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Abstract  
We consider second-price and first-price auctions in the symmetric independent 
private values framework. We modify the standard model by the 
assumption that the bidders have reference-based utility, where the reserve 
price (minimum bid) plays the role of the reference point. In contrast to the 
usual result, the seller’s optimal reserve price is increasing in the number of 
bidders. Even if an individual bidder perceives only a very small utility loss 
when he has to pay more than the reserve price, the impact on the optimal 
reserve price can be strong when there are many bidders.. 
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1 Introduction

In recent years, theorists have begun to use the standard tools of microeco-

nomics to explore the implications of assumptions on human behavior based

on insights imported from psychology.1 One of the most prominent depar-

tures from the standard economic paradigm is the assumption that people

have reference-based utility; i.e., they assess utilities in comparison with ref-

erence points (see Kahneman and Tversky, 1979; Tversky and Kahneman,

1991). In this paper, we investigate how the analysis of the standard model

of second-price and first-price auctions changes if the reserve price (mini-

mum bid) announced by the seller plays the role of a reference point for the

potential buyers.

We consider the well-known symmetric independent private values model,

which is the simplest framework in which auctions have been analyzed. A

remarkable result of the standard analysis is that the optimal reserve price

does not depend on the number of bidders (see Myerson, 1981; Riley and

Samuelson, 1981). In contrast, we will show that if there is a reference-point

e ect, then the optimal reserve price is increasing in the number of bidders.

Specifically, we assume that if a bidder wins the object and has to make

a payment t, then his utility is given by v t [t r], where v is the bidder’s

intrinsic valuation, r is the reserve price, and is a small positive number.

The case = 0 corresponds to the standard model in the auction literature.

We are interested in the implications of the case > 0, which captures the

disutility that a buyer perceives if he has to pay more than the announced

reserve price.2

Note that in several ways our departure from the standard model is

quite small. First, if n = 1, there is no di erence between our model and

the standard model, because the buyer will not pay more than r. Second, if

n 2 and there is symmetric information, there is also no di erence, because

the seller will set r equal to the largest valuation. Finally, if n 2 and there

is asymmetric information, the winning buyer’s utility in our model can be

di erent from the standard model, but the di erence is small if is small,

which is the case that we have in mind. It will turn out that even if is
1 In a recent survey article, Rabin (2002) has called this new movement “second-wave

behavioral economics,” because it goes beyond simply pointing out problems with standard
economic assumptions. For further references, see Tirole (2002), Camerer and Loewenstein
(2003), and Fehr and Schmidt (2003).

2Note that by definition of a reserve price, t is never smaller than r. In general, if a
payment smaller than the reference price were possible, the utility from the associated
gain would typically be smaller than the disutility from a same-sized loss, which is known
as loss aversion (see Kahneman and Tversky, 1991).
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small, the reference point e ect can have a significant impact on the seller’s

optimal reserve price if there are many bidders.

To the best of our knowledge, this is the first paper in the literature on

auction theory in which the implications of a reserve price playing the role

of a reference point are explored in a formal model. Empirically, the fact

that reserve prices in auctions are indeed perceived by bidders as reference

points has recently been shown in field studies as well as in laboratory ex-

periments (see Häubl and Popkowski Leszczyc, 2003; Ariely and Simonson,

2003; Kamins, Drèze, and Folkes, 2004).

The remainder of the paper is organized as follows. In section 2, the

model is introduced and the equilibrium strategies in second-price and first-

price auctions are discussed. The main results are presented in section 3,

where the seller’s optimal reserve price is characterized. The results are

further discussed in section 4, followed by concluding remarks in section 5.

Some technical details have been relegated to the appendix.

2 The model

Consider a monopolistic seller who has a single, indivisible object for sale,

that she cannot use herself. There are n potential buyers. The seller con-

ducts a (second-price or first-price) sealed-bid auction with reserve price r,

which means that a bidder participating in the auction must at least bid r.

If buyer i does not win the auction, his utility is given by zero. If buyer

i wins the object and must pay the price ti according to the rules of the

auction, then his utility is given by vi ti [ti r]. The case = 0 is the

usual case analyzed in the auction literature. A positive (but possibly very

small) captures the reference point e ect as discussed in the introduction.

Specifically, the buyer dislikes paying more than the reference point which

is given by the reserve price r.

Buyer i’s type vi is the realization of a random variable ṽi. Each ṽi is

independently and identically distributed on the interval [0, 1]. The distrib-

ution function F is strictly increasing and the di erentiable density function

is denoted by f . Moreover, we make the usual monotone hazard rate as-

sumption, so that 1 F (v)
f(v) is increasing in v.3 Only buyer i knows his realized

value vi, while the other components of the model are assumed to be com-

mon knowledge. Each agent is interested in maximizing his or her expected

payo . Hence, our analysis is directly comparable with the standard model

of the independent private values environment with symmetric bidders as

3Hence, we are in Myerson’s (1981) “regular case”.

3



analyzed by Riley and Samuelson (1981).4

Second-price auction. In a second-price auction in which at least two
bidders participate, the buyer submitting the highest bid wins the object,

but he has to pay only the second-highest bid.5 If only one bidder partici-

pates, he wins and has to pay the reserve price r. It is well known that in

the standard case ( = 0), each buyer i with vi r will participate in the

auction and bid his type vi. In the present framework with 0, this result

can be generalized as follows.

Proposition 1 In a second-price auction, it is a weakly dominant strategy
for a buyer of type v to bid bS(v) = v+ r

1+ if v r, and not to participate

otherwise.

Proof. Since the price for the object will at least be r, it cannot be profitable
for buyer i to participate if vi < r. Now consider a buyer i with vi r. If

buyer i bids bS(vi), he wins if bS(vi) > ti, where ti is the maximum of the

other bids if there are any, and ti = r otherwise. Consider a downward

deviation to some b̃ < bS(vi). If ti < b̃ < bS(vi), he still wins and pays ti. If

b̃ < bS(vi) ti, his payo is still zero. If b̃ < ti < bS(vi), he now loses and

gets zero, while he would have made a profit vi ti [ti r] by bidding bS(vi).

This profit would have been positive, since ti < bS(vi) = (vi + r)/(1 + ).6

Finally, a similar argument shows that an upward deviation b̃ > bS(vi)

cannot be profitable.

The reference point e ect implies that a buyer of type v > r will bid

strictly less than in the standard model (where = 0). Now consider a

buyer of type v r. Let G(v) = F (v)n 1 denote the probability that the

values of all other buyers are smaller than v. The expected payment of the

buyer can then be written as

tS(v) = rG(r) +

Z v

r

w + r

1 +
dG(w).

In order to see this, note that he will only win if he has the highest value.

He then must pay r if all other buyers have types smaller than r, and he

4This model has been referred to as the “benchmark model” of auction theory in the
survey article of McAfee and McMillan (1987). See also Matthews (1995), Krishna (2002),
and Monteiro and Menezes (2004).

5For completeness, if there is more than one bidder with the highest bid, let the object
go to each of them with equal probability. The same assumption can be made in the
first-price auction. In any case, the probability of a tie will be zero.

6Given the tie-breaking rule of the previous footnote, if b̃ = ti < b
S(vi), he now loses

this positive profit with probability 1/2.
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must pay bS(w) = w+ r
1+ if w (r, v) is the highest value of the other n 1

buyers.

First-price auction. In a first-price auction, the bidder with the high-
est bid wins and has to pay what he has bid. As is well known, the bidders

do not have dominant strategies in a first-price auction. In the standard

model ( = 0), there is a symmetric equilibrium in which each bidder bids

less than his true type. In the present framework, this result can be gener-

alized, so that a bidder who participates in a first price auction bids bF (v),

which is less than bS(v). More precisely, we get the following result.

Proposition 2 In a first-price auction, only buyers of type v r will par-

ticipate. Their symmetric equilibrium bidding strategies are given by

bF (v) =
1

1 +

µ
v + r

Z v

r

G(w)

G(v)
dw

¶
.

Proof. It is obvious that buyer i cannot benefit from participating if vi < r.
Now consider a buyer i with vi r. Assume that all other buyers follow

the strategy given in the proposition. Note that bF (v) is increasing. As

a consequence, it is never profitable for buyer i to bid more than bF (1),

because then he would win for sure and could increase his payo by slightly

reducing his bid. Buyer i thus considers to bid b [r, bF (1)]. Note that there

exists a value z [r, 1] such that bF (z) = b. Hence, buyer i’s expected payo

from bidding b, which is given by vi b [b r] times the probability that

no other buyer bids more than b, can be written as follows:³
vi bF (z) [bF (z) r]

´
G(z)

= (vi + r)G(z) (z + r)G(z) +

Z z

r
G(w)dw

= (vi z)G(z) +

Z z

r
G(w)dw

If buyer i bids bF (vi), his expected payo thus is
R vi
r G(w)dw. Since

(vi z)G(z) +

Z z

r
G(w)dw

Z vi

r
G(w)dw

=

Z z

vi

[G(w) G(z)] dw 0,

it cannot be profitable for buyer i to deviate from the strategy given in the

proposition.

Now consider a buyer of type v r. He pays bF (v) if all other buyers

have types smaller than v, so his expected payment is

tF (v) = bF (v)G(v) =
1

1 +

µ
(v + r)G(v)

Z v

r
G(w)dw

¶
.
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It is easy to check (with partial integration) that tF (v) = tS(v), which

is in accordance with the well-known revenue equivalence principle.7 The

winner only pays the second-highest bid in the second-price auction, but the

equilibrium bids are lower in the first-price auction, so that the expected

payment is the same in both cases.

3 The optimal reserve price

In order to characterize the optimal reserve price, let us now consider the

seller’s revenue. Recall that the seller does not know the buyers’ types.

Hence, the seller’s expected revenue (r) is simply n times the expected

value of the payment that a buyer makes to the seller (which is tF (v) if

v r, and 0 otherwise). Thus, with partial integration,

(r) =
n

1 +

Z 1

r

µ
(v + r)G(v)

Z v

r
G(w)dw

¶
dF (v)

=
n

1 +

Z 1

r

µ
v

1 F (v)

f(v)
+ r

¶
F (v)n 1dF (v).

Note that the seller will always set a strictly positive reserve price. This

follows immediately from the fact that for r = 0 the integrand is negative if v

is (close to) zero. Hence, increasing r slightly above zero will unambiguously

increase the expected profit. Moreover, note that if = 0, then (r) is

obviously maximized by r = r0, where r0
1 F (r0)
f(r0)

= 0, so that the integrand

is positive whenever v r0. The following proposition characterizes the

optimal reserve price for > 0.

Proposition 3 If > 0, then the optimal reserve price r is uniquely de-

termined by the following equation:

1
µ
r

1 F (r )

f(r )

¶
=

1 F (r )n

nF (r )n 1f(r )
r (1)

Proof. The first derivative of the seller’s expected profit with respect to r
is

d (r)

dr
=

n

1 +

µZ 1

r
F (v)n 1dF (v)

µ
r

1 F (r)

f(r)
+ r

¶
F (r)n 1f(r)

¶
=

1

1 +

µ
(1 F (r)n)

µ
r

1 F (r)

f(r)
+ r

¶
nF (r)n 1f(r)

¶
.

7However, note that in our framework it is not straightforward to analyze entry fees or
unusual formats such as all-pay auctions, where losing bidders must make payments. It
is not obvious how the reference price should be adapted, and buyers might particularly
dislike making payments when they do not get the object.
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Notice that r > r0, since the first derivative of (r) at r = r0 is equal to

1+

£
1 F (r0)

n (1 F (r0))nF (r0)
n 1

¤
, which must be strictly positive

since F (r0) (0, 1). Given > 0 and n, the first-order condition for the

optimal reserve price r can be written as (r , ) = (r , n), where

(r, ) =
1
µ
r

1 F (r)

f(r)

¶
,

(r, n) =
1 F (r)n

nF (r)n 1f(r)
r.

Note that given the monotone hazard rate assumption, there always exists a

unique r > 0, because when r moves from zero to one, (r, ) increases from
1
f(0) to

1 , while the (r, n) decreases from to 1 (see the appendix),

so that a straightforward intermediate value argument completes the proof.

What impact has the strength of the reference point e ect, , on the

optimal reserve price? Note that (r, n) does not vary with , and

d

d
(r, ) =

1
2

µ
1 F (r)

f(r)
r

¶
,

which is positive if r < r0 and negative if r > r0. As is illustrated in Figure 1,

this unambiguously implies that r will increase if is increased. Intuitively,

a stronger reference point e ect means that the buyers are less inclined to

bid more than r, so that the seller will set a higher reserve price.

10 r
r0 r*1r*2

α(r,ε1)

α(r,ε2) β(r,n)

Figure 1. If is increased from 1 to 2, the optimal reserve price

increases from r1 to r2.

Next, consider the impact of the number of potential buyers, n, on the

optimal reserve price. Notice that (r, ) does not depend on n and it is

easy to verify that

d

dn
(r, n) =

1 F (r)n + n lnF (r)

n2F (r)n 1 f(r)
> 0,
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where the inequality follows from the fact that 1 x+lnx < 0 for x (0, 1).

Thus, if n is increased, the optimal reserve price r will increase (see Figure

2). Intuitively, the more bidders there are, the higher is the expected value

of the highest type. Hence, a given reserve price will less likely lead to the

no trade outcome, so that increasing the reserve price in order to weaken

the reduction of the buyers’ bids due to the reference point e ect becomes

more attractive.

The comparative statics findings are summarized in the following result.

10 r
r0 r*1

α(r,ε)

β(r,n1)

β(r,n2)

r*2

Figure 2. If n is increased from n1 to n2, the optimal reserve price

increases from r1 to r2.

Proposition 4 (a) The optimal reserve price is increasing in the strength
of the reference point e ect, .

(b) The optimal reserve price is increasing in the number of bidders, n.

Proof. This follows immediately from the preceding discussion.

Note that result (b) is in stark contrast to the standard result, which says

that the optimal reserve price r0 is independent of the number of bidders.8 It

should be emphasized that even if is very small, the impact of the reference

point e ect on the optimal reserve price r can be significant if the number

of potential buyers is su ciently large. For example, consider the uniform

distribution, so that r0 = 0.5. Assume that = 0.01; i.e., the reference point

e ect is quite small. As a result, the optimal reserve price for n = 2 is only

slightly increased to r 0. 501, but for n = 20 it is significantly increased

to r 0. 76.
8Notice that our model could be re-interpreted as a modification of the standard model,

where the winner must pay ti + [ti r] instead of ti. If the payment [ti r] accrued
to the seller, revenue equivalence between our modified auction and the standard auction
would imply that r is independent of n. However, in our framework [ti r] is a loss, so
that the seller’s incentives are di erent.
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4 Discussion

Strong reference point e ect. Even though we think that small values of
are most plausible, in order to better understand the results it is interesting

to note what happens if becomes large. In this case, the buyers are basically

unwilling to pay more than the reserve price. Hence, if is increased, the

optimal reserve price converges to the optimal price posted by a profit-

maximizing seller who cannot use an auction. Such a seller will set a price

p in order to maximize her expected profit p[1 F (p)n], which is the price

times the probability that there is at least one buyer willing to pay the price.

The first-order condition is 1 F (p )n p nF (p )n 1f(p ) = 0. Inspection

of (1) immediately reveals that r converges to p when goes to infinity.

The value of additional bidders. In the standard auction model with
= 0, Bulow and Klemperer (1996) have shown that the expected profit of a

seller who sets an optimal reserve price in the presence of n potential buyers

is smaller than the expected profit of a seller who sets r = 0 when there are

n+ 1 potential buyers. Hence, even if n is large, the marginal value of one

additional bidder is greater than the benefit of setting an optimal reserve

price. This striking result is no longer true if there is a reference point e ect

( > 0), given that the number of bidders is su ciently large. In order to

see this, note that (with partial integration)

(0) =
n

1 +

Z 1

0
(vf(v) [1 F (v)])F (v)n 1dv

=
n

1 +

Z 1

0
v [1 F (v)] (n 1)F (v)n 2f(v)dv

=
1

1 +
E
h
ṽ(2)

i
,

where ṽ(2) is the second highest element of {ṽ1, ..., ṽn}.9 Notice that (0)

is increasing in n and it converges to 1
1+ < 1 if n goes to infinity, for any

given > 0. It is straightforward to see that (r ) must increase in n and

converge to 1 (this would even be the case if the seller could only post a

price). Hence, if n is su ciently large, the value of an additional buyer will

be smaller than the benefit from setting the optimal reserve price.

Of course, if the number of potential buyers is small, the finding of

Bulow and Klemperer (1996) is valid, provided that the reference point

e ect is su ciently small. For example, consider the uniform distribution.

The expected profit with the optimal reserve price and n = 2 is then smaller

than the expected profit with r = 0 and n = 3 if < ˆ, with ˆ 0.22.

9Thus, the distribution function of ṽ(2) is Pr{ṽ(2) v} = F (v)n+nF (v)n 1(1 F (v)),

and the density function is n(n 1)F (v)n 2f(v)(1 F (v)).
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A generalized model. So far, it has been assumed that the seller’s
only interest in the object is to maximize the expected revenue from sale.

Let us now consider what happens if it is known that the seller attaches

a value vS [0, 1] to the object. In this case, one might argue that vS is

another candidate that could be adopted by the buyers as reference point.10

Therefore, let us assume now that the reference price is = r+ (1 )vS ,

where [0, 1]; i.e., it is a linear combination of the reserve price r and the

seller’s value vS.11 Hence, if a buyer of type v wins the object and has to

make payment t, his payo is now given by v t [t ].

It is straightforward to modify the analysis of the basic model to obtain

the following results. A buyer of type v now participates if v v̄(r) =

(1 + )r . The equilibrium bidding functions are given by b̄S(v) = v+
1+

in the second-price auction and b̄F (v) = 1
1+

³
v +

R v
v̄(r)

G(w)
G(v) dv

´
in the

first-price auction. Since the seller derives a value vS from the object if it is

left unsold, which happens with probability F (v̄(r))n, her expected payo

can be written as

¯(r) =
n

1 +

Z 1

v̄(r)

µ
v

1 F (v)

f(v)
+

¶
F (v)n 1dF (v) + F (v̄(r))nvS

=
n

1 +

Z 1

v̄(r)

µ
v

1 F (v)

f(v)
+ [r vS ] vS

¶
F (v)n 1dF (v) + vS .

If = 0, the optimal reserve price is now implicitly defined by r̄0
1 F (r̄0)
f(r̄0)

=

vS. If > 0, it is straightforward to check that the optimal reserve price r̄

is given by r̄ = v̄ +(1 ) vS
1+(1 ) , where

1
µ
v̄

1 F (v̄ )

f(v̄ )
vS

¶
=

1 F (v̄ )n

nF (v̄ )n 1f(v̄ )
+(1 )

1 F (v̄ )

f(v̄ )
v̄ +vS .

By inspection of this first-order condition, we can make the following ob-

servations. If the reference point is only identified with the seller’s value

( = 0), then the optimal reserve price is independent of the number of

bidders. In this case we get (v̄ = r̄0 and hence) vS < r̄ < r̄0, and r̄ is

decreasing in . Intuitively, the larger is , the less willing are the buyers to

pay more than vS . However, if = 1, we find again that r̄ > r̄0 and that

(v̄ and hence) r̄ is increasing in , as in the basic model. For intermediate

values of , the optimal reserve price need not be monotone in , although it

will converge to vS when goes to infinity. More importantly, if (0, 1],

10 In their empirical study, Häubl and Popkowski Leszczyc (2003) have pointed out that
the reserve price as a seller-specified reference point remains to be relevant, even if other
reference prices are available.
11Notice that it cannot be in the interest of the seller to set r smaller than vS , thus we

always have r.
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then the optimal reserve price is again increasing in the number of bidders.

In other words, our main finding holds whenever the reserve price has at

least some (possibly very small) influence on what the buyers perceive as a

cognitive reference price.

5 Concluding remarks

We have shown that prominent results of the by now standard private in-

dependent values model of auctions with symmetric bidders are not robust

when the bidders’ utilities are influenced by a (possibly very small) reference

point e ect. Our analysis suggests that sellers might increase their expected

payo s if they set higher reserve prices than standard theory prescribes,12

and that optimal reserve prices may well be increasing in the number of

bidders.13 It could be an interesting avenue for future research to further

incorporate insights from behavioral economics into auction theory. For in-

stance, the starting price of a Dutch auction might be another candidate for

a reference point and might hence influence the seller’s expected profit in a

way not predicted by traditional analysis.14 In sequential auctions, the price

obtained in period t might play the role of a reference point in period t+1.

The endowment e ect, according to which ownership of an object appears to

increase one’s valuation, might have an interesting impact on auction models

with resale opportunities.15 Thus, exploring the implications of departures

from standard economic paradigms seems to be an exciting task for auction

theorists.

12Note that increasing the reserve price has also been suggested in the literature on
bidding rings, see Graham and Marshall (1987) and Mailath and Zemsky (1991).
13Lucking-Reiley (2000) reports results from a field experiment suggesting that the

optimal reserve price may indeed be increasing in the number of bidders. He points out
that more experiments are needed, which we also consider to be desirable in the light of
the theory that we have proposed.
14More generally, the reference price might be adapted during the oral bidding process

in an open auction format.
15For instance, Zheng (2002) has shown that the optimal allocation derived by Myerson

(1981) can under certain circumstances also be achieved when the bidders cannot commit
not to resell. Yet, this requires resale to take place, which is less probable to happen if
there is an endowment e ect. But if the endowment e ect is su ciently strong, we are
again in the world of Myerson (1981). Hence, small endowment e ects might be the most
damaging ones from the seller’s viewpoint.

11



Appendix

In order to show that (r, n) is decreasing in r, note that

d

dr

µ
1 F (r)n

F (r)n 1f(r)

¶
=

1

[F (r)n 1f(r)]2

h
nF (r)2n 2f(r)2

(1 F (r)n)((n 1)F (r)n 2f(r)2 + F (r)n 1f 0(r))
i
.

It is claimed that this expression is negative for all r (0, 1). In order to

see that this is indeed the case, multiply with

[F (r)n 1f(r)]2
1 F (r)

[1 F (r)n]F (r)n 1
> 0,

so that we must showÃ
nF (r)n 1(1 F (r))

1 F (r)n
(n 1)

1 F (r)

F (r)

!
f(r)2 (1 F (r))f 0(r) < 0.

Since f2(r)+ (1 F (r))f 0(r) > 0 due to the monotone hazard rate assump-
tion, the left-hand side is smaller thanÃ

nF (r)n 1(1 F (r))

1 F (r)n
(n 1)

1 F (r)

F (r)
+ 1

!
f(r)2

=
(1 F (r)) ( nF (r)n (n 1)(1 F (r)n)) + (1 F (r)n)F (r)

(1 F (r)n)F (r)
f(r)2

= [1 F (r)n n(1 F (r))]
f(r)2

(1 F (r)n)F (r)
0

where the inequality follows since the term in square brackets is always

smaller than 1 F (1)n n(1 F (1)) = 0.
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