PhD position: Network science (1,0 fte)

Hours per week: 
36 to 40
Faculty: 
Faculty of Social and Behavioural Sciences
Department: 
Methode en Statistiek
Application deadline: 

Job description

Are you interested in developing network science methods and applying them to real-world data? Apply for a PhD position at the Department of Methodology and Statistics of Utrecht University! You will be working on questions such as: how can networks help us understand and predict social systems? How to predict unobserved connections between individuals? What information about individuals is encoded in the network structure?
Social, biological, and economical systems can be represented using networks, where nodes (e.g., people, genes, companies) are connected through relationships (e.g., friendships, regulations, financial transfers). This representation allows us to discover patterns that are unobservable when nodes are studied independently. In the real world, networks are rarely complete, they have missing information on nodes, edges, or metadata. In this PhD project, you will develop methods to understand how much information about node attributes is encoded in the topology of the networks, and how much information about the network topology is encoded in the node attributes.
 
The corresponding goals of this PhD project are:

  1. to consolidate the existing knowledge about the relationship between network topology vs node attributes;
  2. to develop algorithms that can recover attributes using topology, and topology using attributes;
  3. to understand (and improve) the fairness of these algorithms (understanding and preventing bias), and;
  4. to apply these methods to real-world phenomena.

 
The PhD student will develop their own project ideas in coordination with the supervisors and potential partner organizations such as the Anti Money Laundering Centre or Statistics Netherlands. Some examples are:

  • Nodes in networks generally have attributes (e.g., type of gene, firm sector). The information of class attributes is partly encoded in the ego-network of the node, and several methods have been proposed to predict the class label in the network based on information from a subset of the nodes. A potential project can explore the extent to which class labels can be inferred solely from the network structure, or by the combination of the network structure and node attributes. A potential application of this project is economic crime detection, where the label of a node (criminal/not criminal) is inferred from the neighborhood of the node.
  • The increase in data collection has allowed government and private companies to gather large databases on individuals and their affiliations. A potential project can explore how information on nodes' attributes is embedded in their affiliations, and evaluate the privacy and fairness implications of such algorithms.
  • Recent advances in technology and databases have allowed us to track node features (e.g. gene expression, or firm financial accounts) over time. The time series can then be used to reconstruct the (hidden) network topology, allowing us to discover new edges between the nodes representing regulatory interactions. However, the efficiency of the algorithms can be impaired when the time series are correlated due to missing information. A potential solution is to integrate community detection into network reconstruction to account for unobserved factors creating the correlation.

 Your work will also include 10-20% teaching tasks. You will be well guided and supported by your three daily supervisors, Dr. Javier Garcia-Bernardo and Dr. Mahdi Shafiee Kamalabad from Methodology & Statistics, and Dr. Peter Gerbrands from Economics, as well as one senior supervisor (Prof. Dr. Daniel Oberski from M&S).
 
PhD position
The PhD position is available for 4-4.5  years (depending on 10 or 20% teaching tasks);, with a starting date of September 2022 (negotiable). The PhD student will be appointed to the Department of Methodology and Statistics at Utrecht University, the Netherlands.
 
Responsibilities

  • conducting the research (e.g., literature review, developing network algorithms, analyzing data);
  • writing international scientific publications and a dissertation that combines the theoretical and statistical aspects of the project;
  • giving presentations at (inter)national scientific conferences;
  • active participation in the research team of the UU Department of Methodology and Statistics (M&S) and the Department of Interdisciplinary Social Sciences (ISW);
  • knowledge utilization: collaborating and sharing findings with practitioners (e.g., professional publications and presentations for partner organizations);
  • following courses/training (e.g., statistical and network science courses).

Qualifications

We are looking for an enthusiastic colleague who meets the requirements below:

  • You have completed (or almost completed) a Master’s degree in a domain relevant for the project, for instance methodology and statistics, computer science, complex systems, data science, mathematics, or quantitative social science.
  • You have substantial programming skills.
  • You have a passion for interdisciplinary research.
  • You are a motivated and collaborative team member, communicative and open to collaboration across scientific fields.
  • You are willing to contribute to Open Science.
  • You can work independently and have excellent verbal and written communication skills in English.

Offer

You will work in a collaborative, social, and dedicated team. We will guide you in your research and teaching tasks, which will help you develop your academic career.
Salary will range from €2541,- in the first year to €3247,- in the fourth year in the P-scale (Collective Labour Agreement Dutch Universities) per month based on full-time employment. The salary is supplemented with an annual holiday pay of 8%, and an end-of-year bonus of 8.3% per year. We also offer a pension scheme.
We encourage you to grow professionally and we support a healthy work-life balance. That’s why we offer employee benefits such as professional development, leave arrangements, partially paid parental leave and sports. We also give you the opportunity to expand your terms of employment via the Employment Conditions Selection Model. 

And that's not all. We are happy with you as a new employee and are happy to give you a warm welcome. We host a good introduction process for our new colleagues where we will introduce you and show you around our faculty and university. 

For more information, please visit Working at Utrecht University.

About the organisation

A better future for everyone. This ambition motivates our scientists in executing their leading research and inspiring teaching. At Utrecht University, the various disciplines collaborate intensively on major societal themes. Our focus is on Dynamics of Youth, Institutions for Open Societies, Life Sciences, and Sustainability.

The Faculty of Social and Behavioural Sciences is one of the leading faculties in Europe for research and academic teaching in cultural anthropology, educational sciences, interdisciplinary social science, pedagogical sciences, psychology and sociology. We are a faculty at the heart of society and one which cooperates closely with others. Our almost 6,000 students are enrolled in a broad range of undergraduate and graduate programs. We have approximately 900 faculty and staff members, who all work closely together to educate and train young talent and to research and find solutions to scientific and societal issues. Our focus is on Dynamics of Youth and Institutions for Open Societies.

The Faculty of Social and Behavioural Sciences aspires to have a diverse body of staff and students and strives to create and sustain a safe and inclusive environment for everyone, in line with Utrecht University’s vision.

Additional information

For additional information, please contact Javier Garcia Bernardo by email.

Apply

Utrecht University aims to make a visible contribution to an inclusive university community, a just society, and equal rights and opportunities for all. Everyone deserves to feel at home at our university, which is why we welcome employees from a wide variety of backgrounds and perspectives.
To apply, please send your curriculum vitae, including a letter of motivation, via the ‘apply’ button.

The interviews will be held in the second half of July.

The application deadline is 15 July 2022.