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Abstract  

This paper discusses the implications of mean reversion in stock prices for 

longterm investors such as pension funds. We start with a general definition of a 

meanreverting price process and explain how mean reversion in stock prices is 

related to mean reversion in stock returns. Subsequently, we show that mean 

reversion makes stocks less risky for investors with long investment horizons. Next, 

we consider a mean-variance efficient investor and show how mean reversion in 

stock prices affects such an investor’s optimal portfolio weights. Finally, we discuss 

the implications of our findings for the investment decisions of long-term investors. 
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1 Introduction

A widely held belief in economics is that what goes up, must come down – eventually

(De Bondt 1991). In terms of stock prices this belief translates into the concept of (long-

run) mean reversion, which states that a decline in stock prices is most likely to be fol-

lowed by an upward price movement, and vice versa.

The presence or absence of mean reversion has important economic implications. Be-

cause mean reversion in stock prices induces negative autocorrelation in stock returns (a

result that will be derived in Section 4), the variance of stock returns is less than pro-

portional to the investment horizon. The relatively low long-term volatility increases the

attractiveness of stocks as a long-term investment (which we will illustrate in Section 5).

Furthermore, if stock prices are mean-reverting in the long run, low stock prices are fol-

lowed by relatively high expected future returns, which could encourage long-term in-

vestors such as pension funds to invest in equity after a stock market downturn (Vlaar

2005). Indeed, some studies propose trading strategies based on mean reversion in stock

prices to generate excess returns (Balvers et al. 2000, Gropp 2004).

Several theories have been put forward to explain mean reversion in stock prices.

These explanations hinge on the tenet of market efficiency. The efficient market hypoth-

esis states that all available information is reflected in the value of a stock (Fama 1991).

Mean reversion in stock prices may reflect market inefficiency. According to

Poterba & Summers (1988), mean reversion may be caused by the irrational behavior

of noise traders, resulting in stock prices that take wide swings away from their fun-

damental value. Irrational pricing behavior, in turn, can be caused by fads (McQueen

1992, Summers 1986), overreaction to financial news (De Bondt & Thaler 1985, 1987)

or investor’s opportunism (Poterba & Summers 1988). However, stock price mean rever-

sion does not necessarily contradict market efficiency (Fama & French 1988a). Assum-

ing that all available information is incorporated into stock prices, the value of a stock
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is determined by the expected returns per share. Consequently, mean reversion is ob-

served when expected returns are mean-reverting (Summers 1986). In an empirical study,

Conrad & Kaul (1988) find that the time-varying process of a stock’s expected return re-

verts back to its mean over time. Fluctuations in expected returns may be explained from

uncertainty about the survival of the economy, caused by e.g. a world war or a depression

(Kim et al. 1991). Alternatively, they can be caused by rational speculative bubbles or un-

certain business prospects (McQueen 1992). Alternative explanations for mean reversion

in stock prices have been provided by, among others, Chan (1988), Ball & Kothari (1980),

Zarowin (1990), Conrad & Kaul (1993), and Ball et al. (1995).

After the seminal studies by Summers (1986), Poterba & Summers (1988), and

Fama & French (1988a) an ongoing debate has emerged in the literature as to whether

stock prices and stock returns are mean-reverting or not. The substantial amount of recent

publications in this field (Ang & Bekaert 2007, Goyal & Welch 2008, Boudoukh et al.

2008, Pastor & Stambaugh 2009, 2011, Spierdijk et al. 2012) illustrates that the mean-

reverting behavior of stocks is still an important issue. The cause of the debate lies in the

fact that testing for mean reversion is inherently difficult due to a lack of historical data

on stock prices. Accurate estimation of the degree of long-run mean reversion requires

very long stock price series, which are not available. For example, if stock prices were to

revert back to their fundamental value every twenty years, one would need at least 1,000

to 2,000 yearly observations to obtain reliable estimations. Moreover, the likely structural

breaks during long sample periods further complicate statistical analysis of mean rever-

sion (Spierdijk et al. 2012). These methodological difficulties explain why mean reversion

is a controversial issue in the economic literature.

The goal of this paper is not to provide a final answer to the question whether stock

prices and returns are mean-reverting or not. Instead, we aim at making investors aware of

the economic consequences of mean-reverting behavior of stocks. The remainder of this
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paper therefore focuses on describing relevant properties of mean-reverting stock prices

and the resulting implications for long-term investors such as pension funds.

The set-up of this paper is as follows. Section 2 provides a formal definition of mean

reversion in stock prices, based on the seminal work of Summers (1986). A detailed

overview of the mean reversion literature appears in Section 3. Section 4 calculates the

volatility and autocovariances function of single-period and multi-period returns in the

presence of mean reversion. Because the variance of stock returns is related to the as-

sociated investment risk, single-period and multi-period variances and autocovariances

contain crucial information for investors. This section also explains how mean reversion

in stock prices is related to mean reversion in stock returns. Furthermore, we show how

the concept of mean reversion is related to the concept of covariance-stationarity. In Sec-

tion 5 we consider a mean-variance efficient investor with an investment horizon of up to

20 years and investigate the implications of mean reversion in stock prices for optimal as-

set allocation and the profitability of trading strategies. Finally, we conclude in Section 6.

2 Definition of mean reversion stock prices

This section describes the stock price model of Summers (1986), which allows for mean

reversion in stock prices; see also Poterba & Summers (1988) and Fama & French (1988a).

This model provides a convenient and discriptive framework for the mean-reverting be-

havior of stock prices, as we will explain in detail later in this section.

2.1 Permanent and transitory price components

Summers (1986) defines a mean-reverting log price process pt as the sum of a permanent

and a transitory component:

pt D p�
t C zt : (1)
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The permanent component p�
t models the intrinsic value of a stock, whereas zt represents

a slowly decaying covariance-stationary price component.1 It is assumed that p�
s and zt

are uncorrelated for all s and t . As an example, Summers (1986) models zt according to

a first-order autoregressive model2,

zt D �C �zt�1 C �t ; (2)

with � the intercept, 0 < � < 1 the autoregressive (persistence) parameter and �t white

noise with variance �2. A shock to the permanent component p�
t at time t is immediately

incorporated into the future stock price. In contrast, a price shock through the transitory

component zt will slowly decay towards zero over time. Fama & French (1988a) specify

the underlying intrinsic value process p�
t , satisfying

p�
t D p�

t�1 C ıt ; (3)

where ıt is white noise with variance �2. It is assumed that �s and ıt are independent

for all s and t . The transitory price component induces mean reversion in the (log) stock

price. To make the stock price’s mean-reverting behavior more directly observable, one

may rewrite Equation (1) as

pt D Q�C Qp�
t C �.zt�1 � . Q�C Qp�

t //C �t ; (4)

which tells us that the price process pt is mean-reverting around the value Q�C Qp�
t , where

�=.1��/ equals the long-run mean of the transitory price component and Qp�
t D p�

t =.1�

�/.

A convenient way to characterize the speed of mean reversion is the half-life. The

1A time series zt is covariance-stationary if its mean, variance and autocovariance function are finite
and constant over time; i.e. if IE.zt / D � < 1, Var .zt / D �2 < 1 and Cov .rt ; rtCk/ D 
k .

2An AR(1) process is covariance-stationary if and only if j�j < 1.
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half-life associated with the price process in Equation (1) is defined as the number of

periods it takes zt to absorb half of a unit shock. The first-order autoregressive structure

of zt ensures that the half-life has a closed-form solution; it equals h D log.0:5/=log.�/

(Kim et al. 2007), which is properly defined for 0 < � < 1. For example, with � D 0:8

the half-life equals 3.1 periods.

The parameter � plays an important role as it determines the speed of mean reversion,

but the variances �2 (corresponding to the permanent price component) and �2 (transitory

price component) are crucial as well. If the variance of the permanent price component

is much larger (smaller) than the variance of the transitory component, the latter plays a

less (more) important role, resulting in weak (strong) mean reversion. We will make these

relations more precise in Section 4.

2.2 Generalization

Although the mean-reverting price process defined by Equations (1), (2), and (3) may

seem restrictive, it is more general than is apparent at first sight. This generality explains

the model’s suitability as a tool for describing the mean-reverting behavior of stock prices.

To allow the price process to be consistent with the efficient market hypothesis, the

random walk should be nested in the specification for the stock price. This explains why

the permanent price component in Equation (1) is chosen to be a random walk. The price

process in Equation (1) follows a random walk for � D 1, but deviates from the efficient

market hypothesis for 0 < � < 1. Hence, only the choice for a first-order autoregressive

(AR) process could possibly be restrictive. A seemingly more general specification de-

fines zt in Equation (1) as a covariance-stationary, mean-reverting process with mean 0.

But every covariance-stationary series can be written as an moving average (MA) process

of infinite order – a result known as Wold’s decomposition theorem. If the MA process is

invertible, it can be written as an AR process of infinite order, which brings us one step
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closer to our AR(1) process. The only restrictive aspect of the first-order AR process is its

order.

We may therefore want to consider a generalization of the previously considered

mean-reverting price process by relaxing the assumption of a first-order AR process for

the transitory price component. Instead of an AR(1) process we could assume an AR(p)

process as approximation of an AR process of infinite order, for any p D 1; 2; : : :.

With zt equal to a higher-order autoregressive model, the half-life is more difficult to

calculate. It can be obtained from the impulse response function corresponding to a unit

shock in zt . If ˛i represents the impulse response of ztCi to a unit shock in zt at time t (i D

1; 2; : : :), then the half-life h is calculated as the largest value j which satisfies ˛j�1 � 0:5

and ˛j < 0:5. When j lies between two consecutive integer values, linear interpolation

is used to determine the value of h. Notice that the impulse responses coincide with the

coefficients of the infinite-order MA representation of the AR model.

The ability of the stock price model of Summers (1986) to allow for mean reversion in

stock prices, in combination with the simplicity of the specification based on a first-order

autoregressive transitory price component (particularly the straightforward expression for

the half-life), explains why most studies confine the analysis of the transitory price process

to a first-order autoregressive model. We will elucidate the statistical properties of the

mean reversion model in Section 4, but first we will review the literature.

3 Literature

Since the seminal studies by Summers (1986), Poterba & Summers (1988), and

Fama & French (1988a) an ongoing debate has emerged in the literature as to whether

stock prices are mean-reverting or not. Testing for mean reversion is inherently difficult

because of the limited supply of historical data on stock prices. Accurate estimation of the

degree of long-run mean reversion requires very long data series, which are not available.
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It is possible to make use of monthly overlapping returns to increase the number of obser-

vations, but this leads to serious statistical problems (as we will explain in Section 3.1).

Moreover, structural breaks in the behavior of stock prices are likely to occur during long

sample periods, complicating the statistical analysis of mean reversion (Spierdijk et al.

2012). These issues explain why, even after twenty years of mean reversion research, it is

still difficult quantify the degree of mean reversion in stock prices.

Two different methods have been used in the literature to test for mean reversion. The

first approach tests for mean reversion in a way that does not require estimation of the

fundamental value process p�
t in Equation (1). This method is known as the approach of

absolute mean reversion. The second method proceeds in a different way and starts with

the estimation of the fundamental value process p�
t . This method is referred to as relative

mean reversion, because it has stock prices reverting relative to a specified mean value.

We will explain both methods in more detail in this section. We will also review some

recent studies analyzing mean reversion in stock returns.

3.1 Absolute mean reversion

Fama & French (1988a) derive a regression model to test whether the autocorrelation pat-

tern in stock returns is consistent with the model defined by Equations (1), (2) and (3).

For values of � close to unity, the negative autocorrelation in stock returns is stronger for

long-horizon than for short-horizon returns. Fama & French (1988a) therefore examine

several investment horizons between one and ten years. This approach establishes sig-

nificant mean reversion, explaining 25% – 40% of the variation in the 3 – 5 year stock

returns.

Poterba & Summers (1988) use a specific property of the random walk to test for mean

reversion. Mean reversion of stock prices implies that the variance of stock returns grows

less than proportionally with time. Poterba & Summers (1988) apply the variance-ratio
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test of Cochrane (1988) to detect this implication of mean reversion. The m-year variance

ratio is defined as the ratio of the m-year return variance to the one-year return variance,

divided by m. When this ratio is equal to one, the random walk hypothesis cannot be

rejected. Poterba & Summers (1988) find mean reversion over long investment horizons

in the United States. Similar results have been established for several developed countries.

The lack of significance in their results is attributed to the absence of more powerful tests

to reject the null hypothesis.

Both Fama & French (1988a) and Poterba & Summers (1988) analyze the period from

1926 to 1985 and work with yearly overlapping stock returns to increase the number of ob-

servations. The issue of dependence, which is inherent in the use of overlapping observa-

tions, is resolved by applying the method of Hansen & Hodrick (1980). Richardson & Smith

(1991) criticize this approach and address the problem of small-sample bias. They show

that the evidence supporting long-term mean reversion disappears if they remove the

small-sample bias. Moreover, Richardson & Stock (1990) argue that the use of a larger

overlapping interval at longer investment horizons increases the power of the statistical

tests used to test the random walk hypothesis. Their more powerful statistical test does

not result in a rejection of the random walk hypothesis. Jegadeesh (1991) raises the issue

of seasonality caused by the use use of monthly overlapping stock returns.

Apart from these latter issues, the approach of Fama & French (1988a) has come in for

other types of criticism as well. McQueen (1992) addresses the issue of heteroskedasticity

in the sample period. The highly volatile years tend to have a larger influence on the results

because of their relatively heavy weights. McQueen (1992) finds that the highly volatile

periods exhibit stronger mean-reverting tendencies and that the overall evidence for mean

reversion is therefore overstated. Kim & Nelson (1998) and Kim et al. (1998) criticize

Fama & French (1988a) and Poterba & Summers (1988) on similar grounds. The issue

of heteroskedasticity is directly linked to another point of criticism. Past periods of high
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volatility may not be representative of current stock price behavior. Poterba & Summers

(1988) note that the Great Depression exerts substantial influence on the estimates of

the mean-reversion parameters. Excluding this period considerably weakens the evidence

for mean reversion. Kim et al. (1991) divide the total sample period into a period before

and a period after World War II and conclude that mean reversion is a pre-World War II

phenomenon only. Furthermore, the post-war period reveals mean aversion, indicating a

structural break in stock price behavior.3

3.2 Relative mean reversion

The lack of evidence for mean reversion is often attributed to small sample sizes in combi-

nation with statistical tests for mean reversion that lack power. A substantial improvement

in estimation accuracy may be achieved by explicitly specifying the fundamental value

process (called the benchmark) around which the mean reversion occurs. The important

question here is how to proxy the fundamental value process, which is inherently unob-

served. According to the Gordon growth model, the value of a stock equals the discounted

future cash flows generated by the stock (Gordon 1959). In practice, these cash flows are

the dividends to be paid out to the owners. Instead of estimating future dividends, one may

use earnings as a proxy of future cash flows towards investors. Other possible proxies are

valuation ratios, such as dividend yield or price-earnings ratios.

Campbell & Shiller (2001) examine the mean-reverting behavior of dividend yields

and price-earnings ratios over time. Theoretically, these variables are expected to be

mean-reverting, since fundamentals are determinants of stock prices. If stock prices are

high in comparison to company fundamentals, an adjustment to either stock prices or fun-

damentals may be expected. Campbell & Shiller (2001) find that adjustment of the ratios

towards an equilibrium level is driven more by stock prices than by company fundamen-

3Mean aversion is movement of stock prices away from their mean value over time.
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tals. Coakley & Fuertes (2006) consider the mean-reverting behavior of valuation ratios

and attribute it to differences in investor sentiment. The authors conclude that financial

ratios revert to their long-term average value. In earlier work, Fama & French (1988b)

link the dividend yield to the expected returns on a stock and find that the latter have a

mean-reverting tendency.

A second specification of fundamental value is based on asset pricing models. Ho & Sears

(2004) link the mean-reverting behavior of stocks to the Fama-French three-factor model

and conclude that such models cannot capture the mean-reverting behavior of stock prices.

Similar conclusions emerge from Gangopadhyay & Reinganum (1996). However, they

argue that mean reversion can be explained by the CAPM if the market risk premium is

allowed to vary over time. Note that this fluctuation is in accordance with the theoret-

ical explanation of mean reversion in efficient markets; expected returns fluctuate in a

mean-reverting manner (Summers 1986). Gropp (2004) argues that valuation ratios are

inherently flawed, because information on company fundamentals cannot be compared to

stock prices due to the delay in adjustment. Expected future dividends and earnings influ-

ence a stock’s fundamental value, which cannot be captured by the current dividend yield

or the price-earnings ratio. Moreover, the loss of information due to the use of proxies

may contribute to the failure to recognize mean-reverting behavior.

According to Balvers et al. (2000), the stationary relation between the fundamental

value of a stock and a benchmark index permits direct assessment of the speed of mean

reversion. Moreover, they use annual rather than monthly data to avoid the problem of

seasonality. To estimate the mean-reversion process more accurately, Balvers et al. (2000)

adopt a panel data approach. Comparing the real stock price indices of 18 countries to a

world index benchmark during the 1970 – 1996 period, they establish significant mean

reversion, with a half-life of approximately 3.5 years. The half-life measures the period it

takes stock prices to absorb half of a shock. Balvers et al. (2000) find a 90% confidence
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interval for the half-life equal to [2.4, 5.9] years.

In a related study, Spierdijk et al. (2012) analyze mean reversion in the stock mar-

kets of 18 OECD countries during the years 1900 – 2009. In this period it takes stock

prices about 18.5 years, on average, to absorb half of a shock. However, using a rolling-

window approach they establish large fluctuations in the speed of mean reversion over

time. Their analysis suggests that the speed at which stocks revert to their fundamental

value is faster in periods of high economic uncertainty, caused by major economic and/or

political events. The highest mean reversion speed is found for the period including the

Great Depression and the start of World War II. Furthermore, the early years of the Cold

War and the period containing the Oil Crisis of 1973, the Energy Crisis of 1979 and Black

Monday in 1987 are also characterized by relatively fast mean reversion. During periods

with relatively low economic uncertainty, mean reversion is virtually absent; i.e, the speed

of mean reversion is very slow and subject to high estimation uncertainty. Overall, they

document half-lives ranging between 2.0 and 22.6 years.

3.3 Mean reversion in stock returns

Many recent studies investigate predictability of stock returns (Ang & Bekaert (2007),

Goyal & Welch (2008), Boudoukh et al. (2008), Pastor & Stambaugh (2009, 2011)). Pre-

dictability of stock returns from dividends or other fundamental factors may give rise

to negative autocorrelation in stock returns. Negative autocorrelation in stock returns is

generally referred to in the literature as mean reversion in stock returns. The empirical

evidence for mean reversion in stock returns is also thin. In Section 4.4 we will show that

mean reversion in stock price implies mean reversion in stock returns, but that generally,

the reverse is not true: mean reversion in stock returns does not necessarily imply mean

reversion in stock prices. In this paper we will mainly focus on mean reversion in stock

prices because the latter type of mean reversion implies the former.
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3.4 Where do we stand?

The literature has found little evidence for long-run mean reversion in stock prices while

the evidence for mean reversion in stock returns is also thin. The substantial number of

recent publications in this field illustrates the ongoing debate among economists about

the mean-reverting behavior of stocks. As explained in the introduction of this paper, it is

not our goal to provide a final answer to the question whether stock prices or returns are

mean-reverting or not. Instead, we want to make investors aware of the implications of

mean-reverting behavior in stocks. The remainder of this paper therefore focuses on the

implications of mean reversion for long-term investors such as pension funds.

4 Properties of multi-period returns

This section calculates variances and autocovariances of single-period and multi-period

stock returns in the presence of mean reversion in stock prices. Because the variance of

stock returns is associated with the investment risk associated with this asset class, single-

period and multi-period variances contain crucial information for investors.

4.1 One-period returns

In the framework of Section 2, the restriction 0 < � < 1 induces negative autocorrelation

in one-period log stock returns rt D pt � pt�1, because for k D 1; 2; : : ::


k.rt/ D Cov .rt ; rtCk/

D Cov .�p�
t C�zt ; �p�

tCk C�ztCk/

D Cov .�p�
t ; �p�

tCk/C Cov .�zt ; �ztCk/

D
��2�k�1.1 � �/

1 C �
< 0: (5)
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The function 
k.rt/ is called the autocovariance function of rt . The one-period return

variance equals


0.rt/ D �2
C

�2

�.2 � �/
: (6)

Throughout, zt represents a covariance-stationary process for 0 < � < 1 with autocovari-

ance function


k.zt/ D �2�k=.1 � �2/: Œk;D 0; 1; 2; : : :� (7)

We see that, for k tending to infinity, 
k.rt/ decays geometrically to 0 for 0 <  < 1.

This means that the negative correlation between rt and rtCk diminishes with k. Hence,

two returns are virtually uncorrelated if they are sufficiently apart in time. Also, if � ap-

proaches unity (reflecting a very slow speed of mean reversion), 
k.rt/ tends to zero. The

same holds for � close to 0, in which case the transitory price process approaches white

noise, with no mean reversion. Furthermore, the higher the variance of the transitory price

process �2, the more dominant the transitory price component relative to the permanent

component and the more negative 
k.rt/. These relations illustrate that both � and �2

(and particularly �2 relative to �2) determine the mean-reverting behavior of stock prices.

4.2 Multi-period returns

From the perspective of a long-term investor, we may also be interested in multi-period

returns. For the (non-overlapping) m-period returns rt.m/ D
Pm

jD1 rtCj , we calculate the
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first-order autocovariance, yielding


1.rt.m// D Cov .rt.m/; rtCm.m// (8)

D Cov .
mX

iD1

rtCi;

2mX
jDmC1

rtCj /

D

mX
iD1

2mX
jDmC1

Cov .rtCi; rtCj /

D

mX
iD1

2mX
jDmC1


j�i.rt/ < 0; (9)

because 
j�i.rt/ < 0 . Similarly, also the higher-order autocovariances turn out negative.

Also of interest to a long-term investor is the variance of the m-period returns. For

m D 2; 3; : : : we find


0.rt.m// D Var .rt.m//

D m
0.rt/C

mX
jD1

j�1X
iD1


j�i.rt/: (10)

For �2 > 0 and 0 < � < 1, we find 
0.rt.m// < m
0.rt/. With mean reversion in stock

prices, the variance of the m-period returns is smaller than m times the one-period vari-

ance; the variance increases less than proportionally with the investment horizon. Hence,

for long investment horizons stocks are relatively less risky than for short horizons.

4.3 Higher-order AR model

For an AR(p) process, introduced in Section 2.2, the derivations in Sections 4.1 and 4.2

remain the same. The only aspect we have to adjust is the autocovariance function. An

AR(p) process of the form

zt D �1zt�1 C �2zt�2 C : : :C �kzt�p C �t ; (11)
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is characterized by the recursive autocovariance function


k.zt/ D

pX
jD1

�j
jk�j j.zt/ Œk D 1; 2; : : :�: (12)

and variance


0.zt/ D

pX
jD1

�j
j .zt/C �2: (13)

We see that the sign of the autocovariances depends crucially on the AR coefficients

�1; : : : ; �p. If the autocovariance function remains positive at all lags, the main conclu-

sions of the analysis in Sections 4.1 and 4.2 will remain unaffected.

4.4 Mean reversion in prices vs mean reversion in returns

In the model of Equations (1), (2), and (3), the negative autocorrelation in stock returns

(cf. Equations (5) and (10)) is a direct consequence of the mean-reverting behavior of the

underlying stock price. The converse is not true: negative autocorrelation in stock returns

generally does not imply the presence of mean reversion in stock prices. We illustrate

this property with the following example. The fundamental value process p�
t is taken to

be a series of iid random variables with a Cauchy distribution, whereas the transitory

price component follows an arbitrary covariance-stationary AR(1) model, independent

from the fundamental value process.4 Because the mean of the Cauchy does not exist (it

is not finite), the price process is not mean-reverting. Admittedly, the example is empiri-

cally not very relevant, but it illustrates our main point. The return process (i.e. log price

differences) generally does not uniquely determine the price process (i.e. log price levels).

4The (standard) Cauchy distribution has probability density function f .x/ D 1=.�.1 C x2//.
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4.5 The relation between mean reversion and covariance-stationarity

A property related to mean reversion is covariance-stationarity. The properties of mean

reversion (in the sense of Summers (1986)) and covariance-stationarity are equivalent in

an AR(k) model. To prove this equivalence, we assume that the process pt follows a

covariance-stationary AR(1) model of the form

pt D �C �pt�1 C �t : (14)

Alternatively, we can write pt as the sum of a permanent price component and a transitory

price component:

pt D Q�C zt ; (15)

where Q� D 1=.1��/ and zt D �zt�1C�t . Notice that the assumed covariance-stationarity

of pt ensures the existence of the long-run mean Q�. From Equation (15) we see that pt

is mean-reverting in the sense of Summers (1986), with the fundamental value process

equal to Q�. Conversely, if the AR(1) process is mean-reverting in the sense of Summers

(1986), the fundamental value process has to be equal to 0 < Q� < 1, which requires

0 < � < 1; i.e. covariance-stationarity.

In models outside the class of AR(k) models the concepts of mean reversion and

covariance-stationarity are not necessarily equivalent. We illustrate this with the (stylized)

fundamental value process depicted in Figure 1, which increases linearly over time. The

(stylized) price process moves around the fundamental value. Evidently, the stock price

is not mean-stationary (and thereby not covariance-stationary), yet it is mean-reverting

around the fundamental value process in the sense of Summers (1986) and Fama & French

(1988a). Conversely, it is easy to find a covariance-stationary process that is not mean-

reverting. The simplest example is a series of iid normally distributed variables.
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5 Mean reversion and mean-variance efficient portfolios

This section assesses the economic implications of mean reversion in stock prices for

long-term investors. The starting point is a mean-variance efficient investor that deter-

mines its optimal portfolio weights solely on the basis of the mean and covariance struc-

ture of the asset returns in its investment set. A mean-variance efficient investor will hold

the portolio with the lowest volatility for a given level of the expected portfolio return, or

the portfolio with the highest expected return for a given level of the portfolio volatility.

5.1 Outline

We consider a long-term investor that wants to divide its wealth between stocks and bonds

in mean-variance optimal proportions. We consider investment horizons ranging between

1, 5, 10, and 20 years. To construct an empirically relevant example, we base the parameter

values on historical data.

5.1.1 Expected returns and volatilities of stocks and bonds

We assume the following values, corresponding to monthly stock returns (in the notation

of Section 2): � D 0:9% (expected return of stocks), � D 0:975 (reflecting a speed of

mean reversion of 2.3 years), � D 3:2% (volatility of the error term in the transitory

price component), and � D 3:2% (volatility of the error term of the permanent price

component). These parameters correspond to a monthly standard deviation of 4.5%, a

figure that is based on the Datastream U.S. Aggregate Stock Market Index during the

period from January 1982 until August 2010. For the bond index we assume a monthly

expected return of 0.7% and a volatility of 1.4%, which has been based on the historic

performance of the Citigroup U.S. Overall Bond Investment Grade Total Return Index

during the same period. The latter index is investable through various Exchange Traded

Funds and Exchange Traded Notes. To isolate the effect of mean reversion in stock prices
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on the optimal portfolio weights, we exclude a priori the presence of mean reversion in

the bond returns.

5.1.2 Correlation between stock and bond returns

The monthly contemporaneous correlation between the stock and bond indices is assumed

to be 0.2, which equals the historical correlation between the aforementioned stock and

bond indices during the sample period. The contemporaneous multi-period correlations

are assumed to be 0.18 (one year), 0.17 (5 years), 0.17 (10 years), and 0.17 (20 years).5

5.1.3 Risk-free yield curve

The risk-free rate is based on the nominal interest rate term-structure as compiled by the

Dutch Central Bank.6

5.1.4 Variance ratio of permanent and transitory returns

We assume that the variance of the permanent and transitory price components contribute

equally to the total stock return variance – a choice that has been motivated by the results

documented in Poterba & Summers (1988). In the subsequent analysis we define the vari-

ance ratio as the return variance of the permanent price component divided by the return

variance of the transitory component.7 Later we will address the influence of the variance

ratio by means of a sensitivity analysis.8

5These figures have been obtained by applying the Vector Autoregression methodology of Hodrick
(1992) to the aforementioned stock and bond indices. The approach proposed by Hodrick (1992) provides
a robust alternative to methods based on overlapping stock returns.

6URL: http://www.statistics.dnb.nl/popup.cgi?/usr/statistics/excel/t1.3nm.xls.
7More formally, the variance ratio is equal to �2

�2=.�.2��//
; cf. Equation (6).

8We do not use our own stock price series to estimate the variance ratio, because reliable estimation of
the variance ratio requires very long data series. Our own series spans less than thirty years, which is much
too short. We therefore base our choice of the variance ratio on the literature.
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5.2 Optimal portfolio weights

The right-hand-side panel in the upper half of Table 1 (captioned ‘variance ratio = 1:1’)

displays optimal stock and bond allocations for investment horizons between one and ten

years. The optimal portfolios that we consider explicitly are the global minimum variance

portfolio (GMVP) and the tangency portfolio (TP). The GMVP is the mean-variance ef-

ficient portfolio with the lowest portfolio volatility, whereas the TP is the mean-variance

efficient portfolio with highest possible risk-adjusted excess return. Figure 2 displays the

TP and GMVP in the mean-variance space. According to the Capital Asset Pricing Model,

investors invest their wealth in a combination of the risk-free rate and the tangency port-

folio.

Without mean reversion in stock returns (see the lower half of Table 1), the optimal

portfolio weights are nearly independent from the investment horizon. This is because

the mean and variance of both stock and bond returns increase proportionally with the

investment horizon. A negligible horizon effect is induced by the risk-free rate that in-

creases non-proportionally with the investment horizon and by the correlation between

stock and returns that varies slightly over the investment horizon. With mean reversion in

stock prices (see the upper half of Table 1), the variance of stock returns increases less

than proportionally, making stocks more attractive for longer investment horizons. This

explains why we observe a small increase in the optimal portfolio weights assigned to

stocks for longer investment horizons. For the GMVP the maximum difference in stock

allocations with and without mean reversion is less than 2.5 percentage points, while for

the TP the maximum difference is less than 2 percentage points. All in all, the results

in Table 1 make clear that the optimal portfolio allocations are not very sensitive to the

presence of stock price mean reversion.
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5.3 Realistic portfolio weights for pension funds

For Dutch pension funds the optimal portfolio weights obtained in Section 5.2 are not

very realistic. Therefore we also consider a pension fund that invests 50% of its wealth

in stocks and 50% in bonds. The equal division between stocks and bonds corresponds

to the so-called standard asset allocation in the Dutch Financial Assessment Framework

(FTK) for pension funds. The left-hand panel of Table 2 (captioned ‘variance ratio = 1:1’)

displays the resulting expected portfolio returns and volatilities with and without mean

reversion in stock prices (otherwise using the same assumptions as in Section 5.2), again

for investment horizons equal to 1, 5, 10, and 20 years. With mean reversion in stock

prices, the portfolio volatility is lower than without mean reversion, as expected. Yet the

differences in portfolio volatility are small; the maximum difference (attained with a 20-

year investment horizon) is less than 4 percentage points.

5.4 Sensitivity analysis

The assumption of mean reversion in stock prices does not substantially affect the optimal

portfolio allocations and perceived portfolio risk in Sections 5.2 and 5.3, but this may be

due to the choice of parameters in the mean reversion model. We attempted to make these

values as realistic as possible by calibrating them from historical data. In this section we

perform a sensitivity analysis by altering the parameter choices made in Sections 5.2 and

5.3.

5.4.1 Persistence parameter

One of the parameters responsible for mean reversion in our model is �, which is directly

related to the speed of mean reversion (see Section 2.1). The choice � D 0:975 has been

taken from Fama & French (1988a) who make the same assumption in their simulations.

This value of the persistence parameter boils down to a half-life of 27.4 months, or 2.3
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years. Poterba & Summers (1988) differ only marginally from this and use � D 0:98.

Balvers et al. (2000) establish a half-life of 3.5 years, which corresponds to � D 0:9836.

Spierdijk et al. (2012) establish time-varying annual values of � between and 0.704 and

0.97 (corresponding to monthly values of 0.9712 and 0.9975, respectively), resulting in

half-lives of, respectively, 2 and 23 years.

5.4.2 Variance ratio

The other influential parameter in our mean reversion model is the return variance of the

transitory price process, in particular in relation to the return variance of the permanent

price process. We assumed equal variances in Section 5.2. This assumption was based

on Poterba & Summers (1988), who state that “The point estimates imply that transitory

components account for more than half of the monthly return variance, a finding con-

firmed by international evidence”. However, in their simulations they put the return vari-

ance of the transitory price component at three times the return variance of the permanent

price process (i.e. a ratio of 1:3), whereas Fama & French (1988a) use a 1:2 ratio.

5.4.3 Optimal portfolio weights under different assumptions

We use aforementioned alternative values for � and the variance ratio as input for a sen-

sitivity analysis. Throughout, we calibrate the other parameter values in such as way as to

keep the variance of stock returns at 4.5% on a monthly basis.

It turns out that the value of � in the alternative range, as indicated above, leads to

much the same output as before. By contrast, the variance ratio has a more substantial

influence on the optimal portfolio weights; see the middle and right-hand panel in the

upper half of Table 1 (captioned ‘variance ratio 1:2’ and ‘variance ratio 1:3’). The larger

the transitory component of stock prices, the stronger their mean reversion. This trans-

lates into higher optimal weights for stocks and lower portfolio volatility. The maximum
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difference in the portfolio weights with and without mean reversion is between 2 and 5

percentage points. Similarly, if an investor divides its wealth equally between stocks and

bonds, the risk exposure of his portfolio decreases with the variance ratio if we assume

that stock prices are mean-reverting; see the middle and right-hand-side panel in the up-

per half of Table 2 (captioned ‘variance ratio 1:2’ and ‘variance ratio 1:3’). The maximum

difference in portfolio volatility with and without mean reversion equals 5.3 percentage

points. Obviously, the variance ratio has no influence on the optimal portfolio weights if

there is no mean reversion in stock prices (see the lower half of Table 1).

5.5 The role of the variance ratio

Our sensitivity analysis shows that the choice of the variance ratio may have substantial

impact on investment decisions. If the variance ratio is high – meaning that stock prices

are strongly mean-reverting – stocks become relatively less risky in the long run, making it

optimal to invest a relatively large share of wealth in stocks. However, if the true variance

ratio is lower than the assumed value, the perceived risk exposure is lower than the actual

risk exposure. Hence, too much wealth is allocated to stocks, resulting in a non-optimal

overexposure to risk.

As noted by Fama & French (1988a), estimation of the variance ratio is subject to

various difficulties. Estimation is only possible in an indirect way and requires very long

sample periods owing to the slowly-moving nature of the transitory price component.

Available stock return series are relatively short, yielding estimates that suffer from large

parameter uncertainty. Accurate assessment of the parameter uncertainty is complicated

by the use of overlapping returns – an issue discussed in Section 3.1. Consequently, the

true value of the variance ratio remains highly uncertain. If the true variance ratio is 1:n,

with n larger than 3, the effects on portfolio allocation will even be larger than established

in Section 5.4.3.
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5.6 Dealing with uncertainty about the variance ratio

Given the uncertainty involved with the variance ratio, it is prudent for a risk-averse in-

vestor to use a conservative estimate of this ratio.9 To see this, suppose that an investor is

uncertain about the degree of mean reversion in stock prices. If it overestimates the mean

reversion in stock prices, this will result in an overexposure to risk. In an adverse scenario

with falling stock prices, this would result in negative investment returns. Conversely, if

the investor underestimates stock price mean reversion, it will cause underexposure of

risk. Amid rising stock prices, this would result in too low investment returns. Because

the investor is risk averse, it will always prefer the risk of earning too low profits over the

risk of incurring too high losses. The strength of the investor’s preference depends on its

degree of risk averseness. For a very risk averse investor it is optimal to base the portfo-

lio weights on an assumption of no or little stock price mean reversion. For an investor

that is only little risk averse, by contrast, it is optimal to assume a higher degree of mean

reversion. In sum, it is optimal policy for any risk averse investor to make conservative

assumptions about the degree of stock price mean reversion.10

5.7 Trading strategies

Several studies propose trading strategies based on mean reversion in stock prices and

show that these strategies yield excess returns; see e.g. Balvers et al. (2000). The latter

study establishes a half-life of 3.5 years in a model of relative mean reversion. The au-

9We mention here that the Dutch Financial Assessment Framework for pension funds requires pension
funds to hold capital buffers as to keep the probability of a funding deficit below 2.5 percent. Dutch pension
funds are not allowed to base their buffer calculations on the assumption of mean reversion, unless they
use the internal model approach and prove that mean reversion is very likely to be present in stock prices
or returns. However, Dutch pension funds have not yet pursued this approach. Neither for the continuity
test, nor for the cost of covering pension premia pension funds are allowed to assume that stocks become
less risky in the long run. Nevertheless, some Dutch pension funds may take mean reversion into account
in their investment strategy.

10Our argument that it is prudent for a risk averse investor to be conservative about the degree of mean
reversion in stock prices can be formalized by means of a Bayesian analysis. This is clearly beyond the
scope of this panel paper. We therefore leave this as a topic for future research.
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thors consider a contrarian trading strategy (which consists, loosely speaking, of buying

past losers en selling past winners; cf. De Bondt & Thaler (1985)), based on rolling win-

dow estimates of the underlying mean reversion model. They show that such a strategy is

able to generate (risk-adjusted) excess returns.11 Clearly, if stock prices were to follow a

random walk, it would not be possible to earn excess returns. Hence not only does the op-

timal asset allocation affect the degree of stock price mean reversion, but the profitability

of trading strategies crucially depends on it as well.

6 Conclusions

There has been an ongoing debate as to whether stock prices and stock returns are mean-

reverting in the long run. This paper has discussed the implications of mean-reverting

behavior in stock prices for long-term investors. We showed that the variance of stock

returns increases less than proportionally with the investment horizon if stock prices are

mean-reverting. Subsequently, we assessed the consequences of stock price mean rever-

sion for mean-variance efficient portfolios. If stock prices are mean-reverting, stocks are

relatively less risky for longer investment horizons, so that a larger share of wealth may

be allocated to stocks. The same is true if stock returns show negative autocorrelation,

which is often referred to in the literature as mean reversion in stock returns (in which

case stock prices are not necessarily mean-reverting).

Given the impact of mean-reverting behavior of stocks on asset allocation decisions

and the profitability of trading strategies, it is important for investors to know whether

or not stock prices and stock returns exhibit mean reversion. Until now, the literature has

not yet found strong evidence in favor of mean-reverting behavior, but this may also be

due to the difficulties involved in the empirical assessment of mean reversion. Hence, it is

11We notice that Balvers et al. (2000) do not claim that their contrarian investment strategy is profitable
in practice. An explanation for this reservation is that their analysis ignores the issue of transaction costs.

24



unclear whether stock prices and stock returns are mean-reverting or not. Bearing in mind

that the investor will underestimate the risk exposure of stocks if he or she overestimates

the degree of mean reversion, it seems prudent for a risk-averse investor to base investment

decisions on conservative assumptions regarding the mean-reverting behavior of stocks.
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Figure 1: Example of a non-stationary mean-reverting process

The dashed line is a stylized representation of the fundamental value process, which increases
over time. The oscillating curve represents the stylized mean-reverting price process, which
mean-reverts around the non-stationary fundamental value process.
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Figure 2: Mean-variance efficient portfolios

The colored area in this figure represents, in a stylized way, the set of all possible portfolios. The
horizontal axis gives the portfolio volatility, whereas the vertical axis provides the expected
portfolio return. The solid curve that starts in the global minimum variance portfolio (GMVP)
and that marks the upper side of the colored area is the mean-variance efficient set which
comprises all mean-variance efficient portfolios. A portfolio is mean-variance efficient if it has
the highest expected return, given a certain volatility level or if it has minimum volatility for a
given level of the expected return. Two mean-variance efficient portfolios are explicitly
highlighted: the global minimum variance portfolio (GMVP) and the tangency portfolio (TP).
The former is the mean-variance efficient portfolio with the lowest volatility, whereas the latter is
the mean-variance efficient portfolio with highest possible risk-adjusted excess return. The
risk-adjusted excess return is the expected excess return divided by the volatility, also known as
the Sharpe ratio. The tangency portfolio is obtained by drawing a straight line from the risk-free
rate (denoted rf on the vertical axis) tangent to the mean-variance efficient frontier.
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Table 1: Optimal portfolio weights (in percentage) with and without mean reversion in stock
prices

This table reports the optimal portfolio weights for the global minimum variance portfolio
(GMVP) and the tangency portfolio (TP). The investment categories are stocks (Datastream U.S.
Aggregate Stock Market Index) and bonds (Citigroup U.S. Overall Bond Investment Grade Total
Return Index) for different values of the variance ratio. The variance ratio is defined as the return
variance of the permanent price component divided by the return variance of the transitory
component. The risk-free rate is based on the nominal interest rate term-structure as compiled by
the Dutch Central Bank. The last two columns in each panel display the expected portfolio return
(�p) and the portfolio volatility (�p).

variance ratio = 1:1 variance ratio = 1:2 variance ratio = 1:3

ws wb �p �p ws wb �p �p ws wb �p �p

with mean reversion with mean reversion with mean reversion
GMV
1 year 4.36 95.64 8.50 4.80 4.44 95.56 8.51 4.80 4.48 95.52 8.51 4.80
5 years 5.37 94.63 42.64 10.70 5.73 94.27 42.69 10.69 5.93 94.07 42.71 10.68
10 years 5.86 94.14 85.41 15.11 6.45 93.55 15.08 14.90 6.79 93.21 85.63 15.06
20 years 6.26 93.74 171.00 21.34 7.07 92.93 171.39 21.27 7.54 92.46 171.62 21.24

TP
1 year 7.20 92.80 8.57 4.82 7.30 92.70 8.58 4.82 7.36 92.64 8.58 4.82
5 years 8.40 91.60 43.01 10.75 8.88 91.12 43.07 10.74 9.14 90.86 43.10 10.73
10 years 9.05 90.95 86.17 15.18 9.83 90.17 86.36 15.15 10.27 89.73 86.46 15.13
20 years 9.57 90.43 172.59 21.44 10.64 89.36 173.11 21.38 11.26 88.74 173.40 21.35

without mean reversion without mean reversion without mean reversion
GMVP
1 year 4.14 95.86 8.50 4.81 4.14 95.86 8.50 4.81 4.14 95.86 8.50 4.81
5 years 4.43 95.57 42.53 10.73 4.43 95.57 42.53 10.73 4.43 95.57 42.53 10.73
10 years 4.43 95.57 85.06 15.18 4.43 95.57 85.06 15.18 4.43 95.57 85.06 15.18
20 years 4.43 95.57 170.13 21.47 4.43 95.57 170.13 21.47 4.43 95.57 170.13 21.47

TP
1 year 6.90 93.10 8.57 4.83 6.90 93.10 8.57 4.83 6.90 93.10 8.57 4.83
5 years 7.14 92.86 42.86 10.78 7.14 92.86 42.86 10.78 7.14 92.86 42.86 10.78
10 years 7.14 92.86 85.71 15.24 7.14 92.86 85.71 15.24 7.14 92.86 85.71 15.24
20 years 7.13 92.87 171.42 21.55 7.13 92.87 171.42 21.55 7.13 92.87 171.42 21.55



Table 2: Expected portfolio return and portfolio risk (in percentage) with and without mean
reversion in stock prices

This table reports the expected portfolio return (�p) and the portfolio risk (�p) for an equally
weighted portfolio, for different values of the variance ratio. The variance ratio is defined as the
return variance of the permanent price component divided by the return variance of the transitory
component. The two investment categories are stocks (Datastream U.S. Aggregate Stock Market
Index) and bonds (Citigroup U.S. Overall Bond Investment Grade Total Return Index). The
risk-free rate is based on the nominal interest rate term-structure as compiled by the Dutch
Central Bank.

variance ratio = 1:1 variance ratio = 1:2 variance ratio = 1:3

�p �p �p �p �p �p

with mean reversion with mean reversion with mean reversion

1 year 9.60 11.30 9.60 11.22 9.60 11.17
5 years 48.00 22.18 48.00 21.78 48.00 21.58
10 years 96.00 30.74 96.00 29.97 96.00 29.56
20 years 192.00 34.60 192.00 33.41 192.00 32.79

without mean reversion without mean reversion without mean reversion

1 year 9.60 11.55 9.60 11.55 9.60 11.55
5 years 48.00 23.33 48.00 23.33 48.00 23.33
10 years 96.00 32.99 96.00 32.99 96.00 32.99
20 years 192.00 38.08 192.00 38.08 192.00 38.08
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