Tina Vermonden

Biomaterials for Drug Delivery and Regenerative Medicine

Prof. dr. ir. Tina Vermonden

Biomaterials science is a multidisciplinary field of research, which encompasses elements of medicine, biology, chemistry, and materials science. In the Department of Pharmaceutics, we focus mainly on the development of polymeric materials that are suitable as either protein or drug delivery matrices or as scaffolds for regenerative medicine. Important parameters are biocompatibility, degradability and stability in time under physiological conditions.

Hydrogels for drug delivery and regenerative medicine

Hydrogels are three-dimensional physically and/or chemically cross linked insoluble networks of hydrophilic polymers, which are able to absorb large amounts of water. This high water content makes hydrogels suitable materials for incorporating and protecting cells. Injectable hydrogels can be prepared by using thermosensitive self-assembling polymers that yield liquid aqueous solutions at room temperature and solidify at body temperature. Given the mild and spontaneous crosslinking mechanism, these gels are very useful for encapsulation of living cells for regenerative medicine applications. To stabilize these physically crosslinked gels, we developed technology to covalently crosslink the different hydrogel building blocks using ‘biofriendly’ chemical methods such as native chemical ligation.

    Functional materials for high resolution 3D bioprinting in kidney engineering (3D-Shrink), (NWO VICI)

    In the 3D-Shrink program, we aim to develop new functional biomaterials for high resolution 3D bioprinting. These novel biomaterials should enable fabrication of living tubular structures in which cells can be easily deposited in specified locations that can be subsequently shrunk to biologically relevant sizes with diameters in the range of 10-50 μm without compromising viability and functionality of the tissue forming cells. Finally, we will test the applicability of 3D-Shrink for a highly complex tissue: the kidney.

    • Dmitrii Iudin, PhD-student
    • Greta di Marco, PhD-student
    • Thijmen Sijnesael, technician
    • Myriam Neumann, postdoc

    Hydrogels to pattern tubulogenesis of kidney tubuloids

    Within the Materials Driven Regeneration (Gravitation Programme) we develop patterned biomaterials with light to control tubulogenesis for kidney engineering. 

    • Jet Hartman, PhD student in collaboration with prof. Marianne Verhaar (UMCU) and dr. Silvia Mihaila (pharmacology, UU). 

    Injectable Hydrogels for Ocular Drug Delivery

    • Dr. Reece Lewis

    Dynamic-covalent crosslinked hydrogels for cartilage engineering

    Within the LS-Care program (LS-CarE), we develop a cartilage implant with suitable mechanical properties, by encapsulating spheroids of Articular Cartilage Progenitor Cells (ACPCs) into a printable hydrogels.

    • Sanne van der Looij, PhD student

    3D-Printing of Pharmaceuticals

    This project focusses on the development of printed formulations of drugs for personalized medicine. 

    • Levent Kocabas, PhD-student

     

    List of recent key publications

    1. Martina Viola, Marta G. Valverde, Paulina Nuñez Bernal, Jacobus P. van Trijp, Jaimie Hak, Greta Di Marco, Myriam Neumann, Carl. C.L. Schuurmans, Cornelus F. van Nostrum, Rosalinde Masereeuw, Silvia M. Mihaila, Jos Malda, Riccardo Levato,and Tina Vermonden. Thermal Shrinking of Biopolymeric Hydrogels for High Resolution 3D-Printing of Kidney Tubules.  Advanced Functional Materials 2024, 2406098 DOI: 10.1002/adfm.202406098 (open access) 

    2. Myriam NeumannGreta di Marco, Dmitrii Iudin, Martina Viola, Cornelus F. van Nostrum, Bas G. P. van Ravensteijn, Tina Vermonden. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023, 56, 8377-8392. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow | Macromolecules (acs.org) open access. 
    3. Erik R Hebels, Stefanie Dietl, Matt Timmers, Jaimie Hak, Antionette van den Dikkenberg, Cristianne J F Rijcken, Wim E Hennink, Rob M J Liskamp, Tina Vermonden. Versatile Click Linker Enabling Native Peptide Release from Nanocarriers upon Redox Trigger. Bioconjugate Chemistry 2023, 34, 2375-2386. 10.1021/acs.bioconjchem.3c00484 open access

    4. Marko Mihajlovic, M. Rikkers, Milos Mihajlovic, M. Viola, G. Schuiringa, B.C. Ilochonwu, R. Masereeuw, L. Vonk, J. Malda, K. Ito, T. Vermonden. Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules (2022), 3, 1350-1365.  https://pubs.acs.org/doi/full/10.1021/acs.biomac.1c01583 (open access). 

    5. S.M. van de Looij, E.R. Hebels, M. Viola, M. Hembury, S. Oliveira, T. Vermonden. Gold nanoclusters: imaging, therapy, and theranostic roles in biomedical applications. Bioconjugate Chemistry (2022), 33, 4-23. https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.1c00475 (open access).

    6. J Gong, CCL Schuurmans, AM van Genderen, W Li, X Cao, F Cheng, J Jialu He, A López, V Huerta, J Manríquez, R Li, H. Li, C Delavaux, S Sebastian, P Capendale, H Wang, J Xie, M Yu, R Masereeuw, T Vermonden*, YS Zhang* Complexation-Induced Resolution Enhancement of 3D-Printed Hydrogel Constructs. Nature Communications, (2020), 11, 1267. https://www.nature.com/articles/s41467-020-14997-4