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Abstract  
The literature on the electronic mail game shows that players’ mutual expectations 
may lock them into requiring an inefficiently large number of confirmations and 
confirmations of confirmations from one another. This paper shows that this result 
hinges on the assumption that, with the exception of the first message, each player 
can only send a message when receiving an immediately preceding message. We 
show that, once this assumption is lifted, equilibria involving confirmations of 
confirmations no longer pass standard refinements of the Nash equilibrium, and are 
no longer evolutionary stable. 
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1. INTRODUCTION 

 
How many messages do people need to exchange before they can agree to 

undertake a mutually beneficial joint endeavor? At first sight, the answer given by 
game theory would seem to be found in Rubinstein’s (1989) analysis of the electronic 
mail game (henceforth EMG, see Section 2 below for this game in its most general 
form), and would follow the lines of the following story.  Rowena, a game theorist, 
finds out that there is a showing of A Beautiful Mind at the local cinema, and wants to 
take a fellow game theorist, Colin, on a first date to see this movie. Rowena sends 
Colin a message, inviting him to go to the movie. However, given that the possibility 
that her message got lost, Rowena worries that she will end up alone at the cinema. 
Moreover, Rowena runs little risk when staying home. This is why she only envisages 
going to the cinema if she receives a confirmation from Colin. But Colin, who is 
equally worried about showing up by himself, is now again concerned that Rowena 
did not hear his confirmation, and requires a confirmation of his confirmation. 
Rowena now again wants a confirmation of her confirmation of his confirmation. And 
so on, ad infinitum. Frustratingly then, if Rowena and Colin reason like game 
theorists, it seems they never meet each other on a date.1 However, as shown in this 
paper, game theory can in fact be used to show that Rowena will meet Colin at the 
cinema most of the time, and that at most a single confirmation will be sent. 

To see the reason for the unintuitive result reflected in the story above, it should be 
noted that Rubinstein (1989) introduced the EMG into the literature not to model how 
people trying to achieve coordinate action communicate, but rather to show that 
approximate common knowledge is very different from common knowledge (see 
Section 3 of our paper for a review of this result). Concretely, in terms of the story 
above, Rubinstein assumes that, with the exception of the first message sent by 
Rowena, all messages take the form of unambiguous proofs of receipt, and that these 
proofs of receipt are automatically sent back and forth between Rowena and Colin, 
until a proof of receipt gets lost. With each new proof of receipt received, the 
recipient achieves a higher level of interactive knowledge (“I know that you know 
that I know…”). For a vanishing probability that proofs of receipt gets lost, the 
message exchange would therefore seem to approach a situation of common 
knowledge. However, even with an infinitesimally small probability that a proof of 
receipt gets lost, coordinated action does not take place. 

As pointed out by Binmore and Samuelson (2001), the EMG can in fact be used to 
analyze the communication of people who try to achieve coordinated action, but some 
modifications in the assumptions are then called for (see Section 4 below for a review 
of their results). A first modification to the EMG that they make is to assume that 
communication is not automatic, but strategic. A second modification that they make 
is to assume that communication is costly, in that both sending a message, and paying 
attention to a message is costly. However, Binmore and Samuelson maintain the 
assumption that, after the first message has been sent, communication takes the form 
of unambiguous proofs of receipt. The fact that communication is costly puts a cap on 
the number of messages that will be shuttled back and forth. The fact that 
communication is voluntarily assures the existence of more intuitive equilibria, where 
either a single message by Rowena suffices, or where Rowena contents herself with a 

                                                 
1 A similar result was shown by Halpern and Moses (1984) in the distributed systems literature, where 
this problem is known as the coordinated attack problem. 
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single confirmation by Colin. These are also the Pareto-efficient equilibria. However, 
Pareto inefficient equilibria also exist. The reason for this is that the players’ mutual 
expectations can lock them into requiring a large number of confirmations and 
confirmations of confirmations from one another. While an intuitive result is now at 
least possible, the possibility of an unintuitive result is thereby maintained. 

The current paper takes this analysis one step further by lifting the assumption that 
messages take the form of proofs of receipt. In the game analyzed here, players are 
able to send a message even when they did not receive an immediately preceding 
message. While Nash equilibria where players send confirmations and confirmations 
of confirmations continue to exist, only the Pareto efficient equilibria survive standard 
refinements of the Nash equilibrium (Section 5). There are two basic intuitions for 
this result. 

The first intuition is that Pareto inefficient equilibria are based on threats that are 
not credible (backward induction). In our modified game, it is possible to send a 
‘confirmation’ even when no message was received. We refer to such a message as a 
false acknowledgement. The receiver of a confirmation will detect it to be false when 
he or she did not send the message that the false acknowledgement claims to be 
confirming. The receiver can only stop a false acknowledgement from being sent by 
not showing up at the cinema when detecting a confirmation to be false. However, 
this does not suffice as a punishment. The receiver should moreover reply to the false 
acknowledgement, thus acting in the same manner as when the sender’s confirmation 
was not detected to be false. Otherwise, when not receiving a reply to his or her false 
acknowledgement, the sender gets a strong hint that he or she was caught cheating. He 
or she then stays at home, avoids the cost of being stood up, and thereby escapes 
much of the punishment. But from the receiver’s perspective, choosing the safe option 
of staying home and still sending a costly message is never a best response. The 
receiver’s threat of punishing detected false acknowledgements is therefore not 
credible. 

The second intuition for eliminating equilibria where a large number of messages is 
sent looks at how Colin should interpret a detected false acknowledgement (forward 
induction). When there is no good movie on, given that in equilibrium Colin stays at 
home when not receiving any messages, Rowena has no reason to send any messages. 
Also, when there is a good movie on, but if Rowena is planning not to go to the 
cinema, she has no reason to send any messages. It follows that Colin should not 
interpret a detected false acknowledgement sent by Rowena as an act of cheating, but 
on the contrary as an attempt to still achieve mutually beneficial coordinated action. 

Section 6 shows that the latter intuition also applies in a modified version of the 
EMG, where players at each stage of the game can choose between sending proofs of 
receipt, and messages that do not prove receipt. In a Nash equilibrium where many 
proofs of receipt are sent back and forth, by a forward induction argument, when one 
player receives a message even though he or she did not send a proof of receipt, then 
this player should interpret this as a repair message, i.e. as an attempt by the other 
player to still achieve coordinated action. But if our player responds positively to such 
a repair message, then the other player no longer has any incentive to send the proof 
of receipt immediately preceding this repair message. 

Section 7 shows that the equilibrium refinements have an evolutionary 
underpinning. The Pareto inferior equilibria where confirmations of confirmations are 
sent are not evolutionary stable. The paper ends with a conclusion in Section 8, where 
further directions for research are also suggested. 
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2. GENERIC ELECTRONIC MAIL GAME 

 
For clarity of exposition, let us start by describing the most straightforward aspects 

of the EMG. There are two states of nature, state a of b, and the two players 1 and 2 
can choose from two actions, namely action A and action B. Figure 1 denotes the 
benefits that players get as a function of the states (game Ga is played in state a, game 
Gb in state b), and as a function of the actions that they take. It is assumed that  
 
 0>> ML , (1) 
 
meaning that the cost of doing B when the other player is doing A is relatively large. 
Game Ga  occurs with probability )1( p− , game  Gb  with probability p. It is assumed 
that 
 
 2/1)1( >− p , (2) 
 
meaning that Gb is occurs less often. 

A useful fiction to formulate verbal intuitions for our results is that either there is a 
good movie on television (the more likely state a), or at the cinema (the less likely 
state b) (the probability that there are only bad movies at the cinema and on television 
is negligible). Action A means staying home, action B means going to the cinema. 
Rowena (player 1) and Colin (player 2) obtain their highest benefit M if they see a 
good movie together. Seeing a bad movie together yields payoff 0. Staying at home 
alone also yields payoff 0, whether or not there is a good movie on. Going to the 
cinema alone, whether or not there is a good movie on, causes a cost L. 
 
 
 
 
 (M, M) 
 

 
 (0, –L) 

 
 (0, 0) 

 
 (0, –L) 

 
 (–L, 0) 
 

 
 (0, 0) 

 

 
 (–L, 0) 

 
 (M, M) 

 
 

Ga ( }0{ 1
1 =r , probability (1–p) > ½) Gb ( }1{ 1

1 =r , probability p) 

 
Fig. 1. The electronic mail game 

 
A first complicating fact in the model is that, first, only one player (player 1, 

Rowena) knows the state of nature. It follows that, for players to obtain payoff M in 
both states, the informed player needs to inform the uninformed player about the state 
of nature. We will focus on equilibria where player 1 informs player 2 in state b (good 
movie on at the cinema). A second complicating factor is that communication is 
assumed to be faulty, in that messages may get lost. Because of this fact, and because 
taking action B by oneself is costly, after having sent a message, player 1 may only 

A A B B 

A A 

B B 
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want to take action B when player 2 confirms receipt of her message. For the same 
reason, player 2 may want to receive a confirmation that his confirmation was 
received. Player 1 again may want to receive a confirmation that player 2 received her 
confirmation of the fact that she received his confirmation of her initial message. And 
so on, ad infinitum. Formally, after player 1’s first message, each player in turn gets 
the opportunity to confirm receipt of the other player’s last message (cf. Rubinstein, 
1989). A third complicating factor is that, following Binmore and Samuelson (2001) 
players are modeled as not automatically receiving messages, but can only receive a 
message if they are paying attention at the time the message is sent. Concretely, at the 
start of the game, players decide on whether or not to keep a channel open for 
receiving messages at each relevant future stage of the game. A fourth complicating 
factor is that, again following Binmore and Samuelson (2001), both sending messages 
and paying attention to messages is assumed to be costly. 

Formally, as summarized in Figure 2, players make their attention paying decisions 
at stage 0 of the game. Nature decides about whether state a or b occurs at stage 1. 
Players make their signaling decisions at stages { }z,...,3,2 ; Nature each time 
simultaneously decides whether these messages arrive.  z denotes the last stage at 
which any message can be sent. Players make their action decisions (A or B) at stage 

)1( +z , and finally obtain their payoffs at stage )2( +z . 

 
 
Fig. 2 Attention paying, receipt, signaling, and action decisions 
 

The players’ decision at different stages of the game are summarized in the part of 
Figure 2 between the two solid horizontal lines (the part of the figure below and 
above these solid lines will be explained later). We start with the signaling and receipt 
decisions from stages 1 to z. Player i (with { }2,1∈i ) makes his signaling decisions at 
stages t, where { }iziiit ),...,5(),3(),1( +++∈ . zi denotes the last stage at which player 
i can send a message (with either zzi = , or )1( −= zzi ; Figure 2 shows the case 
where zz =1 ). A typical signaling decision is denoted t

is , where [ ]1,0∈t
is . In event 

Player 1 

Player 2 

Nature 

(...) 

0
1L  

0
2L  

1
1r  

2
2r  

3
1r  

4
2r  

5
1r  

6
2r  

2
1
zr  

1
2
zr  

2
1s  4

1s  6
1s  1

1
zs  

1
1
+ze  

3
2s  5

2s  2
2
zs  

Max. sent, 
received 

11
1 =R  

12
2 =R  

23
1 =R  35

1 =R  2/)1(2
1 += zR z  

24
2 =R  36

2 =R  

1
2
+ze  

2/1
2 zR z =  

12
1 =S  24

1 =S  2/1
1 zS z =  

13
2 =S  25

2 =S  2/)1(2
2 −= zS z  

Max. sent, 
received 

(...) 

(...) 
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{ }1=t
is  , player i sends the message at stage t and in event { }0=t

is , player i does not 
send the message. The cost incurred by a player for each message sent is d. 

Given that player i sends messages at stages { }iziiit ),...,5(),3(),1( +++= , Nature 
decides at these same stages whether or not to let player j (where ij ≠ ) receive the 
message sent by player i. An individual receipt decision by Nature is denoted as t

jr , 

where [ ]1,0∈t
jr . In event }1{ =t

jr , player j receives player i’s message sent at stage t; 

in event }0{ =t
jr , player j does not receive player i’s message sent at stage t. It is 

assumed that ( ) ψπ === }1{}1{ t
i

t
j sr  and ( ) )1(}1{}0{ ψπ −=== t

i
t
j sr , where 

{ }{ }( )FGπ  denotes the probability of event G occurring given that event F has 

occurred. Also, ( ) 0}0{}1{ === t
i

t
j srπ . Player j thus never receives a message when 

none was sent by the other player. Put otherwise, false negatives can occur, but false 
positives cannot. It is assumed that  
 
 0)1( >−− LM ψψ , (3) 
 
meaning that in state b, player 1 prefers to play B after having sent a single message if 
this implies that player 2 plays B when receiving the message, and plays A otherwise. 
(3) is a necessary condition for any information transmission from player 1 to player 2 
to be possible. As by (1) it is the case that ML > , (3) implies that ψ is small. 

At stage 1, Nature also decides whether state a or b occurs. Because this makes it 
easier to denote player 1’s information sets and strategies, we model the state that 
occurs as a decision by Nature on the value of 1

1r  , where event }0{ 1
1 =r  means that at 

stage 1 (superscript) player 1 (subscript) does not get any message from Nature (state 
a occurs), and where }1{ 1

1 =r  means that at stage 1 player 1 gets the message from 
Nature (state b occurs). These messages from Nature are not noisy. 

Having listed the stages at which player j can receive a message, we are now ready 
to list the attention paying decisions of player j.  Player j’s decision  at stage 0 about 
the future stages for which he keeps a channel open is denoted by a vector 

( )iz
j

j
j

j
j

j
jj llllL ,,,, 420 L++=  where [ ]1,0∈t

jl . We say that player j pays attention 

(respectively does not pay attention) at stage t when 1=t
jl  (respectively when 0=t

jl ). 
For each stage paid attention to, a player incurs a cost of c. Note that the stages  

{ }izjjjt ),...,4(),2(, ++=  in the vector 0
jL  are identical to the stages 

{ }iziiit ),...,5(),3(),1( +++=  at which player j can receive messages from i, with the 
exception that for 1=j  , the vector includes an attention paying decision for stage 1. 
Player 1 therefore only finds out the state of nature when paying attention at stage 1. 

At stage )1( +z  , players decide on what action to take, modeled for player i’ as a 
decision to put 1

1
+ze  equal to A or B. At stage )2( +z  the payoffs are obtained. Net of 

attention paying and signaling costs, these are listed in Figure 1. 
Refer to th  as the true history of events up to stage t. As players do not observe all 

events, refer to t
ih  as player i’s observed history, meaning the sequence of events that 

player i has been able to observe up to stage t. Denote by t
iH  the set of all possible 

observed histories by player i up to stage t. An information set for player i is a set of 
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possible true histories that may have occurred given player i’s observed history. It is 
standard to describe player i’s strategy as a plan on what attention paying, signaling 
and action decisions to make for each information set. For our purposes, however, it is 
more convenient to describe player i’s strategy as a function of his or her observed 
histories.  

Player i’s strategy then consists of a function )(φt
il  for all { }jziit ),...,2(, +∈  

(where φ  is the empty history), of a function )( t
i

t
i hs  for all t

i
t
i Hh ∈  and for all 

{ }iziit ),...,3(),1( ++∈ , and of a function )( 11 ++ z
i

z
i he  for all 11 ++ ∈ z

i
z
i Hh . The strategies 

t
il *  , t

is *  and 1* +z
ie  denote (candidate) equilibrium strategies. *z  denotes the last 

stage at which, in a particular equilibrium, any player sends a message with positive 
probability (where it need not be the case that )* zz = . *

iz  denotes the last stage at 
which, in a particular equilibrium, player i sends a message with positive probability. 
In all the equilibria that we study, it is either the case that ** zzi =  or that 

)1*(* −= zzi . 
To deal with the notational challenge of the model, we will often use short-hand 

notation to describe player i’s strategy as a function of his observed history. For 
instance, ( ) 1}1{ 1 ==−t

i
t
i rs  means that player i adopts the strategy of sending the 

message at stage t for any observed history that includes the event of player i 
receiving the message at stage )1( −t . For further short-hand notation of observed 
histories, the following notation will be particularly useful. Denote by t

iR  the 
maximum number of messages that player i can receive up to stage t (see the values at 
the bottom and top of Figure 2), and by t

iρ  the actual number of times that player i 
receives a message up to stage t. Similarly, denote by t

iL  and t
iλ  respectively the 

largest possible and the actual number of messages paid attention to by player i up to 
stage t (where clearly t

i
t
i RL = , but where t

iλ  need not be equal to t
iρ ). t

i*λ  denotes 
the actual number of messages that player i pays attention to up to stage t in 
equilibrium. Denote by t

iS  and t
iσ  respectively the largest possible and the actual 

number of messages sent by player i up to stage t (see the values at the bottom and top 
of Figure 2). 

As an example of the usefulness of this notation for stating a player’s strategy in a 
concise manner, the expression ( ) BRSe z

i
z
i

z
i

z
i

z
i ==∧=+ }{}{ ****1 ρσ  denotes that player 

i adopts action B upon any observed history such that player i has sent the maximum 
number of messages that can be sent in equilibrium, and has received the maximum 
number of messages that can be sent in equilibrium. Another example is 
( ) 0}{}{ 1122 =<∨< −−−− t

i
t
i

t
i

t
i

t
i RSs ρσ , which denotes that player i does not send the 

message at t when, before t (i.e., up to stage )2( −t ) , he has  not sent the maximum 
number of messages that he could have sent and/or, when before t (i.e., up to stage 

)1( −t ), he has not received the maximum number of messages that he could have 
received. 

We now consecutively treat Rubinstein’s game, a slightly modified version of 
Binmore and Samuelson’s game, and finally our own game. The reasons for restating 
Rubinstein’s and Binmore and Samuelson’s games are, first, that this allows an easier 
comparison of their results to the results in this paper, and second, that parts of the 
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proofs that are necessary to show these authors’ results are also required to prove the 
results for the variant of the EMG treated in this paper. 
 
 

3. RUBINSTEIN’S GAME 
 

The game treated by Rubinstein can be seen as a variant of the EMG in Section 2, 
with the following restrictions added: 
 
Definition 1: 
Define as game R the EMG with the following restrictions on the action sets of player 

{ }2,1∈i : 
(i) 0

iL  such that z
i

z
i L=λ ; 

(ii) ( ) 1}1{ 1 ==−t
i

t
i rs , ( ) 0}0{ 1 ==−t

i
t
i rs  for all { }iziit ),...,3(),1( ++= ; 

and with the following restriction on the parameters: 
(iii) 0=c , 0=d . 
 

In words, in game R, up to stage z, players automatically pay attention at all the 
relevant stages, and messages are automatically shuttled back and forth until a 
message gets lost. Sending messages and paying attention is costless. Each player can 
simply be said to observe how many messages he receives. A strategy in game R is 
then a mapping from the number of messages received to the action set { }BA, . 
Rubinstein’s results are summarized in the following proposition: 
 
PROPOSITION 1 (Rubinstein, 1989). In game R, there is a unique strict separating 
Nash equilibrium in which ( ) Are z ==+ }0{* 1

1
1

1 . In this equilibrium, it is met for 
{ }2,1∈i  that ( ) BRe z

i
z
i

z
i ==+ }{* 1 ρ ,  ( ) ARe z

i
z
i

z
i =<+ }{* 1 ρ . 

Proof: 
See Appendix. 
 

The intuition for this result is the following. Colin’s uncertainty when not receiving 
an initial invitation from Rowena to go to the cinema, spills over into uncertainty by 
Rowena about whether Colin knows that there is a good movie on at the cinema, into 
uncertainty by Colin whether Rowena knows that Colin knows that there is a good 
movie on at the cinema, etc., each time leading the player to stay home. In the 
extreme case where ∞=z , players always stay home.2 

In equilibrium, if player i can receive the message at stage z (case where 
)1( −= zzi ), he or she obtains a payoff of MM z 1)1( −+− ρψρ . If player j in 

equilibrium can send the message at stage z (case where zzi = ), he or she obtains a 
payoff of [ ]LMM z )1()1( 2 ψψρψρ −−+− − . It is easy to see then that, if the size of z 
is a matter of design, the Pareto-efficient sizes of z are 2=z  and 3=z . Player 2 is 

                                                 
2 The fear of such an outcome seems to underlie the postal acceptance rule in law (Christensen, 2001). 
This rule says that an offeree who accepts an offer by means of a letter is legally bound by his 
acceptance letter as soon as he posts it. The offeree cannot claim that he is only legally bound by his 
acceptance letter when receiving an acknowledgement of receipt of it. The fear is that otherwise, 
parties would require an ever increasing number of acknowledgements from each other, so that a 
contract would never be become valid (Christensen, 2001). 
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best off when a single message is sent from player 1 to player 2 (as player 2 then does 
not run any risk from playing B), player 1 is best off when this same message sent 
from player 1 to player 2 is followed by a confirmation by player 2 (as player 1 then 
does not run any risk from playing B). 
 
 

4. BINMORE AND SAMUELSON’S GAME 
 

Binmore and Samuelson (2001) modify the EMG by adding the following realistic 
assumptions. First, communication is voluntary. Second, paying attention to messages 
and sending messages is costly. However, just as is the case in game R, 
communication takes the form of proofs of receipt. Formally: 
 
Definition 2: 
Define as game BS the EMG with the following restriction on the action sets of player 

{ }2,1∈i : 
(i) ( ) 0}0{ 1 ==−t

i
t
i rs  for all { }iziit ),...,3(),1( ++= . 

 
It should be noted that game BS differs from Binmore and Samuelson’s (2001) 

original game, in that in game BS it is possible for a player to pay attention at stage τ 
even though he or she did not pay attention at stage t, with t>τ . In Binmore and 
Samuelson, on the contrary, players decide on an attention span. Our reason for 
modifying Binmore and Samuelson’s game is with a view to the game treated in 
Section 5. 

A first step to analyzing game BS is to show that, in any candidate pure-strategy 
separating equilibrium of this game, the players’ attention paying, signaling and 
action paying decisions take on a certain form. In particular, Proposition 2 shows that 
in any such equilibrium, players pay attention at contiguous stages. At the stages 
where the other player pays attention, each player sends a proof of receipt when 
receiving a message. Finally, each player only acts when receiving the maximum 
number of messages that the equilibrium allows him or her to receive. 
 
PROPOSITION 2. For any pure-strategy separating equilibrium in game BS in which 

( ) Are z ==+ }0{* 1
1

1
1 , for { }2,1∈i  and for each *z  such that zz ≤≤ *2 , it is met that 

(i) 0*iL  such that z
i

z
i

z
i L ** ** λλ == , 1**0 ** ≤−≤ z

j
z
i λλ  (where ij ≠ ); 

(ii) ( ) 1}1{* 1 ==−t
i

t
i rs  for all { }*),...,3(),1( iziit ++∈ ; 

(iii) ( ) BRSa z
i

z
i

z
i

z
i

z
i ==∧=+ }{}{* ****1 ρσ ,  ( ) ARSa z

i
z
i

z
i

z
i

z
i =<∨<+ }{}{* ****1 ρσ . 

Proof: 
See Appendix. 
 

By comparing with the definition of game R (Definition 1), it becomes clear from 
Proposition 2 that, in any pure-strategy separating equilibrium of game BS where 
messages are sent with positive probability up to stage *z , the players’ voluntary 
attention paying and signaling decisions replicate the automatic decisions for a game 
R with a z that happens to be equal to the *z  of the given equilibrium in game BS. 
The assumption that paying attention is costly assures that player i does not pay 
attention at stages where player j does not send messages; the fact that player i does 
not pay attention at certain stages in turn assures that player j will not send messages 
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at these stages. The difference with game R is that in game BS, it can be the case that 
zz <*  (where the latter z again refers to game BS). 

Assume now that player i has up to stage *z  followed the attention and signaling 
strategies specified in Proposition 2, and faces a player j who does the same. Then it is 
clear that we again can apply Proposition 1, meaning that in any candidate 
equilibrium where players send messages with positive probability up to stage *z , 
each player only plays B when receiving the maximum number of messages that he or 
she can receive up to stage *z . Put otherwise, if a separating equilibrium exists in 
game BS where players send messages up to stage *z , then the action decisions in 
this equilibrium completely replicate the action decisions in the unique separating 
equilibrium of a game R with a z that happens to be equal to *z . 

In order to prove that such separating equilibria indeed do exist in game BS, it 
remains to be shown that the specified attention paying and signaling decisions are 
mutual best responses. This is shown in Proposition 3 for arbitrarily small c and d 
(contrary to Binmore and Samuelson (2001), who also consider larger cost levels). 
 
PROPOSITION 3: For sufficiently small c and d, for each [ ]zz ,...,3,2*∈ , in game BS 
a strict separating Nash equilibrium of the form described in Proposition 2 exists. 
Proof: 
See Appendix. 
 

The intuition reflected in the first paragraph of this paper continues to apply to 
game BS. However, the intuition only applies for a given number of messages that the 
players expect each other to send. It is thus players’ mutual expectations that keep 
them locked into requiring a large number of confirmations, and confirmations of 
confirmations from each other. Intuitively, if Rowena believes that Colin only goes to 
the cinema when having received a large number of messages, then Rowena will in 
turn require confirmations that Colin has received these messages before she is 
willing to go to the cinema; Colin in turn will want to receive confirmations of the 
confirmations. This justifies Rowena’s beliefs that Colin will only go to the cinema 
when receiving a certain number of messages, making the circle round. 

The advantage in comparison to game R is that Pareto superior equilibria with 
2* =z  and 3* =z  now exist, whatever the size of z. However, unless the costs of 

sending messages and/or paying attention to messages are large, these Pareto superior 
equilibria exist side by side with Pareto inferior equilibria, where a large number of 
confirmations are sent back and forth. The reason that, contrary to Binmore and 
Samuelson (2001), we assume arbitrarily small message sending and attention paying 
costs is that we focus not on signaling and attention costs as a factor limiting the 
degree of inefficiency, but focus on the use of so-called false acknowledgements 
(messages sent when no preceding message was received) as a source of efficiency. A 
first step towards this result is made in Section 5. 
 
 

5. ELECTRONIC MAIL GAME WITHOUT PROOFS OF RECEIPT 
 

The results obtained for games R and BS are based on the assumption that players 
communicate by means of proofs of receipt. While interlocutors sometimes use 
special-purpose acknowledgements, e.g. by repeating or paraphrasing the last 
speaker’s utterance, thus providing a proof of understanding, they also use general-
purpose acknowledgements such as “OK!” or “Uh huh.” which do not provide any 
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proof that the last utterance was understood (Clark, 1996).3 We now check whether 
the same equilibria continue to exist in an EMG where a received message does not 
provide any proof that the immediately preceding message was received. This means 
that we study the game set out in Section 2 without any restriction on the action sets. 
 
Definition 3: 
Define as game EMG* the EMG without any restrictions on the action sets. 
 

The particularity of game EMG* is that, at the relevant stages, each player is able to 
send a message even though he or she did not receive an immediately preceding 
message.  Thus, Colin is able to say ‘OK’ even though he did not receive a message 
from Rowena. We refer to the case where a message is sent even though no 
immediately preceding message was received as the sending of a false 
acknowledgement. A receiver who receives the message at stage t even though he did 
not send the message at stage )1( −t  is said to detect a false acknowledgement. 
Formally: 
 
Definition 4: 
(i) If ( ) 1}1{ 1 ==−t

i
t
i rs , then we say that player i sends a true acknowledgement at 

stage t; if ( ) 1}0{ 1 ==−t
i

t
i rs , then we say that player i sends a false 

acknowledgement at stage t (where *2 zt ≤≤ ); 
(ii) If }0{ 1 =−t

js  and }1{ =t
ir , then we say that player j detects a false 

acknowledgement at stage t (where *3 zt ≤≤ ). 
 

We now show that the same type of separating Nash equilibria as exist in games R 
and BS continue to exist in game EMG*. The crucial feature for the existence of such 
equilibria is that players punish detected false acknowledgements in a specific 
manner. Before actually showing the existence of these equilibria, we first derive a 
result about the form which punishments should take.4 
 
PROPOSITION 4. In game EMG*, let player i follow the strategy described in (i)-
(iii) of Proposition 2, with the addition that ( ) 0}{}{* 1122 =<∨< −−−− t

i
t
i

t
i

t
i

t
i RSs ρσ  for 

all { }*),...,3(),1( iziit ++= . Then: 
(i) For 2=i , player 2’s strategy stops player 1 from sending a false 

acknowledgement at stage 2. For *
jzz = , player i’s strategy stops player j from 

sending a false acknowledgements at stage *
jz . However, player i’s strategy 

described does not stop player j from sending false acknowledgements at any 
other stages; 

                                                 
3 Many married people will corroborate this observation. 
4 It should be noted that, while the analysis of game R and game BS identified the unique pure-strategy 
separating equilibria, this is not the case for game EMG*. For instance, as shown in De Jaegher (2005), 
for certain levels of the attention-paying and message-sending costs, and for certain levels of noise, 
equilibria exists where the player 1 repeats his message up to a certain maximum number of times 
when player 2 does not confirm it. Equilibria of these type may also be the Pareto-efficient equilibria. 
The purpose in the current paper is not derive all separating equilibria, but merely to show that among 
those equilibria of the same type as those in games R and games BS, the Pareto inferior ones do not 
survive standard refinements, while the Pareto superior ones do. 
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(ii) Player i’s strategy supports a strict pure-strategy separating Nash equilibrium for 
2* =z  and a weak pure-strategy separating Nash equilibrium for 3* =z , but 

does not support any separating Nash equilibria for 3* >z . 
Proof: 
See Appendix. 
 

The intuition for this result is the following. Suppose that Rowena catches Colin 
playing false, and saying ‘OK’ even though Rowena did not say anything (false 
acknowledgement).  Rowena now punishes Colin by staying at home, even though 
there is a good movie on at the cinema. Suppose additionally that Rowena then does 
not confirm receipt of Colin’s ‘OK’ message. When not receiving a confirmation of 
receipt of his ‘OK’ message, Colin now receives a strong cue that he was caught 
playing false, and that Rowena is going to stay home. When on the contrary receiving 
a confirmation of receipt of his ‘OK’ message, Colin knows that his false 
acknowledgement went undetected, and that he can still meet Rowena at the cinema. 
Rowena’s punishment is not effective, because she is as it were warning Colin of an 
impending punishment, thus taking much of its power away. 

Note that the issue of how to respond to detected false acknowledgements does not 
arise for equilibria where at most one or two messages are sent. For this reason, these 
equilibria continue to exist when players do not reply to detected false 
acknowledgements. The equilibrium where at most two messages are sent is weak, 
however, because it involves a weak best response by player 1 to the undetected event 
of observing a false acknowledgement. 

As we now go on to show, if player i when detecting a false acknowledgement 
adopts exactly the same signaling strategy as he or she would have had he or she not 
detected the acknowledgement to be false, but then still plays A, then separating 
equilibria replicating those in games R and BS exist in game EMG*.  
 
PROPOSITION 5. For sufficiently small c and d, for 2* =z  a strict pure-strategy 
separating Nash equilibrium exists where, and for each [ ]zz ,...,4,3*∈  a weak pure-
strategy separating Nash equilibrium exists where: 
(i) 0*iL  such that z

i
z
i

z
i L ** ** λλ == , 1**0 ** ≤−≤ z

j
z
i λλ ; 

(ii) ( ) 1}1(* 1 ==−t
i

t
i rs  and  ( ) 0}0{* 1 ==−t

i
t
i rs  for all { }*),...,3(),1( iziit ++= , 0* =t

is  
for all  *

izt > ; 
(iii) ( ) BRSe z

i
z
i

z
i

z
i

z
i ==∧=+ }{}{* ****1 ρσ ,  ( ) ARSe z

i
z
i

z
i

z
i

z
i =<∨<+ }{}{* ****1 ρσ , 

with { }2,1∈i . 
Proof: 
See Appendix. 
 

Intuitively, if Rowena wants to stop Colin from saying ‘OK’ even though he did not 
hear what Rowena was saying, Rowena should not only not show up at the cinema, 
but should also still confirm receipt of Colin’s false acknowledgement. As Colin now 
receives a confirmation of receipt both when sending a true acknowledgement and 
when sending a false one, Colin no longer receives information as to whether his false 
acknowledgement was detected, and faces the possible cost of ending up at the 
cinema alone.  

Yet, while the separating equilibria described in Proposition 5 for game EMG* 
replicate those of games R and BS, the difference is that the Pareto inefficient 
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equilibria in game EMG* do not survive standard refinements of the Nash 
equilibrium. In particular: 
 
 
PROPOSITION 6. In game EMG*, only pure-strategy separating Nash equilibria  
with 5*≤z  are perfect Bayesian equilibria.  
Proof: 
See Appendix. 
 

The intuition for Proposition 6 is simple. Suppose that Rowena has observed that 
there is a good movie on at the cinema, but that the fact that she has not received a 
confirmation from Colin causes her not to send any further messages. Still, out of the 
blue, at some later stage, she receives a confirmation of receipt from Colin. Rowena is 
now supposed to stay at home, but to still reply to this message. However, since there 
is no good movie on at home, Rowena obtains payoff 0 whatever Colin’s action. 
Therefore, she does not have any incentive to reply to a false acknowledgement. It is 
easy to check that a situation where Rowena has observed that there is a good movie 
on at the cinema, and receives a false acknowledgement to which she should reply 
only occurs for separating equilibria with 6*≥z . 

Consider, however, the Nash equilibrium in Proposition 5 where Rowena sends a 
confirmation of Colin’s confirmation of her invitation ( 4* =z ). Let Rowena observe 
that there are no good movies on at the cinema, let her not send an invitation, but let 
her still get a confirmation of receipt. In this case, it does make sense for Rowena to 
confirm receipt of this false acknowledgement, and then to stay at home. The reason 
is that Rowena may believe that she has encountered a freak uninformed player who 
also sends a message when not receiving an invitation, and only stays at home when 
receiving a confirmation of this message. 

Similarly, consider the Nash equilibrium in Proposition 5 where Rowena sends an 
invitation to Colin, followed by a confirmation by Colin, where Rowena again 
confirms receipt of this confirmation, and where Colin finally confirms receipt of the 
confirmation of the confirmation ( 5* =z ). Let Colin now not receive an invitation, 
not confirm receipt of any invitation, but still receive a false acknowledgement from 
Rowena. It makes sense now for Colin to acknowledge receipt of this false 
acknowledgement, and then to still stay at home. This is because Colin could 
conclude that he has encountered a freak informed player who sends a false 
acknowledgement when having observed that there is no good movie on at the 
cinema, and only stays at home when receiving a confirmation of this message. 

Still, the equilibria with 4* =z  and 5* =z  do not survive another standard 
refinement of the Nash equilibrium: 
 
PROPOSITION 7. In game EMG*, only pure-strategy separating Nash equilibria  
with 3* ≤z  (= Pareto-efficient equilibria)  meet the intuitive criterion (Cho and 
Kreps, 1987). 
Proof: See Appendix. 
 

The following problem exists with separating equilibria where 4* =z  or 5* =z . 
Suppose that Colin does not receive an invitation, does not confirm receipt of any 
invitation, but still receives a false acknowledgement of his supposed confirmation. 
Then the equilibrium described in Proposition 5 calls for Colin to stay at home. 
However, this requires Colin to believe that Rowena is planning to stay home, even 
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though she invested in the cost of sending a message. But Rowena has no reason to 
send a message if she is planning to stay home. If she observed that there only is a 
good movie on television and not at the cinema, she could have induced Colin to stay 
home without sending a message; if she observed that the there is a good movie on at 
the cinema, she has no reason to send a message, unless she hopes that this increases 
the probability that Colin shows up at the cinema. This argument in fact applies to any 
equilibrium where detected false acknowledgements are punished by playing A. A 
rational player detecting a false acknowledgement from another rational player should 
reason that this player saw an opportunity to benefit from coordinated action, and that 
this player expects to achieve coordinated action. Rather than as an act of cheating, a 
false acknowledgement should be interpreted as an attempt to still achieve 
coordinated action.  

The reason why the equilibrium where Rowena simply sends an invitation to Colin 
( 2* =z ) survives refinements is that the issue of false acknowledgements is not 
relevant then, as acknowledgements are not sent in the first place. The reason why the 
equilibrium where Rowena sends an invitation followed by a confirmation by Colin 
( 3* =z ) survives refinements is that Colin prefers not send a false acknowledgement 
whatever Rowena’s response to it. 
 
 

6. ELECTRONIC MAIL GAME WITH OUT-OF-EQUILIBRIUM MESSAGES 
 

Section 5 has shown that, if players use messages that are not proofs of receipt, then 
only Pareto efficient equilibria survive standard refinements of the Nash equilibrium. 
As an argument in favor of Pareto-efficient equilibria, this is incomplete, however. 
The analysis in Section 5 is based on the assumption that players can only use a single 
type of messages, which are not proofs of receipt. More realistically, players can 
choose from a set of messages, including messages that take the form of proofs of 
receipt. If players then happen to coordinate on using proofs of receipt, then Pareto 
inefficient equilibria would still seem to exist. Fortunately, under the assumption that 
paying attention at a certain stage means that one detects all messages received at this 
stage, unused messages that do not take the form of proofs of receipt now play a 
similar role in destabilizing Pareto inefficient equilibria as do false acknowledgements 
in game EMG*. In particular, by an analogous argument as in Proposition 7, 
separating equilibria with 3* >z  do not meet the intuitive criterion (Cho and Kreps, 
1987). Clearly, Rowena only has an incentive to deviate from the equilibrium and 
send a costly out-of-equilibrium message if she has observed that there is a good 
movie on a the cinema, and if she intends to go (expecting that Colin is also likely to 
go to the cinema when receiving the message). Similarly, Colin, once he has received 
at least one message from Rowena (and thereby finds out that there is a good movie 
on at the cinema), only has an incentive to send a costly out-of-equilibrium message if 
he intends to go to the cinema (expecting that Rowena is also likely to go to the 
cinema when receiving the message). 

Intuitively, when player i receives a message in spite of the fact that the message 
exchange was interrupted, then player i should not interpret this as a signal that player 
j does not want to cooperate, but on the contrary as a signal that player j still wants to 
cooperate, in spite of the interrupted message exchange. Clark (1996, pp.284-285) 
refers to such a process as repair (of the interrupted message exchange), and to such 
an out-of-equilibrium message as a request for repair. 
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A formal proof of this intuition requires modeling a variant of game BS, where on 
top of proofs of receipt, players can at each relevant stage send an additional message 
that is not a proof of receipt. This exercise is not undertaken, as it leads to a 
proposition and a proof very similar to Proposition 7 and its proof. 
 
 
7. EVOLUTIONARY STABILITY OF SEPARATING EQUILIBRIA IN THE EMG 
 

Let us now look at the evolutionary stability of the equilibria derived for the several 
variants of the EMG treated in this paper. The underlying thought is that the EMG is 
either symmetrized into a so-called asymmetric contest (Selten, 1980), such that we 
have a single population of players to whom the role of player 1 or player 2 is 
attributed. Alternatively, we have an asymmetric population game, with a population 
of type 1 players and a population of type 2 players. 

 An immediate result is that all Nash equilibria described in Propositions 2 and 3 are 
evolutionary stable strategies (ESS; see Maynard Smith and Price (1979) and Selten 
(1980) for this concept in the case of one population, and see e.g. Swinkels (1992) for 
the case of multiple populations), as they are all strict Nash equilibria (see Selten, 
1980 for this in result in the case of an asymmetric contest; see e.g. Swinkels (1992) 
for this result in the case of an asymmetric population game). We only have strict 
separating Nash equilibria in these games because, even if player i deviates from the 
equilibrium path, it is impossible for player i to produce an observed history for 
player j that does not already occur with positive probability in equilibrium. We 
therefore do not have the problem that responses to unobserved histories are 
necessarily weak best responses. A first reason for this is that messages in games R 
and BS are assumed to take the form of proofs of receipt. It is not possible for player i 
to send an off-the-equilibrium-path false acknowledgement in this case. A second 
reason is the fact that players do not pay attention at stages where messages are not 
sent with positive probability in equilibrium, and this either by definition (game R), or 
because the players’ mutual expectations make them do so (game BS). 

In game EMG*, the fact that players do not pay attention at stages where messages 
are not sent with positive probability in equilibrium, again assures that the separating 
equilibrium with 2* =z  described in Proposition 5 is a strict Nash equilibrium, and 
therefore an ESS. Separating equilibria with 3* ≥z , however, are weak equilibria; 
given that messages no longer take the form of proofs of receipt, it is possible for 
player i to send a false acknowledgement, and to produce an observed history for 
player j that in equilibrium should be observed with zero probability. The response of 
player j to such an off-the-equilibrium-path observed history is necessarily a weak 
best response, and therefore the separating Nash equilibria described in Proposition 5 
with 3* ≥z  for EMG* are not ESS. 

Still, the equilibrium with 3* =z  described in Proposition 5 for EMG* can be 
considered to be evolutionary stable by the fact that it is part of a so-called strict 
equilibrium set (Balkenborg 1993; Balkenborg and Schlag 2006). A set of Nash 
equilibria is called a strict equilibrium set if each equilibrium in the set has the 
following property: if a player i deviates from a Nash equilibrium in the set by using 
any alternative best reply to player j’s equilibrium strategy, then this only leads to an 
other Nash equilibrium in the set being played. The separating equilibrium with 

3* =z  described in Proposition 5 is thus part of a strict equilibrium set if every 
alternative best response of player 1 to a detected false acknowledgement still induces 
player 2 not to send a false acknowledgement, so that we have a separating Nash 
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equilibrium for each alternative best response by player 1 to an undetected false 
acknowledgement. As shown in the proof to Proposition 8 below, this indeed turns 
out to be the case for the equilibrium with 3* =z . Intuitively, when player 2 does not 
receive a message, then this may occur in spite of the fact that state b occurs, and may 
be caused by the fact that player 1’s message got lost. However, it is more likely that 
state a occurs, in which case player 2 can obtain benefit M by not sending any 
message. It follows that player 2 should not send any message. 

The fact that the Nash equilibrium with 3* =z  is part of a strict equilibrium set in 
turn implies that this equilibrium is part of a so-called evolutionary stable set (ES set; 
see Thomas (1985) for ES sets in the case of the one-population approach; see 
Balkenborg and Schlag (1998) for ES sets in the case of a multi-population approach). 
An ES set is a set of strategies such that all strategies not belonging to the set are 
driven out by strategies belonging to the set. The result that all strict equilibrium sets 
are ES sets is due to Balkenborg and Schlag (1995) for the one-population approach, 
and to Balkenborg and Schlag (1998) for the multi-population approach. 

In the case of equilibria with 3* >z , however, it occurs that the player i who 
considers sending a false acknowledgement already knows that state b occurs. As 
long as the other player employs the alternative weak best response of playing B when 
detecting a false acknowledgement, we no longer have an equilibrium. It follows that 
these equilibria are not part of a strict equilibrium set, and by extension not part of ES 
sets. These results are summarized in Proposition 8. 
 
PROPOSITION 8. 
(i) The separating Nash equilibria described in Propositions 1 to 3 for games R and 

BS, as well as the separating Nash equilibrium with 2* =z  in game EMG*, are 
all ESS. 

(ii) The separating Nash equilibrium with 3* =z  described in Proposition 5 for game 
EMG* is part of an ES set. 

(iii)The separating Nash equilibria of game EMG* with 3* >z  are not ESS, and are 
not part of ES sets. 

Proof: 
See Appendix. 
 
 

8. CONCLUSION 
 

In the example in the introduction to this paper of two game theorists trying to go 
on a date, for them to meet each other at the cinema most of the time, the players 
should have common knowledge about each other’s conjectures (Aumann and 
Brandenburger, 1995). But this standard type of interactive knowledge may be only 
one of two types of interactive knowledge that is being used in this game. Given that 
Rowena’s message that she wants to go on a date with Colin sometimes gets lost, the 
players may want to achieve some degree of interactive knowledge about the fact that 
Rowena wants to take Colin on a date. By confirming Rowena’s invitation, Colin 
signals to the Rowena that he knows that she wants to take him on a date. By 
acknowledging receipt of Colin’s confirmation, Colin signals to Rowena that he 
knows that she knows that he wants to take her on a date. Et cetera. In linguistics, 
such a process is referred to as grounding (Clark and Schaefer, 1987). 

In Clark and Schaefer’s model of grounding (1987), in principle the grounding 
process could never stop. Apparently, with every new acknowledgement sent, 
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Rowena and Colin achieve a higher degree of interactive knowledge about the fact 
that she wants to take him on a date. Yet, as shown by Rubinstein (1989), the players 
are in fact best off when at most a single acknowledgement is sent.5 Still, Binmore 
and Samuelson (2001) argue that the players’ mutual expectations can lock them into 
requiring an inefficiently large number of confirmations and confirmations of 
confirmations from each other. Our analysis shows that this result hinges on the 
assumption that a message can only be acknowledged if it was actually received. And 
it is true that, in everyday conversation, people sometimes prove that they received a 
message, e.g. by paraphrasing that message (Clark, 1996, p.228). 

Yet, people also use general-purpose acknowledgements such as ‘I see’ or ‘uh huh’, 
which do not provide any evidence that a message was actually received (ibid.). Our 
analysis shows that, if players use such general-purpose acknowledgements, then at 
most one acknowledgement will be sent (Section 5). Moreover, grounding processes 
also involve requests for repair, where an interlocutor signals that he has not 
understood a preceding signal (Clark, 1996, pp.284-285). As shown in Section 6, 
requests for repair cause the use of a long sequence of confirmations and 
confirmations of confirmations to be unstable even for the case where players are 
currently only communicating by means of proofs of receipt. 

Binmore and Samuelson’s (2001) argue that the existence of Pareto inefficient 
separating equilibria where players require a large number of confirmations, and 
confirmations of confirmations from one another, explains why people sometimes get 
locked into embarrassingly long conversations to achieve coordinated action. Yet, 
while the connections between grounding and the concept of common knowledge (“I 
know that you know that I know that …”) naturally leads one to consider positive 
acknowledgements, grounding may not exclusively take the form of positive 
acknowledgements. This is in particular the case for our modified electronic mail 
game, where each player in turn gets the opportunity of sending a single message, in 
whatever circumstances he chooses. 

Consider the case where Colin tells Rowena that he wants to take her on a date, 
after which Rowena confirms Colin’s invitation. Instead of only sending a message 
when receiving the confirmation (positive acknowledgement), Colin may instead send 
a message when not receiving a confirmation (negative acknowledgement), and this in 
order to still try and obtain a confirmation. In fact, Colin could repeat this process for 
a number of times, before giving up, and deciding to stay at home. 

Also, consider the case where Colin sends a single message. If Rowena does not 
receive the message, and considers it relatively likely that Colin wants to take here to 
see a movie, and considers it relatively likely that messages get lost, she may send a 
negative acknowledgement to Colin, upon which Colin repeats his invitation. Again, 
Rowena could send a few negative acknowledgements, until she is satisfied that there 
is no good movie on. In the unlikely event of several misunderstandings, the 
grounding process may therefore be long. The circumstances under which such 
equilibria involving negative acknowledgements exist are derived in De Jaegher 
(2005). 
 
 
                                                 
5 The solution to this paradox is to use the notion of common p-belief (Monderer and Samet, 1989). An 
event is common p-belief if everyone believes it with probability at least p; everyone believes with 
probability at least p that everyone believes it with probability at least p; and so on. It can be checked 
now that, whether a total of one or more messages is sent in the electronic mail game, it remains 
common p-belief that the state b occurs. 
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APPENDIX 
 
Further notation: 

( )t
i

t
i hFπ~  denotes players i’s beliefs at stage t that event F occurs after having 

observed history t
ih  (where we sometimes summarize the observed history by the 

occurrence of one or more events). Denote by ( )t
i

t
i

t
i hxEU  player i’s expected utility at 

stage t of adopting strategy t
ix  after having observed history t

ih . 
Player i’s observed history up to stage )1( −t  is denoted ),...,,,( 121 −++= t

i
i

i
i
i

i
i

t
i rrsrh . 

Players’ strategies can be denoted as a function of such an observed history, e.g. 
function ( )),...,,,( 1

1
3

1
2
1

1
11

−= tt rrsrs  relates i’s signaling decision to the observed history 
up to t. ( ))1(...,1 =

ts  is the function denoting i’s signaling decision whenever i has 
received the message at )1( −t . 

 
 
Proof of Proposition 1: 

Steps 1 and 2 show that, in any pure-strategy separating equilibrium of game R, 
( ) ARe z

i
z
i

z
i =<+ ρ1*  , Step 3 shows that ( ) BRe z

i
z
i

z
i ==+ ρ1* . 

Step 1. Note that { } { }( )
)1()1(

)1(00~ 2
2

1
1

1
2 ψ

π
−+−

−
===+

pp
prrz . Given that 

{ }( ) Are z ==+ 0* 1
1

1
1 , it follows that { }( )02

2
1

2
1

2 ==++ rAeEU zz  = 
)1()1(

)1(
ψ−+−

−
pp

Mp . 

{ }( )02
2

1
2

1
2 ==++ rBeEU zz  is no higher than 

)1()1(
)1()1(

ψ
ψ

−+−
−−−

pp
LpMp . It follows that 

{ }( ) Are z ==+ 0* 2
2

1
2 , as by (1) and (2), the former expected utility is smaller than the 

latter. 
Step 2. Let ( ),...0,1,1,...),,( 3

1
2
1

1
1

1
1 ==+ rsrhz  (where we suppress the attention paying 

decisions when denoting observed histories). Then 

{ }( )== ++ 1
1

2
2

1
1 0~ zz hrπ =

−+−
−

)1()1(
)1(

ψψψ
ψ  

ψ+1
1 , and ( ) 01
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1
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1 == +++ zzz hAeEU . As by 
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1
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1
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ψ
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LM . It follows 

that ( ) Ahe zz =++ 1
1

1
1* , as by (2), 0

1
<

+
−
ψ

ψ LM . Using this fact, by an identical argument, 

one can now show that ( ) Ae z =+ ,...)0,1,1(* 1
2 , which again can be used to show that  

( ) Ae z =+ ,...)0,1,1,1(* 1
1 , etc. In general, { }( ) ARe z

i
z
i

z
i =<+ ρ1* . 

Step 3. By Steps 1 and 2, a pure-strategy separating Nash equilibrium only can exist 
when it is the case that { }( ) BRe z

i
z
i

z
i ==+ ρ1* . To show that such an equilibrium indeed 

exists, first, consider the case where )1( −= zzi . Then { }( ) 1~ 11 ===++ z
i

z
i

z
j

z
i RBe ρπ , 

and { }( ) BRe z
i

z
i

z
i ==+ ρ1  is indeed a best response for player i. Second, consider the 
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case zzi = . In this case, { }( ) ψρπ ===++ z
i

z
i

z
j

z
i RBe 11~ , and { }( ) BRe z

i
z
i

z
i ==+ ρ1  is a 

best response by (3). 
 
Proof of Proposition 2: 
Steps 1 and 2 show part (i) of Proposition 2; Step 1 shows that if player i in any pure-
strategy equilibrium pays attention at a certain stage, he or she will also pay attention 
at all preceding stages where he or she could have paid attention. Step 2 shows that if 
player i pays attention at a certain stage, player j (where ij ≠ ) will pay attention at all 
preceding stages where he or she could have paid attention. Step 3 shows part (ii). 
Step 4 shows part (iii). 

Step 1. In game BS, by definition 00 1 =⇒= +t
i

t
i sl . The fact that 01 =+t

is  again 
implies that 0,0:)1( ==+≥∀ τττ ij rst , where ij ≠ . It follows that if 0* =t

il , then 

0*: =>∀ ττ ilt . 
Step 2. In game BS, by definition, 0:0 =>∀⇒= ττ i

t
i stl . But if player i adopts a 

strategy such that 0: =>∀ ττ ist , then it is a best response for player j (where ij ≠ ) 
to adopt a strategy where 0: =>∀ ττ jlt .  

By Steps 1 and 2, in any pure-strategy separating equilibrium of game BS, the 
players only pay attention at a range of contiguous stages.  

Step 3. If player i puts 0=t
il , then it is a best response for player j (where ij ≠ ) to 

put 0=t
js . If player j puts 0=t

js , it is a best response for player i to put 0=t
il . It 

follows that, in any pure-strategy separating equilibrium of game BS, if 1* =t
il , then 

{ }( ) 11* 1 ==−t
j

t
j rs . 

Steps 1 to 3 together show that, in any pure-strategy separating equilibrium of game 
BS, player i sends a proof of receipt for each stage at which player j pays attention. 

Step 4: Part (iii) of Proposition 2 follows by an argument identical to the one made 
for Proposition 1. 
 
 
Proof of Proposition 3: 

Let player j follow the strategy of the candidate equilibrium corresponding to a 
given *z . We show that it is a best response then for player i (where ji ≠ ) to follow 
the corresponding candidate equilibrium strategy. 

Steps 1 and 2 show that, when player j follows the candidate equilibrium, it is either 
a best response for player i to pay attention at least at all stages preceding the stages 
where player j requires a message in order to play B, or it is a best response for i not 
to pay attention at all. Step 3 shows that, for sufficiently small attention paying and 
signaling costs, the former is a best response. Step 4 shows that, if player j is the last 
who can send a message in equilibrium, then it is a best response for player i to pay 
attention at the stage where this message is sent. 

Step 1. Let ** z
i

z
i S<λ . Then by definition, ** z

i
z
i S<σ , from which it follows that 

** z
j

z
j R<ρ . As { }( ) ARe z

j
z
j

z
j =<+ **1* ρ , it follows that { }( ) ASe z

i
z
i

z
i =<+ **1 λ . Given that 

0>c , it follows that it is never a best response for player i to put **0 z
i

z
i S<< λ . Thus, 

in one candidate best response, it is the case that 0* =z
iλ , 0* =z

iσ , Aez
i =+1 . 



 19

Step 2. Let ** z
i

z
i S=λ , *** z

i
z
i

z
i RS ≤≤ λ . 

Case 1. Let ** z
i

z
i S=σ . Consider first the case where ** z

i
z
i R=λ . Then by Proposition 

1, { } { }( ) BRSe z
i

z
i

z
i

z
i

z
i ==∧=+ ****1 ρσ . Second, consider the case not covered by 

Proposition 1 where ** zz j =  and [ ]1*** −== z
i

z
i

z
i RSλ . Then 

{ } [ ]{ }( ) ψρσπ =−=∧==++ 1~ ****11 z
i

z
i

z
i

z
i

z
j

z
i RSBe , and by (3), 

{ } [ ]{ }( ) BRSe z
i

z
i

z
i

z
i

z
i =−=∧= 1**** ρσ . 
Case 2. Let 1+z

ih  be such that  *z
iii S σσ ττ == , with *

iz<τ . First, 1+z
ih  may occur 

because *11 z
iii R ρρ ττ == −− . By Proposition 1, it is then the case that  ( ) Ahe z

i
z
i =++ 11 . 

Second, not covered in Proposition 1, 1+z
ih  may occur in spite of the fact that 

1*1 ++ == ττ ρρ i
z
ii R . As ** z

i
z
i S<σ , we have ** z

j
z
j R<ρ . As { }( ) ARe z

j
z
j

z
j =<+ **1* ρ , it is 

met that ( ) Ahe z
i

z
i =++ 11 . 

It follows that an alternative candidate best response to the one derived in Step 1 
has *z

iλ  such that *** z
i

z
i

z
i RS ≤≤ λ ; ( ) 11,...,0 =i

t
i Ls , ( ) 00,...,0 =i

t
i Ls  for all 

{ }iziit ),...,3(),1( ++∈ ; { } { }( ) BSe z
i

z
i

z
i

z
i

z
i ==∧=+ ****1 λρσ , and 

{ } { }( ) ASe z
i

z
i

z
i

z
i

z
i =<∨<+ ****1 λρσ . 
Step 3. For sufficiently small c and d, player i prefers the responses derived in Step 

2 to the one derived in Step 1, as only the response in Step 2 yields a nonzero 
expected payoff. 

Step 4. Let ** zz j = . We have shown in Step 3 that player i prefers either 

putting ** z
i

z
i S=λ  or putting ** z

i
z
i R=λ  to putting 0* =z

iλ . It remains to be shown that 
player i prefers putting ** z

i
z
i R=λ  to putting ** z

i
z
i S=λ . Note in this respect that player 

i’s attention paying and signaling decisions are identical up to stage )1*( −z  for these 
two strategies. In order to compare the expected payoff of these two strategies, it 
therefore suffices to compare [ ]( )***1*1* 1 z

i
z
i

z
i

z
i

z
i RSEU =−=−− λρ  and 

[ ]( )***1*1* 1 z
i

z
i

z
i

z
i

z
i SSEU =−=−− λρ . Net of attention paying and signaling costs, the 

former equals M2ψ , the latter equals [ ]LM )1( ψψ −− , so that for sufficiently small c 
and d, player i will choose ** z

i
z
i R=λ . 

 
 
Proof of Proposition 4: 

Assume that player j follows the candidate equilibrium strategy for a given z*; our 
approach again is to check whether it is a best response for player i (where ji ≠ ) to 
follow the candidate equilibrium strategy as well. 

Step 1. Propositions 1 to 3 can be used to show that, in the set of strategy profiles 
with player i’s action sets restricted in such a way that { }( ) 001 ==−t

i
t
i rs  and 

{ }( ) 001 ==−t
i

t
i ls  for all { }*),...,3(),1( iziit ++= , the candidate equilibrium strategy is a 

best response for player i. However, in game EMG*, the action sets are not restricted. 
It follows that it remains to be checked whether { }( ) 001 ==−t

i
t
i rs  is a best response, 

and whether it is not a best response to put { }( ) 101 ==−t
i

t
i ls . However, if a player i 
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who has put 11 =−t
il  prefers to put { }( ) 001 ==−t

i
t
i rs  and { }( ) 111 ==−t

i
t
i rs , then for 

sufficiently small c this player i will put 11 =−t
il . This is why we further assume that 

** z
i

z
i

z
i L== λλ . 
Step 2 shows that, if player 2 is following any candidate equilibrium, then 
{ }( ) 001

1
2
1 ==rs . Step 3 shows that, if player 1 is following the candidate equilibrium 

with 3* =z , then { }( ) 002
2

3
2 ==rs . Step 4 shows that, in any equilibrium with 3* >z  

where ** zzi = , if player j (where ij ≠ ) follows the candidate equilibrium, then 
{ } { }( ) 001*2*3*2** ==∧== −−−− z

i
z
i

z
i

z
i

z
i rSs ρσ . Step 5, however, shows that, if player 1 is 

following a candidate equilibrium with 3* >z , then { }( ) 102
2

3
2 ==rs . Step 6 finally 

shows that, in any equilibrium with 4* >z , the candidate equilibrium strategy does 
not stop players from sending false acknowledgements at stages t with ( )1*3 −≤≤ zt . 

Step 2. Let player 2 follow the strategy of one of the candidate equilibria . Consider 
player 1’s decision whether to send the message at stage 1. Given that 

{ }( ) Are z ==+ 0* 2
2

1
2 , it is a best response for player 1 to put { }( ) 001

1
2
1 ==rs . It follows 

as well that the candidate equilibrium with 2* =z  is an equilibrium. 
Step 3. Consider the candidate separating equilibrium with 3* =z . Assume player 1 

follows the candidate equilibrium strategy. Suppose that player 2 follows the strategy 
{ }( ) 102

2
3
2 ==rs . Then by Step 1 of Proposition 1, player 2 prefers to put 
{ } { }( ) Asre ==∧= 10 3

2
2

2
4
2 . It follows that player 2 prefers to put { }( ) 002

2
3
2 ==rs . By 

Step 1 and Step 2 above, it follows that the candidate equilibrium exists. 
Step 4. Consider a candidate equilibrium with 3* >z  where ** zzi = . Let player j 

(where ij ≠ ) follow the candidate equilibrium, and let *z
ih  be such that 

2*3*2* −−− == z
i

z
i

z
i Sρσ , 01* =−z

ir . Denote by *z
iP  player i’s information set in this case. 

Given that 12* >−z
iσ  when 3* >z , and given that player j follows the candidate 

equilibrium strategy, it follows that  { } *1
1

** 0: zz
i

z hrPh ∉=∈∀ , or in other words, 
player i knows that state b occurs when observing *z

ih . It is then a best response for 
player i to put ( ) 0** =z

i
z
i hs  as it is met that 

  

 [ ] 0
1

)1(
<

+
−−−

ψ
ψψψ LLM , (A1) 

 
meaning that player i prefers to play A even after having sent a false 
acknowledgement at stage *z . 

Step 5. Consider any candidate separating equilibrium with 3* >z . Assume that 
player 1 follows the candidate equilibrium strategy. Assume that player 2 considers 
either following the candidate equilibrium strategy, or following an alternative 
strategy identical to the candidate equilibrium strategy with the exception that 

{ }( ) { }( ) 110 2
2

3
2

2
2

3
2 ==== rsrs , { } [ ]{ } { }( ) BSRre zzzzz ==∧−=∧=+ *

2
*

2
*

2
*

2
2

2
1

2 10 σρ . Let 
02

2 =r .  Net of signaling costs, player 2 obtains a higher expected payoff from the 
alternative strategy than from the candidate equilibrium given that 
 



 21

 
)1()1(

)1(
)1()1(

)1(3*

ψψ
ψ

−+−
−

>
−+−
−+−

pp
Mp

pp
Mpwp z

, (A2) 

 
where Mw ψ= if )1*(*

2 −= zz  and [ ]LMw )1( ψψ −−=  if **
2 zz = . It follows that for 

sufficiently small d, player 2 prefers to deviate from the candidate equilibrium 
strategy. 

Step 6. Consider any candidate separating equilibrium with 4* >z . Assume player 
j follows the candidate equilibrium. Let player i (with ji ≠ ) be able to receive the 
message at stage τ, where 4>τ . Assume that player i follows the candidate 
equilibrium, with the exception of the case where he or she observes 1−τh  such that 
events { }44 −− = ττρ ii R , { }33 −− = ττσ ii S , { }02 =−τ

ir  occur. Denote by 1−τ
iP  player i’s 

information set in this case. Given that 4* >z  and that player j follows the candidate 
equilibrium strategy, it follows that { } 11

1
11 0: −−− ∉=∈∀ τττ hrPh i . 

Consider the case where player i puts ( ) 011 =−− ττ hsi . Then ** z
i

z
i S<σ , meaning that 

** z
j

z
j R<ρ , { }( ) ARe z

j
z
j

z
j =<+ **1* ρ , so that player i puts Aaz

i =+1 . 

Consider instead the case where player i puts ( ) 111 =−− ττ hsi . First, if event { }1=τ
ir  

now occurs, then given that player j follows the candidate equilibrium, observed 
history 1+τ

ih  is such that player i is in exactly the same information set as with 
observed history 1' +τ

ih  such that  ττρ ii R= . Assume that player i adopts the same 
strategy when observing 1' +τ

ih  as the strategy that he adopts in the candidate 
equilibrium when observing 1+τ

ih . 
Second, if it is instead the case that 01 =+τ

ir , assume that player i follows exactly 
the same strategy as he does in the candidate equilibrium upon observed history 1'' +τ

ih  
such that events { }44 −− = ττρ ii R , { }33 −− = ττσ ii S , { }02 =−τ

ir ,{ }01 =−τ
is  and { }0=τ

ir  occur. 
Net of attention paying and signaling costs, player i’s expected payoff from putting 
( ) 111 =−− ττ hsi  (and adopting the assumed strategy) is larger than the expected payoff  

of putting ( ) 011 =−− ττ hsi  (and adopting the assumed strategy), as 
 

 0
1

2*

>
+

+−

ψ
ψ τ wz

, (A3) 

 
where Mw ψ= if )1*(* −= zzi  and [ ]LMw )1( ψψ −−=  if ** zzi = . It follows that, for 
sufficiently small c and d, it is a superior response for player i to put ( ) 111 =−− ττ hsi . 
 
 
Proof of Proposition 5: 

Assume that player j follows the candidate equilibrium for a given *z . We show 
that it is a best response then for player i (where ji ≠ ) to also follow the candidate 
equilibrium. By Step 1 of Proposition 4, in order to show this, it suffices to show that 
player i, after having decided to put ** z

i
z
i

z
i L== λλ , prefers not to send any false 

acknowledgements. If we can show this, then it immediately follows that, for 
sufficiently small c, player i will also make the right attention paying decisions. In 
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order to show that player i does not send any false acknowledgements, we show that, 
if player i has sent any number of false acknowledgements, he prefers to play A. It 
follows then immediately that it is a best response for player i not to send any false 
acknowledgements. 

For the purpose of this proof, it is useful to see player i as being able to send a 
confirmation of the message received from player j at stages { }izii ),...,7(),5( −− , 
where t

iK  is the maximum number of confirmations that player i could send up to 
stage t, and t

iκ  is the actual number of confirmations that player i sends up to stage t. 
Similarly, we can see player i as being able to receive the message from player j at 
stages { }jzii ),...,6(),4( −− , where t

iM  is the maximum number of messages that 

player i could receive from player j up to stage t, and t
im  is the actual number of 

messages that player i receives up to stage t. 
If ** z

i
z
i K<κ , then ** z

j
z
j R<ρ . As { }( ) ARe z

j
z
j

z
j =<+ **1* ρ , it follows that 

{ }( ) AKe z
i

z
i

z
i =<+ **1 κ , whether or not player i sent false acknowledgements. Look now 

at the case where ** z
i

z
i K=κ . Step 1 treats the case where player i beliefs with 

probability 1 that  11
1 =r , Step 2 the case where play i beliefs that 11

1 =r  with a 
probability smaller than 1. 

Step 1. Consider the case where 1=i , or where 2=i  and 12
2 =r . Let ττκ ii K= , but 

let [ ]vKii −= ττµ  (meaning that player i sent v false acknowledgements, where 
)1(1 −−≤≤ iKv i

τ ). Then player i prefers to put { } [ ]{ }( ) AvKKe iiii
z
j =−=∧=+ ττττ µκ1  

as  
 

 0
1

1
1

<




















+

−−







+

Lw
vv

ψ
ψ

ψ
ψ , (A4) 

 
where [ ]LMw )1( ψψ −−=  if ** zzi =  and Mw =  if )1*(* −= zzi . 

Step 2. Consider the case where 1
2
+zh  is such that 02

2 =r , *
2

*
2

zz S=σ . Then the best 
that player 2 can do by playing B is to obtain [ ]LM )1( ρρ −− , which is smaller than 
the payoff M)1( ρ−  from playing A. 

It follows from Steps 1 and 2 that a player who has sent false acknowledgements 
prefers to play A. But given that this is the case, players prefer not to send false 
acknowledgements in the first place. 
 
 
Proof of Proposition 6: 

In the equilibrium with 2* =z , the problem of detected false acknowledgements 
does not arise, and in the equilibrium with 3* =z , by Step 3 of Proposition 4, player 2 
prefers not to send a false acknowledgement, whatever player 1’s response to it. 

Step 1 checks whether the equilibrium with 4* =z  can be a perfect Bayesian 
equilibrium. Steps 2 and 3 do the same for the equilibria with 5* =z  and 5* >z  
respectively. 

Step 1. Consider a candidate equilibrium with 4* =z . Let player 1 put  
( ) 1)1,0,0(4

1 =s  and ( ) Ae =)1,1,0,0(5
1  (see Proposition 5), where we suppress players’ 
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attention paying decisions when denoting observed histories.   Such a strategy by 
player 1 is justified if, upon an observed history )1,0,0(4

1 =h , he believes that he has 
encountered a freak type of player 2 who adopts strategy ( ) Be =)0,1,0(5

2 , 
( ) Ae =)1,1,0(5

2 . 
Let player 2 follow ( ) Ae =)1,0,0(5

2 . Then given (A1) it is a best response for player 
1 to follow ( ) 0)0,1,1(4

1 =s .  Player 2’s response is justified if he believes upon an 
observed history )1,0,0(5

2 =h  that it is likely that player 1 will put Ae =5
1 .  

Step 2. Consider an equilibrium with 5* =z . Let player 2 follow ( ) 0)1,0,0(5
2 =s  and 

( ) Ae =)0,1,0,0(6
2 . Then by Step 6 of Proposition 4, player 1 will follow ( ) 1)0,1,1(4

1 =s . 
It follows that the stated strategy by player 2 cannot support an equilibrium with 

5* =z . 
Assume instead that player 2 follows the rule: ( ) 0)1,0,0(5

2 =s , and ( ) Be =)0,1,0,0(6
2  

with positive probability. Then player 1 will be at least as well off when following 
( ) 1)0,1,1(4

1 =s . 
It follows that, in order for player 1 to follow ( ) 0)0,1,1(4

1 =s , it must be the case that 
player 2 with positive probability follows the strategy ( ) 1)1,0,0(5

2 =s combined with 
( ) Ae =)1,1,0,0(6

2 . Such a response by player 2 can be justified by the following beliefs. 
Player 2 could believe, when observing ( ))1,0,0(5

2 =h , that he is facing a player 1 who 
observed ( ))0,0,0(4

1 =h  , and adopts strategy ( ) 1)0,0,0(4
1 =s , ( ) Ae =)1,1,0,0,0(6

1 , 
( ) Be =)0,1,0,0,0(6

1 . 
Step 3. Consider an equilibrium with 5* >z . Assume player 1 follows the 

candidate equilibrium strategy described in Proposition 4. Let player 2 be able to send 
the message at stage )1( −τ , where we both consider the case *z=τ , and the case 

)1*( −= zτ . Then by Step 6 of Proposition 4, it does not suffice for player 1, upon an 
observed history ( )1,0,0,...,11 =τh  to put ( ) 011 =ττ hs , Aez =+1

1  to stop player 2 from 
always following 11

2 =−τs . It follows that, with positive probability, player 1 must put 
( ) 111 =ττ hs , Aez =+1

1 . However, this is a dominated strategy for player 1, and there are 
no beliefs for player 1 that justify such a strategy. 
 
 
Proof of Proposition 7: 

Consider equilibria with 4* ≥z . Let player i detect a false acknowledgement at 
stage z*: )1,0,0(...,),,(..., *1*2*1* == −−+ z

i
z
i

z
i

z
i rsrh . If relevant ( 5*≥z ), let 4*4* −− = z

i
z
i Rρ , 

3*3* −− = z
i

z
i Sσ , meaning that player i did not detect any other false acknowledgements.  

Define a player j’s type as a pair ( )1*1* , ++ z
j

z
j eh  consisting of player j’s observed history 

)1,0,,(..., 2*3*1* −−+ = z
j

z
j

z
j srh  (with, if relevant 4*4* −− = z

j
z
j Sσ , compatible with player i’s 

observed history specified above) and of the action 1*+z
je  that he or she takes. Denote 

by T the set of all such types. 
Whether a Nash separating equilibrium does not meet the intuitive criterion is now 

checked in the following manner (Cho and Kreps, 1987). Denote by 



 24

( ))0,0(...,* 1*+z
jEU  player j’s expected payoff when following the equilibrium path, 

meaning that player j puts 0* =z
is  when observing 01* =−z

ir . 
Step 1. Look for set of types 'T  with typical element ( )1*1* , ++ z

j
z
j eh  meeting 

 
 ( ) ( )1*1*1*1* ,max)0,0(...,*

1*

++++
+

> z
j

z
j

z
j

e

z
j ehEUEU

z
i

 (A5) 

 
Thus, the set of types 'T  are then types that will never put 1* =z

js  and at the same 

time choose  1*+z
je . Denote by ''T  the set that meets '\'' TTT = . Then a rational player 

i who observes )1,0,0(...,1* =+z
ih  should conclude that player j belongs to the set  ''T . 

Given that player j belongs to the set ''T ,  player i will then choose his or her best 
response 1*'' +z

ie  (where it will turn out that the best response to all the types in ''T  is 
the same). 

Step 2. The equilibrium considered does not meet the intuitive induction criterion 
if, for a player of type '''' Tt ∈  it is met that 
 

( ) ( )*1*1* '','')0,0(....* z
i

z
j

z
j etEUEU ++ < . (A6) 

 
These two steps are now considered both for the case where 1=i  and for the case 
where 2=i , showing that the corresponding equilibria do not meet the intuitive 
criterion. LHS and RHS stand for left- and right-hand side respectively. 
(i) Consider the case where 1=i , { }11

1 =r . Consider first the types of player 2 with 
01*

2 =−zρ , *
2

*
2

zz S=σ . After having put 2*
2

2*
2

−− = zz Sσ , when again following the 
equilibrium path by putting 0*

2 =zs , the LHS of (A5) net of signaling and 

attention paying costs is 
[ ] 1*

2)1()1()1()1(
)1(

−−+−−+−

−
z

pp
Mp

σψψψψ
. For the type of 

player 2 with additionally Ae =6
2 , the LHS is equal to 

[ ] 1*
2)1()1()1()1(

)1(
−−+−−+−

−
z

pp
Mp

σψψψψ
, but includes the cost of sending an extra 

message. For the type with additionally Be =6
2 , the RHS is equal to 

[ ] [ ]
[ ] 1

1

*
2

*
2

)1()1()1()1(
)1()1()1()1(

−

−

−+−−+−

−−−+−−
z

z

pp
LMp

σ

σ

ψψψψ
ψψψψψψ , and includes the cost of sending 

an extra message. Each time, (A5) is met. 
Second, consider the types of player 2 with 12 =

tr  for some 3≥τ , 02 =τr  for 
t>τ . { }01

1 =r  is not an element of such a player’s information set. After having 
put 2*

2
2*

2
−− = zz Sσ , when again following the equilibrium path by putting 0*

2 =zs , 
the LHS of (A5) net of signaling and attention paying costs is 0. For the type with 
additionally Aez =+1*

2 , the difference between the LHS and the RHS of (A5) is d. 
It follows that the set ''T  consists of types ''t  characterized by 1*

2
+zh  such that, 

for some ( )1*−< zt , it the case that 12 =
tr , and by the action Be =6

2 .  It follows 
that Be =6

1'' , and that (A6) is met as the RHS is ( )dM −  larger than the LHS. 
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(ii) Consider the case where 2=i . First, consider the types of player 1 with 
,...)0(1*

1 =+zh . Then the RHS of (A5) is equal to M, and (A5) is necessarily met for 
all such 5

1h . Second, consider the type of player 1 with ,...)1(5
1 =h  and with 

Ae =5
1 .  (A5) is now met, as the LHS is now at least d larger than the RHS. The 

set ''T  therefore consists of types ''t  characterized by  ,...)1(1*
1 =+zh  and Be =5

1 .  
It follows that Be z =+1*

2'' , and (A6) is met as the difference between LHS and RHS 
is at least ( )dM − . 

 
 
Proof of Proposition 8: 
Proof that the equilibrium described in Proposition 5 with 3* =z  is part of an ES set 
(part (ii)): 

Let player 1 play A with probability qA when having detected a false 
acknowledgement. Consider first the case where player 2 plays A after having sent a 
false acknowledgement. Then player 2 prefers not to send a false acknowledgement as 
 

 [ ] dMqM A −
−+−
−+−

>
−+−

−
)1()1(
)1()1(

)1()1(
)1(

ψρρ
ψψρ

ψρρ
ρ . (A7) 

 
Consider second the case where player 2 plays B after having sent a false 

acknowledgement. Then player 2 prefers not to send a false acknowledgement as 
 
 

 [ ] [ ] dLMLqM A −
−+−

−−−+−+−−
>

−+−
−

)1()1(
)1()1()1()1(

)1()1(
)1(

ψρρ
ψψψρψψρ

ψρρ
ρ , (A8) 

 
where (A8) follows from the fact that, by (1) and (2), the right-hand side of (A8) is 
smaller than zero. 
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