. https://doi.org/10.4310/jdg/1180135665
Bursztyn, H., Cavalcanti, G. R., & Gualtieri, M. (2007). Reduction of Courant algebroids and generalized complex structures. Advances in Mathematics, 211(2), 726-765.
Cavalcanti, G. R., Fernandez, M., & Munoz, V. (2007). On nonformality of a simply-connected symplectic 8-manifold. In R. L. Fernandes, & R. Picken (Eds.), Geometry and Physics: XVI International Fall Workshop (pp. 82-92). Springer.

2006

Wetenschappelijke publicaties

Cavalcanti, G. R. (2006). Formality of k-connected spaces in 4k + 3 and 4k + 4 dimensions. Mathematical Proceedings of the Cambridge Philosophical Society, 141(1), 101-112. https://doi.org/10.1017/S0305004106009340
Cavalcanti, G. R. (2006). The decomposition of forms and cohomology of generalized complex manifolds. Journal of Geometry and Physics, 57(1), 121-132. https://doi.org/10.1016/j.geomphys.2006.02.006