17 January 2018 from 14:30 to 15:30

PhD Defence Bram Bet

Swimming with Stokes and Surfing with Brinkman

In his dissertation, Bram Bet investigates the effect of shape on the motion of microscopic particles that perform a swimming motion or ‘surf’, driven by an external flow, through microscopic channels. These motions take place in a fluid, and fluid motion is in general described by the Navier-Stokes equations. However, at small scales (the particles that we investigate are of micrometer dimensional), the hydrodynamic regime is characterized by a low Reynolds number, allowing to simplify the governing equations to the Stokes equations. From the linearity of the Stokes equations, a linear relation can be derived between the forces on, and the velocity of, a microscopic particle. The proportionality factor is in general a tensor, the resistance tensor, which depends on the geometry of the particle, a result that is central in this thesis.

In Chapter 2, Bet gives an extensive background of the hydrodynamic theory that is used in this thesis. In Chapter 3, he explains the development of a numerical bead-shell model to calculate the hydrodynamic friction on colloidal particles, which he generalized to systems of (hydrodynamically interacting) particles. This extension is applied in Chapter 4, where he investigates the intricate dependence of the swimming efficiency on the shape of a microswimmer, both for simplified models (three-body swimmers) and biologically inspired swimmers (modelled after E. coli bacteria). In Chapter 5, he describes the collaboratation with an experimental group from the Radboud University (Nijmegen) to investigate the motion of chemically self-propelled bead chains, where the motion of these chains is influenced by both the chain shape as well as the internal chain structure.

In the second part of his thesis, he focuses on the shape dependence of confined particle motion in Hele-Shaw channels. The quasi-two-dimensional  fluid flow that drives this motion is described by the Brinkman equation, which is derived from the Stokes equation in the microchannel geometry. In Chapter 6, he sets up the theoretical and numerical framework to calculate these trajectories, and compares the results directly with experimental results obtained by experimental collaborators from the TU Delft. In Chapter 7, he solves the particle equations of motion analytically, and classifies the trajectories as far as possible on the basis of only a few geometry-dependent time scales. Finally, in Chapter 8, he generalizes this framework to collections of particles in Hele-Shaw channels, and investigates the pairwise and many body-interaction in the channel, as well as the influence of particle shape on these interactions.

Start date and time
17 January 2018 14:30
End date and time
17 January 2018 15:30
PhD candidate
B.P. (Bram) Bet
Getting in Shape: Swimming with Stokes and Surfing with Brinkman
PhD supervisor(s)
prof.dr. R.H.H.G. van Roij