Examples of exercises you should be able to solve

a. Ideal gas law

Consider a piston chamber which is undergoing an expansion at constant temperature. The fluid within the chamber is helium, which behaves as ideal gas, and has molar mass of $4 \mathrm{~kg} / \mathrm{kmol}$ and $\mathrm{R}=$ $2.07 \mathrm{~kJ} / \mathrm{kgK}$. The temperature is $100^{\circ} \mathrm{C}$, the initial pressure 30 bar, and the final pressure 1 bar. Calculate:
a) The specific expansion work $[\mathrm{kJ} / \mathrm{kg}]$ and the specific heat that has to be transferred in order to have an isothermal process. Is the heat supplied or released?
b) The change of entropy in the piston chamber.

The cylinder of gas shown in the figure has a piston that can float up and down. You can:
lock or unlock the piston in place with a pin, add or remove masses from the piston, or place the entire cylinder in either a hot or a cold liquid.
a) Can you decrease the volume without changing the pressure? If so, how?
b) Can you decrease the volume without changing
 the temperature? If so, how?
c) Can you decrease the pressure without changing the temperature? If so, how?
d) Can you decrease the pressure without changing the volume? If so, how?
b. Mass and Energy balances

Water ($200 \mathrm{kPa}, 10^{\circ} \mathrm{C}$) enters a mixing chamber at a mass flow rate of $150 \mathrm{~kg} /$ minute together with steam ($200 \mathrm{kPa}, 150^{\circ} \mathrm{C}$). The mixture leaves the mixing chamber at 200 kPa and $70{ }^{\circ} \mathrm{C}$. The mixing chamber has a heat loss of $190 \mathrm{~kJ} /$ minute to the environment which has a temperature of $20^{\circ} \mathrm{C}$. The following properties are given:

	$h(\mathrm{~kJ} / \mathrm{kg})$	$s(\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K}))$
Water	42.022	0.1511
Steam	2769.1	7.2810
Mixture	293.07	0.9551

Determine:

a. The mass flow rate of the input steam in $\mathrm{kg} /$ minute.
b. The exergy loss of the mixing chamber in $\mathrm{kJ} /$ minute (if you could not find a value for the mass flow rate of the steam, use $15 \mathrm{~kg} /$ minute).

c. Entropy balance

In a stationary steam turbine, steam expands adiabatically from $500^{\circ} \mathrm{C}$ and 10 bar to a final pressure of 2 bar. Assume that the steam can be treated as an ideal gas with a constant specific heat $c_{p}=1.846$ $\mathrm{kJ} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1}$. The gas constant of steam is $0.4615 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$.
a. Draw in an h-s diagram a sketch of the adiabatic expansion of steam, with two isobars at 2 and 10 bar and an isentropic turbine efficiency of 90% and 100%, respectively.
b. Calculate the final temperature at an isentropic turbine efficiency of 100%.
c. Calculate the final temperature at an isentropic turbine efficiency of 90%.
d. Calculate the irreversible entropy production in $\mathrm{kJ}_{\mathrm{Jg}} \mathrm{kg}^{-1} \cdot \mathrm{~K}^{-1}$ at an isentropic turbine efficiency of 90%.

