Publications

  • Our latest publications

    • In this work we present a new encapsulation method that allows for the controlled release of drugs under simulated small intestinal conditions. This method consists of encapsulation within microbubbles and is characterized by an unprecedented combination of excellent barrier properties and fast and complete triggered release. The method was applied to produce a drink containing taste-masked acetaminophen as a model drug. Micronized acetaminophen (paracetamol) was dispersed in cyclohexane...
    • Nucleic acid therapeutics are used for silencing, expressing or editing genes in vivo. However, their systemic stability and targeted delivery to bone marrow resident cells remains a challenge. In this study we present a nanotechnology platform based on natural lipoproteins, designed for delivering small interfering RNA (siRNA), antisense oligonucleotides and messenger RNA to myeloid cells and haematopoietic stem and progenitor cells in the bone marrow. We developed a prototype apolipoprotein...
    • Ficus Carica extract (FC) is a natural herb that has received a lot of interest in cancer treatment due to its potential anticancer activities against various malignancies. However, due to FC's low bioavailability and low solubility, its clinical use as an anti-cancer medicine is constrained. The current study aimed to prepare FC-loaded PLGA nanoparticles (NPs) for cancer treatment. Prepared NPs were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential, and...
    • CONCLUSIONS: The results show that this hydrogel system loaded with both dexamethasone polymeric micelles and dexamethasone phosphate loaded liposomes has potential as a local delivery platform for the sequential release of dexamethasone and dexamethasone phosphate, for the intracranial treatment of glioblastoma associated edema.
    • Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state,...
    • Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of...
    • Intercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, EV functionality likely differs between subpopulations with varying surface compositions. However, it has been technically challenging to examine such...
    • No abstract
    • Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during...
    • Active Pharmaceutical Ingredients (APIs) may benefit from a carrier to improve their pharmacokinetic and pharmacodynamic properties. Core-crosslinked polymeric micelles (CCPMs) are carriers for hydrophobic small molecule APIs. In CCPMs, APIs are generally covalently coupled to the core of the micelles by use of a linker, which can be tailored to adjust the release rate of the API. Acid triggered release is promising because of local acidic environment in the tissue of interest, and expected...
    RSS All publications on PubMed