29 May 2019 from 15:00 to 17:00

Debye Visiting Chair Lecture Series

Debye Visiting Chair Lecture 3: Say ‘no’ to biofouling: Slippery coatings that resist adhesion of biological matter

Debye Institute for Nanomaterials Science, Debye Visiting Chair, Joanna Aizenberg
Prof. Joanna Aizenberg

This is the last lecture in a series of three lectures by Debye Visiting Chair Joanna Aizenberg from Harvard University.


Living organisms and biological substances are among the most difficult and persistent sources of surface fouling, particularly in medical and marine settings. The ability of organisms to adapt, move, cooperate, evolve on short timescales, and modify surfaces by secreting proteins and other molecules enables them to colonize even state-of-the-art antifouling coatings, and small surface defects can trigger protein aggregation and blood clotting. Attempts to combat these issues are further hindered by conflicting requirements at different size scales and across different species. Our recently developed concept of Slippery, Liquid-Infused Porous Surfaces (SLIPS) provides a defect-free, dynamic liquid interface that overcomes many of these problems at once. A single surface is able to prevent adhesion of a broad range of genetically diverse bacteria, including many pathogenic species that underlie widespread hospital-acquired infections, as well as marine algae. The same approach resists adhesion of proteins, cells, and blood, preventing clogging and thrombus formation inside medical tubing and catheters. At a larger scale, the slippery interface repels insects, barnacles and mussels, which slide off and actively avoid the coated surface. We are currently developing this strategy to solve longstanding fouling issues in a wide range of medical, marine, and other settings.

Start date and time
29 May 2019 15:00
End date and time
29 May 2019 17:00
Entrance fee
Free of charge