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Abstract  
This paper presents a model of the life cycle that drives and is driven by R&D. In the 
model, firms have the option to improve their quality or to invest R&D resources in 
efficiency gains. Faced with this tradeoff, young firms opt for quality instead of 
efficiency improvements, whereas more mature firms will do both. This switch is 
endogenous and depends on past R&D choices. We explore these two hypotheses 
empirically using a panel of manufacturing industries across six European countries 
over the period 1980-1997. Our empirical results provide support for the model’s 
predictions. 
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1 Introduction

The role of innovation as a key source of long-run economic growth has long
been emphasized by the endogenous growth theory (Romer, 1990; Grossman
and Helpman, 1991b; Barro and Sala-i Martin, 2004). A related literature
stresses the role of R&D-activity in creating these innovations (Griliches, 1980;
Aghion and Howitt, 1998) while a companion strand of research suggests that
R&D may also contribute to productivity growth by raising the "absorptive
capacity" of firms (Cohen and Levinthal, 1989). The empirical evidence in
support of these theses is mounting. Typically it is shown that productivity
measures are positively correlated with R&D inputs and positive spillovers are
shown to exist. 1 A common assumption in both the theoretical literature on
endogenous growth and the empirical studies on the impact of R&D is that
R&D produces a homogenous output. That is, all innovations are assumed to
be symmetric and have the same qualitative impact on productivity. There
are, however, good reasons to challenge that assumption and consider the
implications of having different types of innovations in one model. 2 Likewise
it can be argued that different firms doing R&D, aim for different types of
outcomes at different stages of their life cycle.

A broad literature on the life cycle (Vernon, 1966) has been developed in
the fields of international trade theory (Krugman, 1979; Grossman and Help-
man, 1991a) and industrial dynamics (Utterback and Suarez, 1993; Klepper,
1996, 1997; Audretsch, 1995; Adner and Levinthal, 2001). This literature has
explored both the theoretical implications of and empirical regularities over
the life cycle of products and industries. Among other things, it has shown
that innovation follows a typical pattern over the life cycle. Initially, firms
and industries focus on quality improvement and market development turn-
ing to cost reductions and rationalization of production only later, when the
product is established. In that stage, the product is also liable for outsourc-
ing and off-shoring, exposing the industry to foreign competition. Most of the
life cycle literature, however, does not provide theoretical foundations for its
observations and the hypotheses it tests.

The purpose of this paper is therefore to present and empirically test a model
that explains the interaction between innovation and the industry life cycle. 3

1 See, for instance, Coe and Helpman (1995), Coe et al. (1997) for country-level stud-
ies and Keller (2002), Scarpetta and Tressel (2002), Griffith et al. (2004), Cameron
et al. (2005) for industry-level studies.
2 For instance, the introduction of a new general purpose technology like lasers is
qualitatively different from introducing the 6 bladed safety razor.
3 Grossman and Helpman (1991a) were among the first to build a model in which
the life cycle is driven by endogenous innovation. They used the empirical evidence
and theoretical insights from economic growth that suggest R&D is a key factor
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Our model follows endogenous growth theory in assuming that industries in-
vest R&D resources to create innovations. In addition, the model allows R&D
to generate either quality improvements or efficiency improvements. Then it
shows how that choice is affected by the life cycle stage of an industry, but
also how the life cycle itself is driven by these two types of innovation and
the knowledge spillovers they create. Thereby, we provide an endogenous ex-
planation for the occurrence of industry life cycles that has implications for
economic growth. We therefore make a theoretical contribution to two impor-
tant strands of the literature.

More specifically, we contribute to the endogenous growth literature by ac-
counting for different types of R&D and the endogenous switching among
them. Most endogenous growth models (Romer, 1990; Grossman and Help-
man, 1991b; Aghion and Howitt, 1998; Barro and Sala-i Martin, 2004; Jones,
2004) treat R&D as a process with a single output. Introducing the life cycle,
allows us to link the choice for one or the other type to the life cycle stage of
the industry in an intuitive way. Knowledge spillovers between the two types
of innovation in turn allow us to explain the endogenous emergence of the
industry life cycle. Thereby, this paper contributes to the literature on the life
cycle and industrial dynamics as well.

The model provides us with two clear and testable hypotheses. First, efficiency
as a result of R&D effort is expected to increase with industry maturity. Sec-
ond, quality improvements resulting in technical change are expected to de-
crease with industry maturity. We test our hypotheses using a technique that
is relatively new to the empirical literature on growth and innovation (Koop,
2001). As our model distinguishes two types of innovation, we use stochastic
frontier estimation, which allows us to separate efficiency gains from technical
change. The application of this method to the empirical literature on economic
growth and industry productivity analysis is a further contribution we intend
to make.

We explore our two hypotheses empirically using a panel of twenty-one man-
ufacturing industries across six European countries over the period 1980-97.
In doing so, industries are classified by life cycle stage following related ap-
proaches in the literature (Audretsch, 1987). We separate industry efficiency

in generating innovation and is an economic and therefore endogenous decision on
behalf of profit motivated agents. 4 Their model bridged the gap between endoge-
nous growth theory and life cycle theories (Krugman, 1979) of international trade,
in particular. In Sanders (2005), similar modeling techniques were used to explain
(skilled) labor demand dynamics in a closed economy context, while Audretsch and
Sanders (2007) present a model in which endogenous R&D-driven life cycle dynamics
explain the international division of labor. In all these models, the life cycle is both
driving and driven by R&D generated innovations. To our knowledge, decision-based
theoretical models of the life cycle have so far not been tested empirically.
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gains from quality improvements by estimating a stochastic production fron-
tier that allows us to distinguish between efficiency gains (moving towards the
frontier) and technical change (shifts of the frontier). In estimating the effect
of maturity on efficiency and technical change, we control for country- and
industry-specific fixed effects as well as industries’ R&D effort.

Our results provide strong support for both theoretical predictions of the
model. Specifically, we find that efficiency is positively and significantly af-
fected by an increase in maturity. Furthermore, the marginal effect of an in-
crease in maturity on efficiency increases with R&D effort. Technical change,
however, decreases with maturity. This effect, too, becomes stronger with
higher levels of R&D effort, perhaps reflecting the substitution from quality
improvement to efficiency improvement that our model predicts.

The rest of the paper is organized as follows. Section 2 presents the theoretical
model and the hypotheses under investigation. Section 3 is devoted to a dis-
cussion of the data, the measurement of industry maturity and the estimation
of a production frontier. Empirical results confirming our hypotheses are then
presented in Section 4. Section 5 summarizes the findings and concludes.

2 Theoretical Model

In this section, we introduce a model in which producers have an incentive
to do both efficiency increasing and quality increasing R&D, and are allowed
to endogenously switch between these two types. The incentive to do R&D
in an endogenous growth model always follows from consumers’ willingness to
pay for quality and quantity. Moreover, to effectuate this willingness to pay,
producers need to be able to appropriate the value of innovations in the form
of profits.

In our model we therefore assume that consumers consume a range of goods
and value both their quality and quantity. These goods are produced by mo-
nopolists who make profits and thereby can finance the investment of resources
in increasing resource efficiency (generating the same output with less inputs)
and increasing product quality (generating higher value-added for the same
inputs). Firms then equate the marginal expected discounted value product
of R&D resources in both activities by deciding on the direction of their R&D
effort.
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2.1 Consumers

Let us first consider the consumers. Consumers are generally assumed to max-
imize utility from consumption over time. Using a separable utility function
and standard intertemporal budget constraint, we first solve:

max
E(t)

∞∫
0
e−ρ(τ−t) log

(
E(t)
P (t)

)
dt

s.t.

Ȧ(t) = Y (t) + rA(t)− E(t)

(1)

where E(t) is the minimum expenditure required at time t to purchase one
unit of the direct utility index U defined below, at a price P (t). Consumers
discount at a subjective rate ρ, receive an interest rate r on assets A and
collect Y labor income, which is taken as given. It is a standard result (see
Barro and Sala-i Martin, 2004, Chapter 2) that this yields the Ramsey-rule
for optimal consumption:

Ė(t)

E(t)
= (r − ρ) (2)

Together with the intertemporal budget constraint, this also implies an op-
timal savings path. These savings are required in the model to finance R&D
investments later on. Consumers now need to decide on how to spend their
consumption expenditure on the n products available. The problem for the
consumer at each point in time is given by: 5

max
c(i)

U =

(
n∫
0
c(i)αq(i)1−αdi

)1/α

s.t.

E ≤
n∫
0
p(i)c(i)di

(3)

where the direct utility is derived from consuming a range of Cobb-Douglas
aggregates in quantity c(i) and quality q(i). The solution to this problem yields
the quantity, c(i), of each product variety demanded in function of its price,
p(i), and quality, q(i), and the minimum price of one unit of U , P .

cD(i) = q(i)

(
p(i)

P

) −1
1−α E

P
(4)

where in equilibrium it can be shown that:

5 To save on notation we drop time arguments t until they become relevant again.
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P ≡

 n∫
0

p(i)
−α
1−α q(i)di


1−α
−α

(5)

Thus, we have derived the demand functions for every variety i, where demand
for an individual variety is positive in its quality and total expenditure on
consumption, and negative in the price p. The demand is also positive in the
quality-price index P , reflecting the fact that varieties are substitutes.

2.2 Producers

Turning to production, we then assume that every variety is produced by one
firm that sets a price in monopolistic competition with the other firms. The
problem of the producers can then be reduced to choosing the price of variety
i, p(i), that maximizes profits, π, and is represented by:

max
p(i)

π(i) = x(i)p(i)− wl(i)

s.t.

x(i) = cD(i)

x(i) = b(i)l(i)

(6)

where π(i) is profits and x(i) is the volume of variety i produced at quality q(i)
using production factor l(i) bought in a competitive market at price w. This
implies that b(i) is the firm specific efficiency parameter. The resulting profit
maximizing price is the familiar Amoroso-Robinson mark-up over marginal
costs:

p(i) =
b(i)

−(1−α)
α w

α
(7)

Note that higher efficiency b(i) allows firm i to set lower prices, but obviously
implies higher profits. To show this, first we define the quality/efficiency index
BQ:

BQ ≡

 n∫
0

b(i)q(i)di


−(1−α)

α

(8)

Factor demand for firm i is then given by:

lD(i) =
b(i)q(i)

BQ

αE

w
(9)
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Substituting demand (4), price (7) and factor demand (9) into (6) yields the
equilibrium profits for firm i:

π∗ = E(1− α)
q(i)b(i)

BQ
(10)

These profits are positive in both quality and efficiency. By increasing quality
and/or efficiency relative to the other firms, a firm can increase its flow of
rents. It is these additional rents that provide an incentive to invest R&D
resources in improving quality or efficiency. To get to the value of a marginal
improvement in either quality or efficiency, we first need to consider the value
of the flow of profits that one obtains without increasing quality or efficiency.
This is the discounted value of an infinite flow of rents at constant efficiency
and quality levels, b0 and q0, respectively:

V (t) =
∞∫
t
e−r(τ−t)π(q0, b0, τ)dτ (11)

In Appendix A, it is shown that (11) can be written as:

V (t) =
(1− α)E

r − Ė/E +BQ̇/BQ

b0q0
BQ

(12)

Decision makers are assumed to expect that profits will grow at some constant
rate due to increases in consumption expenditure and the quality/efficiency
index BQ. Taking the derivative of this expression with respect to b0 and q0
respectively, yields the value of marginal increases in efficiency, Vb, and quality,
Vq: 6

Vb(t) =
(1− α)E

r − Ė/E +BQ̇/BQ

q(i)

BQ
(13a)

Vq(t) =
(1− α)E

r − Ė/E +BQ̇/BQ

b(i)

BQ
(13b)

2.3 R&D

Now, consider the innovation functions that specify the process of efficiency
and quality improvement:

6 It is the undiscounted value, to be precise. Solving a Hamiltonian for the firms to
optimally invest in R&D over their lifetime would give these values times e−rt as
the shadow price of marginal innovations over time, but as the two types of R&D
compete for the same resource, the discounting factor will appear on both sides of
the arbitrage equation and, therefore, can be ignored.
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ḃ(i) = φRb(i)q(i)
βb(i)1−β (14a)

q̇(i) = ψRq(i)q(i)
1−γb(i)γ (14b)

where Rb and Rq are the quantities of R&D effort devoted to improvements
in efficiency and quality, respectively, ψ and φ are R&D productivity parame-
ters, and β and γ are parameters between 0 and 1 that capture the knowledge
spillovers of R&D. These functions have the following symmetric properties:
they are linear in R&D effort at the firm level and exhibit diminishing returns
to firm specific knowledge spillover from both quality and efficiency improve-
ments in the past, but constant returns to both. The marginal value product of
R&D resources in firm i can now be obtained by taking the derivative of (14a)
times (13a) and (14b) times (13b) with respect to R&D effort. We obtain:

MV Pb(t) =
(1− α)E

r − Ė/E +BQ̇/BQ

φq(i)1+βb(i)1−β

BQ
(15a)

MV Pq(t) =
(1− α)E

r − Ė/E +BQ̇/BQ

ψq(i)1−γb(i)1+γ

BQ
(15b)

Arbitrage will imply that all R&D effort in a firm is aimed at the activity
that has the highest marginal value product. This implies that in (steady
state) equilibrium, the marginal value products must equalize. To ensure that
new firms start by improving quality only, we must impose the parameter
restriction:

ψ > φ (16)

where we have normalized the initial quality and efficiency parameters, b0 and
q0 to one. To avoid all R&D effort being concentrated in one firm (the least
mature), we also need to assume that R&D resources are less than perfectly
mobile across firms. 7 A convenient short-cut is then to simply assume R&D
resources are firm specific and their supply is given. At this point, we might also
have assumed that quality improvement and efficiency enhancement require
very different types of R&D workers or that R&D competes for productive
resource l(i) at the firm level, but as our focus is on the life cycle, the above

7 Alternatively, we may assume diminishing returns to R&D effort in the innovation
production functions, such that the marginal productivity of R&D workers goes to
infinity when R&D employment falls. In that case, the allocation of R&D over firms
would be endogenous, and although this is a possible interesting extension to the
model, it is beyond the scope of this paper.
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assumption is more convenient. It leads us to the following proposition: 8

Proposition 1 For a given number of varieties, n, there exists a steady state
equilibrium in the model in which utility grows at a constant rate. That is the
case when all products are mature and, in their mature stage, all firms develop
quality and efficiency at the same constant growth rate.

In this paper, however, we are less interested in the steady state. Moreover, as
we aim to test our hypotheses using industry-level data, we need to develop
industry-level hypotheses. We propose that due to the constant introduction
of new varieties and the demise of old ones, a steady state will never be reached
in any industry. If new varieties are introduced regularly, then, at any point in
time, an industry consists of new and mature firms. In the mature firms, R&D
is aimed at developing both hard-to-measure quality improvements and easy-
to-measure efficiency improvements through cost reductions. In fact, our model
predicts an exact 50-50 split, where the knowledge spillovers will ultimately
ensure that both the quality and efficiency parameter grow at the same rate.
In contrast, the new firms predominantly focus their R&D effort on hard-to-
measure quality improvements. In the absence of diminishing returns to R&D,
they even devote all R&D effort to that purpose. 9 At the industry level, this
will imply that mature industries are dominated by mature firms and R&D
generates relatively more efficiency gains. In young industries, on the other
hand, young firms dominate and R&D is aimed at quality improvements,
causing lower efficiency levels and gains.

As a result, we can infer two testable hypotheses from our model. First, the
model predicts that efficiency increases with the maturity of an industry, as
a larger part of R&D effort is aimed at generating the same output with less
inputs. Second, the model predicts that quality improvements decrease with
an industry’s maturity, as industries devote a smaller share of their R&D effort
to generating a higher value-added for the same inputs. The first hypothesis
is considerably stronger than the second one: not only does it follow from the
model that even mature industries still do some quality improvements, but
in addition, quality improvements are significantly more difficult to measure
than efficiency changes.

To empirically test our hypotheses, we need to operationalize the concepts
of maturity, efficiency and quality improvements, and then test whether the
relationship between R&D intensity and efficiency gains and/or quality im-
provements depends on the life cycle stage of the industry under consideration.
We will do the former in the next section before we turn to our empirical re-
sults in Section 4.

8 See Appendix A for the proof.
9 Note that our parameter restriction on φ and ψ ensures this in the model.
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3 Data and Methodology

3.1 Data

We use data from 21 two-, three- and four-digit manufacturing industries in
six European countries (Finland, France, Germany, Italy, Netherlands and
Spain) over the period 1980-1997. Annual raw data are retrieved from various
sources. Data on industry output (value-added) and investment (for construct-
ing capital stock) are retrieved from the OECD (2002) Structural Analysis
Database (STAN). Data on labor are extracted from the Groningen Growth
and Development Centre (www.ggdc.net) 60-Industry Database. Finally, data
on R&D are obtained from the OECD (2002) Business Enterprise Expendi-
ture on Research and Development (BERD). The same International System
of Industries Classification code (ISIC, rev. 3) was used in all data sources.
Definitions of the variables and data sources as well as the manufacturing
industries considered in our analysis and their ISIC codes are presented in
Appendix B.

3.2 Maturity

For testing our hypotheses, we require a measure of maturity that is industry-
specific, monotonic in maturity and continuous. 10 Audretsch (1987) classified
industries as "mature" or "young" by looking at their sales dynamics. We
follow his approach and first estimate the following equation:

ln(Sijt) = βi + β1t+ β2t
2 + εijt (17)

where ln(Sijt) is the log of real sales in country i, industry j at time t, and
t and t2 is time (1 in 1980) and time squared, respectively. 11 We include a
country-specific fixed effect and estimate the above equation for each industry.

Audretsch then suggests to consider the sign and significance of β1 and β2

in order to classify industries. For example, he writes that an industry is
"classified as growing when either β2 was positive and statistically significant
at the 90% level, or β2 was statistically insignificant, but β1 was positive and
statistically significant" (Audretsch, 1987, p. 301).

10 In the data, mature industries can become young again. Think, for example, of
the phone industry that was rejuvenated with the introduction of mobile phones.
11 Note that Audretsch (1987) used real sales. We use the log of real sales here, so
we can calculate semi-elasticities that are comparable across industries.

10



For our purpose, rather than having a binary measure, we construct a measure
that is continuously increasing in maturity. We therefore consider the effect of
an increase of t on the log of real sales: ∂ ln(Sijt)/∂t = βi+β2∗t. By evaluating
this semi-elasticity at the mean of t for all industries, we now have a measure
for industry growth in real sales over time. Maturity, Mjt, is then defined as:
[(∂ ln(Sijt)/∂t] ∗ (−1).

Industry-specific maturity estimates are shown in Table 3 in Appendix B. 12

Previous studies have ranked industries according to high/low-tech classifica-
tion (Scarpetta and Tressel, 2002; Silverberg and Verspagen, 1994). Our ma-
turity classification is in line with their results, if one assumes that low-tech
industries are more mature than high-tech industries. Among the most ma-
ture industries are the oil industry, the textile industry and the ship-building
industry. The least mature industries include the office machinery, the com-
munication and the precision instruments industry.

3.3 Efficiency

The efficiency parameter, b(i), of our model, intends to capture the efficiency
at which firms transform inputs into output. Empirically, we can only proxy
this efficiency at the industry level by assuming that all firms in an industry,
across countries, in principle have access to the same production technology.
However, we also assume, as the empirical literature Koop (2001)has shown,
that many firms can operate below their industry’s best practice production
frontier. We measure their inefficiency relative to that benchmark over time
to construct a proxy for b(i). 13 Such inefficiencies can be measured by means
of a stochastic frontier production model. 14 A frontier production function
defines the maximum output achievable, given the current production tech-
nology and available inputs. If all industries produce on the boundary of a
common production set that consists of an input vector with two arguments,
physical capital (K ) and labor (L), then output can be described as:

Y ∗ijt = f(Kijt, Lijt, t; β) exp{νijt} (18)

12 Note that we assume that an industry, in different countries, is at the same stage
of the life cycle.
13 Inefficiency, thus measured, is by definition bounded from above as no firm can
be more efficient than the benchmark. Our theoretical model does not impose that
restriction on efficiency for computational convenience. The discontinuity that would
otherwise be introduced seriously complicates the mathematical exposition of our
model and adds little in terms of intuition.
14 Stochastic frontier analysis (SFA) was introduced by Aigner et al. (1977), Battese
and Corra (1977), and Meeusen and Broeck (1977).
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where Y ∗ijt is the frontier (maximum) level of output in country i, in industry j
at time t, production technology is characterized by function f and parameter
vector β, t is a time trend variable that captures Hicks-neutral technologi-
cal change (Barro and Sala-i Martin, 2004), and νijt is and i.i.d. error term
distributed as N(0, σ2

ν), which reflects the stochastic character of the frontier.

Two points are noteworthy regarding equation (18). First, the frontier, as it
is defined, represents a set of maximum outputs for a range of input vectors.
Therefore, at any moment in time, it is estimated from observations on a num-
ber of industries. Conventional growth empirics (Scarpetta and Tressel, 2002;
Griffith et al., 2004; Cameron et al., 2005) that study inefficiency usually just
benchmark all industries to one - the leader industry, i.e., the industry with the
highest level of productivity in the sample. An implicit, however non-trivial,
assumption in this literature is that the leading industry itself constitutes the
frontier and the single benchmark for all other industries. Second, our mod-
eling approach treats the frontier as stochastic through inclusion of the error
term νijt, which accommodates noise in the data, and therefore allows for sta-
tistical inference. In this respect, our modeling approach fundamentally differs
from other (non-parametric) frontier analyses (Färe et al., 1994) that do not
allow for random shocks in the frontier. 15

However, some industries may lack the ability to employ existing technologies
efficiently (e.g. due to mismanagement) and therefore produce less than the
frontier output. If the difference between maximum and actual (observable)
output is represented by an exponential factor, exp{−υijt}, then the actual
output, Yijt, produced in each country i in industry j at time t can be ex-
pressed as a function of the stochastic frontier output, Yijt = Y ∗ijt exp{−υijt},
or equivalently:

Yijt = f(Kijt, Lijt, t; β) exp{νijt} exp{−υijt} (19)

where υijt ≥ 0 is assumed to be i.i.d., with a normal distribution truncated at
zero N(0, σ2

υ), and independent from the noise term, νijt. 16

An industry is inefficient if it fails to absorb the best-practice technology.
The advantage of our framework is that it enables us to distinguish between
efficiency changes and technical change. This contrasts with conventional (non-
frontier) studies where a single productivity measure captures both efficiency
change and technical change.

15 Comprehensive reviews of frontier approaches can be found in Kumbhakar and
Lovell (2000) and Coelli et al. (1998).
16 When estimating equation (19), we obtain the composite residual exp{εijt} =
exp{νijt} exp{−υijt}. Its components, exp{νijt} and exp{−υijt}, are identified by
the λ (= συ/σν) for which the likelihood is maximized (for an overview, see Coelli
et al., 1998).
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Table 1
Frontier estimation results

Coeff. Std.Err.

k -1.181 0.038 ***

l 1.938 0.060 ***
1
2
k2 0.206 0.011 ***

1
2
l2 -0.310 0.016 ***

kl 0.011 0.012

t 0.260 0.011 ***
1
2
t2 0.000 0.001

kt -0.024 0.002 ***

lt -0.011 0.002 ***

σ = (σ2
υ + σ2

ν)
1/2) 1.247 0.023 ***

λ = συ/σν 3.135 0.091 ***

Notes: Lower case letters y, k and l denote logs.

Log likelihood value = -1904.333, fixed

effect estimations, coefficients significant at the

1/5/10% level (*/**/***). Obs.=2,268.

We estimate equation (19) with a translog specification and true fixed effects
(Greene, 2005). Table 1 contains our results. A value of 3.135 of parame-
ter λ indicates that a significant part of our estimation residual consists of
inefficiency. 17 In the left panel of Figure 1 below, we plot the efficiency dis-
tribution. 18 The most efficient industry is 84% efficient, whereas the least
efficient industry is 6.8% efficient. 19 On average, industries are 50% efficient
and efficiency grows with 0.8% per year.

3.4 Technical Change

Quality improvement as represented by increases in q(i) in our model, can
best be proxied by computing the outward shifts of the production frontier we
previously estimated. Quality improvements as conceptualized in the model,
increase the value-added for all possible input-vectors and therefore shift the
production frontier out. In the empirical literature, however, such shifts are re-
ferred to as technical change, a slightly broader concept than quality improve-
ments. This is why, in our operationalization, we prefer to refer to technical

17 To be precise, it tells us that slightly more than 75% of our total standard error (σ)
consists of inefficiency (συ), whereas 25% is noise (σν) - hence the ratio of 3.135/1.
18 Figure 1 contains kernel density estimates.
19 Most efficient was the machinery industry in Germany in 1997, least efficient was
the Finnish office machinery industry in 1983. Industry efficiency scores, defined
as effijt = exp{−υijt} (0 ≤ effijt ≤ 1 where effijt = 1 implies full efficiency), are
available from the authors.

13



change, tc. We follow Altunbas et al. (1999) and calculate technical change by
taking the derivative of equation (18), ∂ lnY ∗ijt/∂t = βt+β 1

2
t2 ∗t+βkt∗k+βlt∗l.

As it is clear from the right panel of figure 1, we observe both technical progress
(tc > 0) and technical regress (tc < 0). 20

Figure 1. Distributions of efficiency and technical change
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Figure 1 shows the distributions of our efficiency and technical change measure.
Both measures approximate the normal distribution very well, which facilitates
our empirical testing in the next section. 21 In addition, we check how our
measures relate to the business cycle, since the latter may also affect our
measures and we may have a spurious relationship. To do so, we compare the
development in efficiency, technical change, maturity and R&D intensity with
growth in real GDP. 22 As it turns out, none of our measures has a correlation
with GDP growth that is significantly different from zero. 23 Consequently, we
feel confident about our hypotheses tests in the next section.

20 Correlation between efficiency and technical change is negative (-0.447), but in-
significant.
21 Since efficiency scores are often truncated, some studies have opted for truncated
regressions when explaining efficiency (Bos and Kool, 2006). In our study, this is not
necessary.
22 Real GDP data derived from the OECD (2006) Main Economic Indicators.
23 We calculate correlations both for our whole data set, and on a country-by-country
basis. For the whole data set, correlations of the real GDP growth with effijt (- i.e.
the transformed υ), tcijt, and M are -0.0470, 0.1019, and 0.0153, respectively.
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4 Empirical Results

In this section, we test our two hypotheses. Our first hypothesis predicts that
efficiency change decreases with maturity. Our second hypothesis predicts that
technical change increases with maturity.

Figure 2. R&D effort over the life cycle
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In order to test these hypotheses, we need to control for the actual R&D effort
of an industry. We do so by controlling for R&D intensity, defined as the ratio
of R&D and value-added. 24

Figure 2 shows that R&D effort decreases with maturity, although some in-
dustries increase their R&D effort as they become highly mature. 25

In order to test our hypotheses, we estimate the following equations 26 :

υijt = βi + β1Mjt + β2R&Dijt + β3(Mjt ∗R&Dijt) + εijt (20a)
tcijt = βi + β1Mjt + β2R&Dijt + β3(Mjt ∗R&Dijt) + εijt (20b)

24 In using R&D intensity we aim to control for size differences, which may be
strongly correlated with maturity. We also estimated with R&D flows, and results
are qualitatively similar.
25 Note that, if we assume that competition is most fierce for very young and very
mature industries, the relationship in Figure 2 is in line with recent work by Aghion
et al. (2005) who find an inverse U-shaped relationship between innovation and
competition.
26 We have also estimated equation (20b) using efficiency scores, effijt - i.e. the trans-
formed υ that is bounded between zero and one. Results are qualitatively similar,
but somewhat less significant, as the transformed measures are truncated.
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where tcijt is technical change, υijt is the efficiency term, Mjt is our matu-
rity measure and R&Dijt is R&D intensity. Our hypotheses are confirmed
if ∂υijt/∂Mjt > 0 and ∂tcijt/∂Mjt < 0 for every level of R&D intensity. We
estimate equations (20a) and (20b) with country-specific fixed effects, and cal-
culate conditional marginal effects following Brambor et al. (2006). 27 Table 2
contains our estimation results. 28

Table 2
Explaining technical change and efficiency change

Hypothesis 1 Hypothesis 2

efficiency Coef. Std. Err. technical change Coef. Std. Err.

M -0.617 0.343 * M -0.114 0.042 ***

R&D -0.141 0.095 R&D -0.041 0.012 ***

M ·R&D 6.210 2.481 *** M ·R&D -2.139 0.307 ***

intercept -0.726 0.009 *** intercept 0.003 0.001 ***

σu 0.221 σu 0.045

σe 0.291 σe 0.036

ρ 0.367 ρ 0.605

F-test coef. 26.57 (3,2259) *** F-test coef. 73.90 (3,2259) ***

F-test fe 218.38 (5,2259) *** F-test fe 575.52 (5,2259) ***

M is maturity, defined as (-1) times the conditional marginal effect calculated in section 3.2;

R&D is R&D intensity, defined as the ratio of R&D expenses to value-added; fixed effect

estimations, with country-industry specific fixed effects ui; σu and σe represent the variance

of the fixed effect and error term, respectively; ρ is fraction of variance due to ui; F-tests

for joint significance of coefficients and fixed effects; degrees of freedom between brackets;

significance at the 1/5/10% level (*/**/***)

Figure 3 shows the (conditional) marginal effect of an increase in maturity on
efficiency, for every level of R&D intensity. On average, an increase in maturity
has a positive effect on efficiency for all levels of R&D intensity. Hence, we
find that our first hypothesis is confirmed.

In fact, mature industries with a high R&D intensity, benefit from an even
larger increase in efficiency. However, the effect of an increase in maturity is
most significant at low levels of R&D intensity.

Likewise, Figure 4 shows the (conditional) marginal effect of an increase in
maturity on technical change, for every level of R&D intensity. Clearly, matu-
rity positively and significantly affects technical change for all levels of R&D

27 Since our maturity measures are industry-specific, we cannot include industry-
specific fixed effects.
28 Our results are qualitatively similar when we use R&D flows instead of R&D
intensities. However, in the former case, since mature industries tend to be larger as
well, we would not be sure whether we were measuring a size effect or the impact of
R&D.
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Figure 3. Efficiency and maturity
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intensity. The more mature industries become, the lower their technical change
is. This confirms our second hypothesis.

Figure 4. Technical change and maturity
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Interestingly, this negative effect becomes even more negative with increasing
R&D intensity. In line with our model, this may reflect the fact that mature
industries substitute a significant part of their R&D effort, previously aimed
at technical change, to increase their efficiency. Summing up, we have found
significant evidence in support of both of our hypotheses.

5 Conclusion

In this paper, we have developed a model of innovation over the industry life
cycle. We show that industries engage in R&D to generate quality and effi-
ciency improvements. The aim of R&D, either to improve quality or efficiency,
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depends on the life cycle stage of an industry. However, the life cycle itself is
endogenous, and driven by these two types of innovation and the knowledge
spillovers they create.

Our model leads to two testable hypotheses. First, efficiency is expected to
increase with maturity. Second, technical change is expected to decrease with
maturity. Both hypotheses are tested empirically for a sample of twenty-one
manufacturing industries across six European countries over the period 1980-
97. In order to measure efficiency and technical change, we estimate a stochas-
tic production frontier.

Our empirical results support both of our hypotheses. The marginal effect
of an increase in maturity on efficiency is positive and increases with R&D
effort. The marginal effect of an increase in maturity on technical change
is negative and becomes stronger with R&D effort, as industries substitute
efficiency improvement for quality improvement.

Our findings have important policy implications. Policy makers generally agree
that higher R&D spending is desirable and are willing to subsidize and/or give
tax credits to firms who do R&D. Both our model and our empirical results
show that the impact of an increase in R&D effort, however, depends on
where innovation takes place. Innovation policies aimed at mature industries
will increase efficiency, but cannot be expected to result in large technological
advancements. The latter, originate primarily in new industries. However, the
pace at which they can be realized decreases sharply with R&D effort, suggest-
ing that the returns to investments in innovation in new industries decrease
rather rapidly with the level of investment. Designing an effective and efficient
innovation policy requires careful consideration of these results.
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Appendix A: Proofs

Derivation of equation (12)

First, we show that equation (11) can be written as (12) when agents expect
rates of aggregate spending and quality and efficiency improvement to be
constant. Substituting equation (10) into (11) yields:

V (t) =
∞∫
t
e−r(τ−t)E(τ)(1− α) q(i)b(i)

BQ(τ)
dτ (21)

For a constant (expected) growth rate of the quality and efficiency index, BQ,
and expenditures, E, we can use:

BQ(T ) =

T∫
t

BQ(t)eBQ̇(τ)/BQ(τ)τdτ = BQ(t)eBQ̇/BQ(T−t) (22)

and

E(T ) = E(t)eĖ/E(T−t) (23)

to write:

V (t) =
∞∫
t
e(−r+Ė/E−BQ̇/BQ)(τ−t)E(t)(1− α) q(i,τ)b(i,τ)

BQ(t)
dτ (24)

As every new firm starts with exogenously given starting values for b(i)=b0
and q(i)=q0, and R&D wage costs exactly exhaust the discounted gains from
future innovations, the value of a firm at time t can be written as in equation
(12):

V (t) =
(1− α)E

r − Ė/E +BQ̇/BQ

b0q0
BQ

(25)

Proof of proposition 1

Proposition 1 reads: For a given number of varieties, n, there exists a steady
state equilibrium in the model in which utility grows at a constant rate. That
is the case when all products are mature and, in their mature stage, all firms
develop quality and efficiency at the same constant growth rate.

The proof of this proposition follows from the fact that for any given n, firms
will allocate all R&D labor to the R&D activity with the highest marginal
value product (equations (17) and (18) respectively). However, as these marginal
value products are negatively related to the level of quality and efficiency
achieved in that industry, all industries eventually end up in a situation where
the marginal value products are equalized and henceforth remain equal. As n
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is constant, this situation will arise for all industries in the end and at that
point a steady state is reached in which quality and efficiency expand at the
same rate. To see this one can equalize equations (17) and (18) and solve for
the steady state ratio of quality to efficiency:

b(i)

q(i)
=

(
ϕ

ψ

) 1
β+γ

(26)

In any industry where this ratio is lower (higher) all R&D effort goes into
increasing efficiency (quality) until the ratio is (re)established. For given n all
industries must converge to this ratio and equations (15) and (16) then tell us
that quality and efficiency expand at:

ḃ(i)

b(i)
=
q̇(i)

q(i)
= ϕ

γ
β+γψ

β
β+γ

R∗(i)

2
(27)

where R∗(i) is the level of total R&D in industry i. Assuming, for computa-
tional convenience and without loss of generality that these levels are equal
across industries at R∗/n, BQ expands at that rate by the definition in equa-
tion (8).

From equation (2) we know that expenditure on consumption will grow at a
constant rate for any constant interest rate. Given the budget constraint and a
fixed labor supply that also implies wages will grow at that rate. Normalizing
nominal expenditure to one implies that interest rate equals ρ in equilibrium
and together with the constant growth rate of BQ this implies that prices will
fall at rate −1−α

α
GBQ, where GBQ represents the growth rate of index BQ. By

equation (5) this implies that the growth rate of P is −GBQ and, consequently,
utility grows at a constant rate of 21−α

α
GBQ = 1−α

α
ϕ

γ
β+γψ

β
β+γ R

∗

n
in the steady

state.

Appendix B: Data and Sources

Value-Added (Y ): gross value-added expressed in 1995 constant prices (eu-
ros). Gross value-added was deflated by implicit value-added deflators to yield
deflated gross value-added expressed in 1995 constant prices (euros). We fol-
low the OECD (2002) practice for the construction of the implicit value-added
deflators. Data on gross value-added are retrieved from the OECD (2002)
Structural Analysis Database(STAN).

Physical capital (K ): gross capital stock expressed in 1995 constant prices
(euros). Following common practice in the literature (e.g. Hall and Jones,
1999), we employ the perpetual inventory method to construct a proxy for
capital stock, using data on gross fixed capital formation (GFCF). The ini-
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tial value for the 1980 capital stock is specified as K1980= GFCF1980/(g + δ),
where g is the average geometric growth rate of the gross fixed capital for-
mation (constant prices) series from 1970 to 1980 and δ is the depreciation
rate. Instead of assuming a constant depreciation rate, we use the average
service life (ASL) of capital per industry (ISDB98-methods used by OECD
countries to measure stocks of fixed capital, OECD, 1993). Each industry’s
capital stock is constructed as capital stock minus depreciated capital stock
plus gross fixed capital formation (Kt= (1− δ) ∗Kt−1+GFCFt). Data on gross
fixed capital formation are retrieved from the OECD (2002) Structural Anal-
ysis Database(STAN).

Labor (L): annual total hours worked in an industry (in thousands). Data
are retrieved from the Groningen Growth and Development Centre (GGDC,
2006) 60-Industry Database.

Research and Development Intensity (R&D): R&D expenditures to
value-added ratio. Data on R&D expenditure are retrieved from the OECD
(2002) Business Enterprise Research and Development (BERD).

Table 3
Manufacturing industries ranked by maturity

Industry Abbr. ISIC code b0 b1 b2 R2 Mjt

Petroleum products COK 23 10.004 *** -0.149 *** 0.006 *** 0.178 0.045

Textile products TEX 17-19 9.754 *** -0.013 0.000 0.014 0.009

Ships and boats SHI 351 7.903 *** -0.035 *** 0.002 *** 0.040 -0.002

Food products FOD 15-16 10.781 *** -0.007 0.001 *** 0.170 -0.004

Non-ferrous metals NFM 272+2732 8.373 *** -0.021 0.002 * 0.039 -0.008

Mineral products ONM 26 9.188 *** 0.010 0.000 0.302 -0.012

Wood products WOD 20 8.633 *** -0.001 0.001 *** 0.418 -0.014

Iron and steel IAS 27+2731 9.159 *** -0.015 0.002 *** 0.407 -0.015

Manufacturing n.e.c. MA 36+37 8.957 *** 0.003 0.001 *** 0.629 -0.018

Chemicals CHE 24 less 2423 9.822 *** 0.008 0.001 * 0.576 -0.018

Paper products PAP 21-22 9.952 *** 0.018 *** 0.000 0.657 -0.019

Machinery MAC 29 9.766 *** 0.007 0.001 *** 0.679 -0.025

Motor vehicles MOT 34 9.347 *** 0.055 *** -0.002 *** 0.299 -0.025

Fabricated metal FAB 28 9.511 *** 0.019 *** 0.000 0.660 -0.026

Aircraft + spacecraft AIR 353 7.108 *** 0.021 0.000 0.307 -0.029

Rubber/plastics RUB 25 8.710 *** 0.041 *** 0.000 * 0.871 -0.034

Pharmaceuticals PHA 2423 8.041 *** 0.050 *** 0.000 0.813 -0.042

Electrical machinery ELE 31 8.579 *** 0.040 *** 0.000 0.779 -0.042

Precision instruments MED 33 7.818 *** 0.052 *** -0.001 0.584 -0.042

Communication RAD 32 8.220 *** 0.017 0.003 * 0.499 -0.059

Office machinery OFF 30 6.969 *** 0.055 0.001 0.418 -0.075

Notes: fixed effect estimations, coefficients significant at the 1/5/10% level (*/**/***); Abbr. =

Abbreviation; ISIC code (rev. 3); M(aturity) = [∂ ln(Sijt)/∂t] ∗ (−1) evaluated at mean value of t.
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