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Abstract  
Gibrat's law is a referent model of corporate growth dynamics. This paper employs 
Bayesian panel data methods to test for Gibrat's law and its implications. Using a 
Pharmaceutical Industry Database (1987-1998), we find evidence against Gibrat's 
law on average, within or across industries. Estimated steady states differ across 
firms, and firm sizes and growth rates don't converge within the same industry to a 
common limiting distribution. There is only weak evidence of mean reversion: initial 
larger firms do not grow relatively slower than smaller firms. Differences in growth 
rates and in size steady state are persistent and firm-specific, rather than size-
specific. 
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1 Introduction

After several years of neglect, considerable attention has recently been devoted by industrial economists

to the study of the processes of corporate growth. The large majority of empirical studies in this field is

based on testing the “Law of Proportionate Effects”, also known as Gibrat’s Law (Gibrat, 1931), which

assumes that firm’s size follows a random walk and hence that firm’s growth is erratic. As a consequence

there would be no convergence within or across industries, and no stable or predictable differences in

growth would exist either in the short or in the long run. Rather, growth would be driven by small

idiosyncratic shocks.1

Gibrat’s Law was originally used as an explanation of the highly skewed distribution of firms’ size.

Even if the growth rate of each firm in an industry is unrelated to its current size, the variance of the

firm size distribution and the level of concentration increase over time (Simon and Bonini, 1958, Ijiri and

Simon 1974 and 1977). Subsequently, the Law of Proportionate Effects has become, both empirically and

theoretically, a referent model for discussing the processes of firms’ growth. Nevertheless, Gibrat’s Law

contrasts with most fundamental theories of firms’ growth, ranging from standard models of convergence

to an optimal size, to models where heterogeneous firms, facing idiosyncratic sources of uncertainty and

discrete events, are subject to market selection, so that the most efficient firms grow while the others shrink

and eventually leave the market (e.g. Geroski, 1998, for a discussion). Indeed, most recent theoretical

models of firm’s growth and industry evolution imply several violations of standard Gibrat-type processes

(e.g. Jovanovic, 1982; Ericson and Pakes, 1995; Dosi et al., 1995; Pakes and Ericson, 1998; Winter,

Kaniovski and Dosi, 2000). Moreover, Gibrat’s Law is at odds with other observed empirical phenomena

like the persistence of heterogeneity in some firms’ characteristics and measures of performance, e.g.

profits, productivity and - more controversially - innovation (see Baily and Chakrabarty, 1985; Mueller,

1990; Geroski et al., 1993; Cefis and Orsenigo, 2001; Cefis, 2003). However, the hypothesis that firms’

growth rates are erratic is often taken almost for granted and considered as a stylized fact (Geroski, 1998).

More generally, Gibrat’s Law enters in the models and in the empirical discussion as a fundamental way

of conceptualizing firm’s growth (Klette et al., 2000; McCloughan, 1995) and, if anything, models are

devised that capable to yield random growth as a result (Sutton, 1997, Geroski et al., 1997)

A large empirical literature has explored this issue in different data sets and with different statistical

methodologies. Typically, the starting point of the analysis is a simple econometric model having the

following form:

1For a recent discussion, see Sutton (1997) and Bottazzi et al. (2001).



lnSit = β0 + β lnSit−1 + uit (1)

where Sit is the size of firm i at time t, and uit is an i.i.d. shock.

Gibrat’s Law would be confirmed if the model Mo : β = 1 could not be rejected versus the alternative

M1 : β < 1. Empirical results are controversial. Some early studies (Hart and Prais, 1956; Simon and

Bonini, 1958; Hymer and Pashigian, 1962) confirm the view that firm’s size does indeed follow a random

walk (β = 1), at least as large firms are concerned (Hall, 1987; Lotti, et al., 2003). Nevertheless, a

considerable body of results rejects Mo, suggesting instead that firms size is mean reverting (Baldwin

1995, ch.5; Baily et al., 2000), in the sense that, conditional on firm survival, average firms’ growth (and

its variance) decline with firm size, holding firm age constant (Dunne et al., 1989; Evans, 1987a, 1987b;

Hall, 1987, Caves, 1998).2 In some versions, Gibrat’s Law is considered to hold for large firms, whereas

smaller companies grow faster, but with a higher variance.

In this work we reconsider these issues by addressing four interrelated questions. The first two questions

are quite conventional. First, we ask if Gibrat’s law holds, by testing the random walk assumption.

Second, we verify the existence and the extent of mean reversion, i.e. the phenomenon that the rate

of convergence to the steady state is lower as firms get larger. Then, we address some simple, but less

conventional issues. Specifically, third, we check whether firms converge to a common steady state (as

implied by the mean reversion argument) or to a firm-specific steady state size. Fourth, in the latter

case, we investigate whether initial size differences persist, or there is a non-negligible number of initial

smaller firms that are eventually able to catch-up or even to forge ahead.

These exercises are prompted by the consideration of the high degree of heterogeneity which is com-

monly observed among firms, even in very narrowly defined industries and lines of business. Such het-

erogeneity might be a significant factor influencing the the basic results obtained in the Gibrat’s Law

literature.

In fact, to answer the questions we address in this paper, we adapt a hierarchical Bayesian normal

linear model (Lindley and Smith, 1972) to autoregressive time series panel data, i.e., data consisting of

many time series generated by the same type of autoregressive model. The motivation for using this

statistical framework can be articulated in several points.

First, the autoregressive model is chosen for sake of homogeneity with previous empirical studies.

Second, the results on Gibrat’s law and its implications crucially depend on the total variation, i.e., on

2Differentials in growth rates have been explained with firm’s age (Mata, 1994; Dunne, Roberts and Samuelson, 1989)),
firm’s size (Harhoff, Stahl and Woywode, 1998; Hart and Oulton, 1996; Hall, 1987; Evans 1987a and 1987b) or both (Farinas
and Moreno, 2000).
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the information contained both in the cross-sectional and in the time-series dimensions. Previous studies

attempts to verify Gibrat’s law using either classical modelling of time series and cross sectional data,

or short-panel econometric techniques with homogeneity in the parameters across units and over time.

We consider these approaches as problematic. Estimating equations like (1) firm by firm is possible only

when a large time span is available, which is not always the case for micro data. Alternatively, cross

section analysis ignores important information contained in unit-specific time variation in growth rates.

Also, forcing the parameters to be the same across units, thus pooling possibly heterogeneous units as

if their data were generated by the same process, is too restrictive. This is true even if one disposes

of the information available for all periods and all cross sectional units, because by forcing units to be

homogeneous we only exploits one side of the information contained in a panel data set. Recent studies

(e.g. Pesaran and Smith, 1996) have shown that imposing the slope parameter to be homogeneous across

units in an autoregressive panel data model distorts the estimation value of the parameter β towards the

unit, irrespective of its true value, thus rendering less powerful a test of the Gibrat’s law (see also Goddard

et al., 2002). The hierarchical model approach reduces the estimation variability typically encountered

in firm by firm regressions, and, at the same time, exploits coefficient similarities across firms without

imposing the same population structure. Concretely, the hierarchical model allows for an exchangeable

scheme where the parameter vectors vary across different firms, subject to a common distribution with

unknown means and variance. In this sense, the model represents a satisfactory compromise between

the regression model with the same coefficient for all firms and the time series regressions with different

coefficients for each single firm.

Third, given the hierarchical model specification, the verification of Gibrat’s law is based on the autore-

gressive parameter of the common underlying distributions, more than on the identification of firm-specific

coefficients, which are also available. In other words, to verify Gibrat’s law one can simply implement

the appropriate test on the corresponding elements of the common mean vector, rather than on the

corresponding individual firm-specific regression coefficients (Li, 1999).

Finally, in situations where several short time series are simultaneously modelled, the Bayesian paradigm

is attractive because it offers a natural scheme for combining and weighting data from several similar

sources (Nandram and Petruccelli, 1997). The Bayesian estimation of this hierarchical model is also

computationally straightforward due to the recent advances in Bayesian statistics and Markov Chain

Monte Carlo Methods (see Gelfand and Smith, 1990 for general applications and Hsiao et al., 1999, for

an application to panel data model, among others).

All these considerations justify the use of the Bayesian hierarchical model whose main characteristic,
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plain heterogeneity, has the useful feature of exploiting in a more powerful way all the information

contained in the panel data set.

Using 210 firms from a Pharmaceutical Industry Database on the sample 1987-1998, we do not find

strong support for the law. Moreover, data show only weak evidence of mean reversion, i.e. initially

larger firms do not systematically grow more slowly than smaller firms. Finally, differences in growth

rates and in size steady state are firm-specific and persistent. The specified model provides an adequate

fit to the data and results do not change under plausible alternative prior and model assumptions. In

other words, they are robust to more general families of prior information.

The paper is structured as follows. Section 1 discusses the statistical model. Section 2 describes data

and comments on the estimation results. In Section 3 we check the robustness of the results. Section 4

concludes.

2 Model specification

The evolution of size for all units is determined by a doubled indexed stochastic process {Sit}, where

i ∈ I indexes firms, t = 0, 1, .. indexes time and I is the set of the first n integers. Following Sutton

(1997), if εit is a random variable denoting the proportionate rate of growth between period t− 1 and t

for firm i, then

Sit − Sit−1 = εitSit−1

and

Sit = (1 + εit)Sit−1 = Si0 (1 + εi1) (1 + εi2) ... (1 + εit)

In a short period of time, εit can be regarded as small and the approximation ln (1 + εit) = εit can be

justified. Hence, taking logs, we have

lnSit ' lnSi0 +
TX
t=1

εit

If the increments εit are independently and normally distributed, then lnSit follows a random walk and

the limiting distribution of Sit is lognormal. Therefore, the growth of the firm is unrelated to its current

size and only depends on the sum of idiosyncratic shocks.

Hence, to test Gibrat’s law, the vast majority of previous literature have used the following general

logarithmic specification

lnSit = βi0 + β lnSit−1 + uit (2)

4



where Sit is the size of firm i at time t, and uit is a random variable that satisfies

E (uit | Sit−s, s > 0) = 0

E (uitujτ | Sit−s, s > 0) =

½
σ2 i = j, t = τ
0 otherwise

Gibrat’s law is confirmed if the hypothesis β = 1 is not rejected by the data against β < 1 .

An equivalent specification used by the literature and based directly on corporate growth rates is

ln
Sit
Sit−1

= βi0 + β1 lnSit−1 + uit

where clearly β1 = β − 1. In this case Gibrat’s law is confirmed if data do not reject β1 = 0, against

β1 < 0.
3

In this work we follow a similar autoregressive specification, introducing three main innovations with

respect to the traditional empirical approaches. First, we study the behavior of the (log of) each unit’s

size relative to the average, i.e., of the variable git = ln
¡
Sit/S̄t

¢
, where S̄t represents the average size

over all units at each time t. The use of the proportion of size git as our basic variable, instead of (the log

of) plain size Sit, alleviates problems of serial and residual correlation, in that possible common shocks

are removed by the normalization. Moreover, the variable git can be interpreted as the firm’s market

share. Second, we assume that even firms belonging to the same industries can differ substantially from

each other. This (possibly intrinsic) heterogeneity is modelled in a general way by allowing all unknown

parameters to be unit-specific. Finally, the latter feature is modelled in the context of a hierarchical

linear model (Lindley and Smith, 1972) estimated with Bayesian techniques. As already shown in several

studies, the panel-data hierarchical-model approach uses in a powerful way the variability contained both

in the cross sectional and in the time series dimensions, allows the implementation of the relevant tests

in a natural way, and is easy to estimate, given the recent advances in Bayesian statistics and MCMC

techniques.

For our purposes, we assume that time series realizations {git}Tit=ti for n firms (i = 1, ..., n) are available,

possibly of different lengths. Each series starts at time ti and is generated by an autoregressive model of

order 1 (AR (1)). Without lack of generality, the minimum ti equals 1. The last observation occurs at

time Ti, for each firm. Assuming that there are no missing observation between ti and Ti for each i, we

let Ti = Ti− ti+1 denote the number of observations in the series for the ith firm. The initial conditions,

gi0, are observed and the subsequent estimation results are conditional on them. The following statistical

3 In both cases the test is a one-tail test, the same that we use in our empirical analysis for consistency with the literature
on testing for unit root. Note also that β > 1 (β1 > 0) implies explosive growth paths, i.e., firms grow faster as they get
larger. This situation is conceivable for a short period, but not indefinitely. Moreover, from a qualitative perspective its
implications for market structure are similar to those of β = 1: concentration would increase over time, al though at a faster
rate.
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model is specified for each firm i:

git = αi + ρigit−1 + ηit t ≥ ti (3)

The random variables ηit are assumed normally and identically distributed, with mean zero and variance

σ2i , and are uncorrelated across units and over time, i.e.,

ηit | σ2i ∼ N
¡
0, σ2i

¢
E
¡
ηitηjs

¢
= 0, ∀i 6= j, t 6= s (4)

Two additional features are worth mentioning. First, our model specification allows for an intercept,

αi. Other studies (e.g. Bottazzi et. al., 2001) sometimes estimate a specification equivalent to git =

ρgit−1+ uit, which, beside considering a common slope, also avoids the inclusion of the specific effect αi,

as if the expected proportionate rates of growth were zero. Second, another advantage of the hierarchical

model adopted here is the possibility of handling unbalanced panels in a natural way. Therefore, firms

with different observations can be included in the sample, which in turn allows us to both maximize the

size of cross-sectional observations and minimize the survival bias.

For the sake of simplicity, let θi = (αi, ρi)
0 and xit = (1, git−1)

0. Eq. (3) can then be written in a more

compact form as

git = x0itθi + ηit, i = 1, 2, ..., n, t ≥ ti (5)

The hierarchical structure is introduced into Eq. (5) with an exchangeable assumption on the population

structure

θi ∼ N (θc,Σc) , i = 1, 2, ..., n (6)

where θc
¡
= (αc, ρc)

0¢ and Σc are the unknown common mean and variance-covariance matrix, respec-
tively. The chosen prior distribution assumes that intercept and slope of the model do not differ too much

across units, so the firm-specific parameter vector θi is an independent random draw from the underlying

common distribution (6). The matrix Σc controls the variability of the firm-specific regression parameter

vector θi. The standard linear regression model with homogenous coefficients (θi = θc) for each firm is

obtained by letting Σc be a null matrix.

Under this set up, the parameters of interest are
¡©
θi, σ

2
i

ªn
i=1

, θc,Σc
¢
. Gibrat’s law can be tested by

comparing the model Mo : ρc = 1 againstM1 : ρc < 1. A finding that ρc is not statistically different from

1 would confirm the law as holding over time and across firms. A third model specification, M2 : ρi = 1

(i = 1, ..., n) can also be examined. A finding that ρi (i = 1, ..., n) is not statistically different from 1

would then be considered as the Gibrat’s law holding uniformly over individual firms.

Further implications of the law can then separately be examined. Concretely, we can compare the speed

of adjustment (1− ρi) of each unit to its own steady state, with the respective initial conditions, gi0, a

6



question related to the mean reversion argument and the decrease in the variance of the firm size over

time. Also, we can verify whether steady states are all equal across firms, by comparing Ho : SSi = SSj

against H1 : SSi 6= SSj , ∀i 6= j, where SSi is the steady state of firm i. Finally, if steady states are

not common, the model specification can easily be used to verify whether the long-run differences across

firms are transitory or permanent, i.e., whether there is persistence in size differences. The latter can be

done by comparing the posterior distribution of the steady states to the initial conditions.

3 Bayesian analysis of the model

A full implementation of the Bayesian approach is achieved here using the Gibbs sampler (e.g. Gelfand

et al, 1990, for illustration of general models, and Nandram and Petruccelli, 1997, for an application to

autoregressive time series panel data), a recursive Monte Carlo method which requires only knowledge of

the full conditional posterior distribution of the parameters.

The analysis requires the specification of a prior for θc, Σc and σ2i . Assuming independence, as is

customary in the literature, we take

p
³
θc,Σ

−1
c ,

©
σ2i
ªn
i=1

´
∝ p (θc) · p

¡
Σ−1c

¢
·

nY
i=1

p
¡
σ2i
¢

(7)

to have a Normal-Wishart-Inverse Gamma structure:

θc ∼ N (µ,C) (8)

Σ−1c ∼ W
¡
so, S

−1
o

¢
(9)

σ2i ∼ IG

µ
v

2
,
δ

2

¶
(10)

The notation Σ−1c ∼ W
¡
so, S

−1
o

¢
means that the matrix Σ−1c is distributed as a Wishart with scale

S−1o and degrees of freedom so, while σ2i ∼ IG
¡
v
2 ,

δ
2

¢
denotes an inverse gamma distribution with shape

ν/2 and scale δ/2. The hyperparameters µ,C, so, So, v and δ have to be specified by the researcher.

Concretely, µ is the prior mean of the common mean vector θc; C controls the dispersion of our prior

belief around θc: the larger the C matrix, the weaker the prior information on θc; so, the degrees-of-

freedom parameter of the Wishart, controls the dispersion of Σ−1c , and S−1o the corresponding location:

the bigger is so relative to the size of the cross-section, n, and the smaller is So, the smaller is the prior

mean of Σ−1c making the prior on θi more informative and shrinking θi more towards the common mean

θc; finally v and δ control the shape and the scale of the prior distribution for σ2i : a less informative

prior is obtained by letting v and δ become smaller. In the following section, results are reported under
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4 different prior specifications, by varying these hyperparameters in a reasonable range. In Appendix B,

we perform a sensitivity analysis in order to investigate how much does our results change when we use

other reasonable probability models.

Let ψ =
¡©
θi, σ

2
i

ªn
i=1

, θc,Σc
¢
denote the parameters of interest , Y = (G01, ..., G

0
n)
0 denote the vector

of data, where Gi = (giti , ..., giTi)
0, and Xi =

¡
x0i1, ..., x

0
iTi
¢0
. Given the likelihood from the normality

assumption (4) and the prior information previously specified through (6) to (10), and conditioning on

the initial observations, the joint posterior distribution of ψ is given by

p (ψ | Y ) ∝ f (Y | ψ) p (ψ)

∝
nY
i=1

½¡
σ2i
¢− Ti

2 exp

·
−1
2
σ−2i (Gi −Xiθi)

0 (Gi −Xiθi)

¸¾

× |Σc|−
n
2 exp

"
−1
2

nX
i=1

(θi − θc)
0
Σ−1c (θi − θc)

#

× |C|−
1
2 exp

·
−1
2
(θc − µ)

0
C−1 (θc − µ)

¸
× |Σc|−

1
2 (so−k−1) exp

·
−1
2
tr
¡
SoΣ

−1
c

¢¸
×

NY
i=1

¡
σ2i
¢−( v2+1) exp ·− δ

2σ2i

¸
where k = 2 denotes the dimension of the vector θi. The first line of the formula represents the standard

likelihood conditional on the initial conditions and the others represent the different levels of the prior

information.

The multiple integration needed to obtain the marginal posterior distributions of each component of

ψ is not feasible analytically and must be performed numerically. As anticipated, we use the Gibbs

sampler. The relevant conditional distributions are obtained from the above formula. Concretely, the

steps through which the Gibbs sampler must cycle are easily shown to be the following:

(i) p
¡
θi | Y, ψ−θi

¢
= N

£
Ai

¡
σ−2i X 0

iGi +Σ
−1
c θc

¢
, Ai

¤
i = 1, ..., n

(ii) p
¡
θc | Y,ψ−θc

¢
= N

h
B
³
nΣ−1c θ̃ + C−1µ

´
, B
i

(iii) p
³
Σ−1c | Y,ψ−Σ−1c

´
=W

h¡Pn
i=1 (θi − θc) (θi − θc)

0
+ So

¢−1
, so + n

i
(iv) p

³
σ2i | Y, ψ−σ2i

´
= IG

£
Ti/2, (Gi −Xiθi)

0
(Gi −Xiθi) /2

¤
i = 1, ..., n

where Ai =
¡
σ−2i X 0

iXi +Σ
−1
c

¢−1
, B =

¡
nΣ−1c + C−1

¢−1
, θ̃ = (1/n)

P
i θi, and ψ−γ denotes ψ excluding

γ.

The Bayesian point estimates and other quantities of interest are then obtained by taking the appro-

priate averages over the useful Gibbs draws, i.e., those draws for which convergence to the marginal
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posterior distributions has been achieved. Results are shown in terms of posterior point estimate of ρc,

ρi, and SSi. The comparison of the models is made bilaterally, i.e., Mo : ρc = 1 against M1 : ρc < 1 and

M2 : ρi = 1 (i = 1, ..., n), and Ho : SSi = SSj against H1 : SSi 6= SSj , ∀i 6= j. We base the comparison on

the Bayes factor (BF), that is the ratio of marginal data densities under alternative models. The latter

quantities are computed using the Gibbs output as suggested by Chib (1995).

In order to verify the mean reversion argument, we can compare the average firm-specific speed of

convergence 1− ρi with the initial conditions. If the useful draws of the Gibbs sampling goes from L̄ to

L, the average ρi is computed as ρ̄i =
¡
L̄− L+ 1

¢−1PL
l=L̄ ρ

(l)
i , where ρ

(l)
i is the lth draw for the ith firm.

Given that uncertainty on ρi resulting form the model is ignored in this comparison, a better alternative

will be using the draws for the individual ρi and computing Pr {ρi < 1 | Y }, i.e., the posterior probability

that the autoregressive coefficient for the ith firm is lower than the unit. The mean reversion is checked

by comparing this quantity with the initial conditions. A negative relationship will provide evidence in

favor of the mean reversion.

Finally, to check whether differences in size across firms are persistent or not, we compute the following

probabilities: p1 = (1/n1)
P

i Pi, and p2 = (1/n2)
P

iQi, where Pi = Pr {SSi < 0 | gi0 < 0, Y } is the

probability that the posterior size steady state is lower than the average, given that the initial size is

lower than the average, and Qi = Pr {SSi > 0 | gi0 > 0, Y } is the probability that the posterior size

steady state is greater than the average, given that the initial size is greater than the average. n1 and

n2 are the number of firms which started below and above the average respectively. The higher p1 and

p2, the more attractive are the initial conditions and the more persistent are the initial differences in

size. The complementary probabilities, 1− p1 and 1− p2 will then provide the transition probabilities of

going from low to high and from high to low size respectively. A visual inspection of the size persistence

argument is also easily obtained by comparing both the average posterior steady state for each firm

(SSi =
¡
L̄− L+ 1

¢−1PL
l=L̄ SS

(l)
i ) and the unconditional probability q = (1/n)

P
iRi, where Ri =

Pr {SSi < 0 | Y } with the initial conditions.

In order to check that the model provides an adequate fit to the data we follow Gelman et al. (1995,

Ch. 6 and 12) and compare simulated values from the posterior predictive distribution of replicated data

to the observed data. The procedure is the following. Let Y be the observed data and ψ the vector of

parameters (including now all hyperparameters). Define Y rep the replicated data that could have been

observed, or, the data we would see tomorrow if the experiment that produced Y today were replicated

with the same model and the same value of ψ that produced the observed data. The distribution of Y rep

9



given the current state of knowledge, i.e. the posterior predictive distribution, is:

p (Y rep) =

Z
p (Y rep | ψ) p (ψ | Y ) dψ

The discrepancy between the model and the data is measured by defining a discrepancy measure T (Y, ψ),

which is a scalar summary of parameters and data. Lack of fit of the data with respect to the posterior

predictive distribution is then measured by the tail-area probability (Bayes p-value, as defined by Gelman

et al.) of the quantity, and computed using posterior simulations of (ψ, Y ). This value is defined as the

probability that the replicated data could be more extreme than the observed data, as measured by the

test quantity:

B-p = Pr (T (Y rep, ψ)) ≥ Pr (T (Y, ψ))

where the probability is taken over the joint posterior distribution of (ψ, Y rep). Major failures of the

model typically correspond to extreme tail-area probabilities (less than 0.01 or more than 0.99). The

general discrepancy measure chosen is the square root of the average of the n sums of squared residuals.

The test-quantities and the tail-area probabilities are easily calculated as a by-product of the Gibbs

sampler.

4 The Data

The pharmaceutical industry constitutes a particularly interesting testbed for Gibrat’s Law. In fact,

pharmaceuticals might be considered an ideal case where the process of firms’ growth should behave in

accordance with the Law of Proportionate Effects, as a consequence of the peculiar role and nature of

innovation in this industry. As it is well known, pharmaceuticals is a highly innovation-intensive industry.

Moreover, the innovative process in this sector has often been described and conceptualized as a pure

“lottery model”, whereby previous innovations (even in a particular submarket) do not influence in any

way current and future innovation in the same or in other submarkets (Sutton, 2002).

Data come from the PHID (Pharmaceutical Industry Database) dataset, developed at CERM/EPRIS.

The database provides longitudinal data for the sales of 210 firms in the seven largest western markets

(France, Germany, Italy, Spain, UK, Canada, and USA) during the period 1987-1998. Values are in

Thousands of Pound Sterling at constant 1998 exchange rate. The companies included in the dataset

result from the intersection of the top 100 companies (in terms of sales) in each national market, obtaining

a total of 210 companies. The PHID database had been constructed by aggregating the values of the

sales of these firms in the different national markets: therefore, sales for each firm stand for the sum of

their sales in each of the national markets. It is important to emphasize that the panel is unbalanced

since processes of entry and exit are explicitly considered.
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A few comments are in order here.

We use sales as proxy for firm size because it is the only measure available from the dataset and because

sales are usually considered the best available proxy of firm’s size in pharmaceuticals and in some recent

studies on firms’ growth (Hart and Oulton, 1996; Geroski et al., 1996, Higson et al., 2002). Alternative

measures are more difficult to obtain on a longitudinal basis and suffer of a number of drawbacks. In

particular, the use of employment - even if available - would unduly increase the lumpiness of the growth

process, especially as it concerns divestitures, opening (or closure) of plants, R&D labs, etc., particularly

as they occur at the international level.4

The use of a broad geographical definition for the relevant market and the consideration of the inter-

national firm - i.e. the sum of the sales in each national market - as the unit of analysis is justified in our

view by the global nature of competition in the pharmaceutical industry. Many firms operate at the same

time in different countries, as it concerns R&D, production and marketing. More importantly, successful

drugs are sold worldwide and firms’ growth depends crucially on the ability to be present at the same

time in different countries. Hence, the world market - as approximated by the seven large countries for

which data were available - seems to us an appropriate level of aggregation for capturing the locus of

competition.

In terms of products, the market is defined here at the level of one single class at the 4 digit level of

the Standard Industrial Classification, i.e. pharmaceutical products. In this respect, the definition of

the market is quite narrow. It could be argued that the pharmaceutical industry is actually constituted

by a collection of several (independent) submarkets or therapeutic categories, definable at extremely fine

levels of disaggregation. Yet, firms’ growth in this industry is fundamentally dependent on the process

of diversification on a variety of submarkets (Sutton 2002, Bottazzi et al. 2001, Henderson et al., 1999).

Thus, focusing the analysis on a single (or few) submarket(s) would imply missing an essential driver of

firms’ growth.

In this paper we exclusively focus on the process of internal growth of firms. For this reason, in order

to control for mergers and acquisitions during the period of observation, we constructed ”virtual-firms”.

These are firms actually existing at the end of the period for which we constructed backward the series of

their data in the case they merged or made an acquisition. Hence, if two firms merged during the period,

we consider them merged from the start, summing up their sales from the beginning. This procedure

might introduce a bias in the intertemporal comparison of firms’ size distributions along time, but it

has the advantage of emphasizing the changes in the distributions that derive strictly from intra-market

4Employment, assets, sales, market value, and value added are some of the most common measures of company size. For
a discussion on their advantages and their limits, see Hart and Oulton (1995).
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competition (Bottazzi et al. 2001, p.1168). Furthermore, by constructing "virtual firms", we avoid to mix

the phenomenon of pure (greenfield) entry as opposed to entry due to mergers. In fact, there is evidence

that greenfield entrants are smaller than average firms (Baldwin et al., 1995; Acs, 1996)) whereas entrants

which are the result of a merger are usually larger than average firms, like in the case of the entry of

Novartis in 1996 following the exit of Ciba-Geigy and Sandoz in 1995. Our database confirms this finding:

the greenfield entrants have smaller size than the average and they generally are the minimum values of

the size distributions.

The methodology used to construct the dataset supports the use of the international market as the rel-

evant locus of competition. Given this procedure, the smallest firms might seem to be under-represented.

However, our dataset is not constituted only or even mainly by large companies. Descriptive statistics

reported in the Appendix show that the sample includes several small and medium sized companies. In

fact, the firm’s size distribution is skewed towards the smallest firms of the sample, since the skewness is

always significantly positive and the median is always much smaller than the mean.

As expected, the variable we construct, git = ln
¡
Sit/S̄t

¢
(in the Table, Ln_dev87...98) washes away

the increasing trend of the total sales over time and removes the possible shocks common to all the

industry. As a matter of fact the ratio of the standard deviation to the mean as well as the skewness

and the kurtosis are nearly constant over time.

Finally notice that the minimum number of observations in the series for each firm is Ti = 2 (for just

one firm).

5 Estimation results

In this section we present the empirical results. They are shown in Figures 1-9 and Tables 1-3.

The estimation results are reported under four prior specifications. Table 1 describes the chosen

hyperparameters.

Table 1. Prior information
prior v δ so So µ C

A 10 1 k + 2 20 · I µ̌ Č

B Ti + 10 δ̂o k + 50 10 · I µ̃ C̃
C 5 1 k + 2 20 · I µ̃ 100 · I
D 5 1 k + 50 10 · I µ̃ C̃

The notation of the table is as follows:

1. µ̌ = 0.5
¡
µ̄+ µpool

¢
, Č = 0.5

¡
C̄ + Cpool

¢
2. µ̄ = (1/N)

P
i θ̂i, with θ̂i = (X

0
iXi)

−1
X 0
iGi, µpool = (X

0X)−1X0Y , where X = diag (X1, ...,Xn) ;
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3. C̄ = (1/N)
P

i

³
θ̂i − (1/N)

P
i θ̂i

´³
θ̂i − (1/N)

P
i θ̂i

´0
, and Cpool = (X

0X)−1;

4. µ̃ = (0 0.96)0 and C̃ = diag (10, 0.006);

5. δ̂o = (1/N)
P

i (Gi −X 0
iµ̌)

0 (Gi −X 0
iµ̌).

The hyperparameters have been chosen following simple criteria and mixing sample information and

previous empirical studies both on Gibrat’s law and on hierarchical models. Prior A can be regarded as

moderately non informative at all levels of the hierarchical structure. Prior B is more informative than

prior A in all respects. First, it has a bigger so relative to the size of the cross-section, and a smaller is So:

both features imply a smaller prior mean for Σ−1c making the prior on θi more informative and shrinking

θi more towards the common mean θc. Second, the mean and the variance of µ2, i.e. the hyperprior

mean of ρc, have been taken from the previous empirical estimates of ρc in the literature as reported in

Goddard et al. (2002, pp.417, table 1). We fitted an empirical distribution on this estimates and then

computed its mean and variance. Figure 1 reports the histogram of these estimates. Finally, the shape νo

and the scale δo of the prior on the variance have been chosen to match on average the sample variance.

Prior C is less informative than priors A and B at all levels of the hierarchy. Prior D is a mixture of

priors B and C.

The Gibbs sampling is run in 4 cycles of 5000 iterations. Results are based on the last 5000 iterations,

therefore discarding the first 15000 draws. Convergence has been checked following the method proposed

by Brooks and Gelman (1998). It has been achieved already after 10000 iterations, using different seeds

of the random number generator and different initial values of the unknown parameters.

Table 2 reports the mean and the 90% central part of the posterior distribution of ρc, the model testing

as explained above (Mo vs. M1, Mo vs. M2, M1 vs. M2, and Ho vs. H1), the marginal likelihood, i.e.,

the posterior density of the data, (ln (m̂ (y))) , computed as in Chib (1995) and the Bayes p-value (B-p)

to check the model fit of the data under the four priors.

As a general comment, notice that Prior A both fits the data well —according to the particular test

quantity chosen— and produce the highest posterior density. Therefore most of the results discussed

below, especially those concerning mean reversion and persistence of size differences, are based on the

output generated under Prior A. Results based on the other priors are anyway qualitatively identical and
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therefore omitted to avoid replications.

Table 2. Estimation and testing: Benchmark model 5

prior ρc (5% — 95%) ln (BF01) ln (BF02) ln (BF12) ln (BFss) ln (m̂ (y)) B-p
A 0.92 (0.85 — 0.99) −6.19 420.94 427.13 −823.66 2201.03 0.59
B 0.94 (0.88 — 1.01) −6.32 135.30 142.21 −835.45 2163.02 0.03
C 0.93 (0.85 — 1.02) −4.72 453.53 458.25 −818.20 1977.23 0.97
D 0.96 (0.91 — 1.01) −4.94 187.87 192.81 −725.42 2110.99 0.99

5.1 Does Gibrat’s law hold?

Table 1 shows that, under all priors, the numerical estimate of ρc is different from 1. This can be seen

also in the plots of the posterior densities of ρc (Figure 2). It is worth noting that in almost all cases

the posterior distribution contains 1. However, the values of the Bayes factor BF01, which compare

Mo : ρc = 1 against M1 : ρc < 1, are always lower than unity. To interpret these numbers, one

can compute the highest prior probability to assign to model M1 in order for the researcher to obtain

posterior odds in favour of Mo. If π is the prior probability of model M1, the Posterior Odds ratio is

defined as the product of the prior odds ratio and the Bayes Factor,

PO =
1− π

π
BF.

Therefore, the highest prior probability to assign to model M1 in order for the researcher to obtain

posterior odds (just) in favour of Mo is π∗ = 1/ (1 + exp (1− ln (BF01))). Hence, for instance, under

prior C one should assign at most π∗ = 0.00327 toM1 for the data to revert the conclusion and make the

posterior inference favorable toMo. Such a small probability would imply an implausible prior odds ratio

of 304.8 in favour of Mo. We consider these numbers as a clear evidence against model Mo as compared

to M1. The former is however strongly favored when compared to model M2, meaning that the posterior

density of the sample data is much higher when we impose an average random walk across firms than

when we impose the same assumption to all individual firms. Finally, M2 is a fortiori not favored when

compared to model M1.

Overall, these findings do not confirm that Gibrat’s law holds on average, over time and across firms.

The histogram of ρ̄i, the posterior mean of ρi (i = 1, ..., n) averaged across firms (notation above), provides

a first visual inspection of the finding that several firms are far from following Gibrat’s Law (Figure 3).

An interesting issue is to check which are the firms that follow the law. A further straightforward analysis

shows clearly that large firms have a posterior distribution of ρi centered on unity. Figure 4 (chart a)

plots the posterior distribution of ρi for top 10% firms, i.e., firms whose initial size is in the top decile of

5BF01 compares Mo : ρc = 1 against M1 : ρc < 1; BF02 compares Mo : ρc = 1 against M1 : ρi = 1, i = 1, .., n;
BF12 compares M1 : ρc < 1 against M1 : ρi = 1, i = 1, .., n; BFss compares Ho : SSi = SSj against H1 : SSi 6= SSj ,
∀i 6= j. ln (m̂ (y)) is the log marginal posterior density. B-p is the Bayes p-value (Gelman et al., 1995).
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the initial distribution of sizes. The picture confirms the intuition that large firms do follow Gibrat’s law,

in line with previous finding of the literature (e.g. Hall 1987, Lotti et al.2003). The marginal likelihood

(ln m̂ (y)) of the model under prior A and the restriction that ρi = 1 for the top 10% firms is equal to

2146.58. The same figure is only 1849.38 when we restrict all the other firms to have ρi = 1. The positive

Bayes factor resulting form the difference between the former and the latter provides odds in favor of

the hypothesis that the size of large firms follows a random walk, even though the model without any

restrictions (and under the same prior) has a higher posterior density (2201.03), as shown in Table 1.

This is just saying that the sample data prefer a model where no random walk restriction is imposed on

whichever firms.

On the contrary, if we look at the firms whose initial size belongs to the first decile of the distribution

(bottom 10%, Figure 4b) we see that the posterior distributions are not centered on the unity, confirming

the intuition that initially small firms do not follow Gibrat’s law and have a higher speed of convergence

to the steady state than initially large firms, which may have already reached their own steady states.

These claims are also summarized in Figure 5 (charts "a" and "b"), which show the scatter plots of the

average posterior speed of convergence versus the initial sizes. In chart "b" the top 10% and the bottom

10% have been excluded from the sample. The figures confirm that for very small firms the average speed

of convergence is far away from zero, while for very large firms it is around zero (chart "a"). The evidence

shows no clear pattern when the remaining firms are considered (chart "b").

In sum, this results would seem to confirm previous findings that Gibrat’s Law holds only for very

large firms but not for the others. The Law appears to hold only for 15% of the firms in our sample.

Moreover, the failure of Gibrat’s Law and the observation of higher rates of convergence for small firms

do not necessarily imply mean reversion.

5.2 Do data show mean reversion?

From the same plots an initial assessment of the mean reversion argument can be drawn. Do smaller firms

have a higher speed of convergence than larger firms? As argued above, this seems to be true only when

the first and the last decile of the initial distribution of sizes are compared. If we take the "extreme-size"

firms out of the sample, the evidence suggests that there is not a negative relation between the speed of

convergence and the initial size.

The argument against a strong evidence of mean reversion remains the same also when we take into

account the entire posterior distribution of ρi and not just its posterior mean. Figure 6 shows the

relation between the initial condition and the posterior probability of ρi being lower than unity, i.e.,

Pr (ρi < 1 | Y ). In chart "a" all firms are considered; in chart "b" again we have excluded the top and
15



the bottom 10%. As from the previous scatter plots, it can be argued that it is indeed true for that very

small firms Pr (ρi < 1 | Y ) is quite high while for very large firms the same probability is low. However,

when we consider only the central 80 percent firms of the initial distribution of sizes, this relation is very

weak. We therefore cannot express a posterior confidence in favor of a mean-reversion claim. Finally, to

the extent that mean reversion actually operates, yet the process is very slow indeed, given the observed

values of the speed of convergence (Figures 5a and 5b)

5.3 Are the steady states equal?

But do firms’ size converge to the same steady state, as it would be implied by a strict interpretation

of the mean reversion argument? Table 2 (column 6: ln(BFss)) shows that under all priors the Bayes

factor overwhelmingly favors the model where steady states are not restricted to be equal. The evidence

is reinforced by Figure 7, where the posterior distributions of the steady states of 10% randomly chosen

firms are plotted. Both the Bayes factor and the chart support the evidence that the firms in the sample

have very different steady states, confirming once more not only that Gibrat’s Law does not hold on

average, but also that firms do not converge to the same size. These results suggest that firm-specific

characteristics are very important in the determination of firms’ growth.

5.4 Do initial differences in size persist?

Gibrat’s Law would imply that initial size differences would not tend to persist. The mean reversion

argument would suggest that persistence of size differentials should be quite low, as small firms grow

faster than large ones, even if the steady state sizes are different. Here, we check the persistence of

differences in size. Figure 8 plots the posterior mean of the steady states versus the initial conditions.

The positive relation favours the conclusion that the differences across firms are persistent, in that they

depend strongly on the initial size.

In order to take into account also the uncertainty on the steady state resulting from the model and not

just the posterior mean, we have further investigated the relation between the entire posterior distributions

of steady states and the initial condition. First, dividing the initial sample into firms below and above

the average, we plot the scatter points of the unconditional probability q = (1/n)
P

iRi, where Ri =

Pr {SSi < 0 | Y } , against the initial conditions. Figures 9 reinforces our first preliminary conclusion on

the persistence, namely that most of the smallest firms have a high posterior probability of remaining

below the average, while for almost all the largest firms the same probability is negligible. Second,

we have computed the posterior probabilities p1 = (1/n1)
P

i Pi, and p2 = (1/n2)
P

iQi, where Pi =

Pr {SSi < 0 | gi0 < 0, Y } is the probability that the posterior size steady state is lower than the average,
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given that the initial size is lower than the average, and Qi = Pr {SSi > 0 | gi0 > 0, Y } is the probability

that the posterior size steady state is greater than the average, given that the initial size is greater than

the average. Results give p1 = 0.77 and p2 = 0.80, meaning that the probability of remaining in the same

initial position is almost 80 per cent for both states (below and above the average) or, that there is only

a 20 percent probability for a firm which starts below (above) the average to reach a steady state above

(below) the average.

The same analysis can be refined by considering more quantiles of the initial distribution of sizes and

not just the mean. Table 3 reports the average probabilities that a firm in a certain quartile of the initial

conditions distribution has to end up in a quartile of the steady states distribution. For instance, the

cell (1,1) reports the average probability of a firm with an initial size in the first quartile that its steady

state is again in the first quartile; the cell (2,1) reports the average probability of a firm with an initial

size in the first quartile that its steady state is in the second quartile; and so on. Therefore, the average

probability of remaining in the same initial position is reported on the main diagonal, whereas the off

diagonal elements represent the transition probabilities of moving from one state to another.

Probabilities in Table 3 reinforce previous results: initial conditions in firm’s size matter for the firm’s

position in the steady state distribution. The probabilities of remaining in the same quartile of the

distribution are always larger than those of moving in other quartiles, especially in the upper part of the

distribution. It is worth noting that the state that shows the higher persistence is the last quartile: firms

that start with a large size with respect to the average size are very likely to end up in steady states

much larger than the average steady state.

In sum, these results indicate not only that Gibrat’s Law is violated in our sample, but also that

mean reversion is very weak: smaller firms tend to remain small and larger firms tend to remain large.

Moreover, the speed of convergence to such steady state is very slow.

Table 3. Persistence of differences

Initial ≤ 25% 25%− 50% 50%− 75% > 75%
Steady state
≤ 10% 0.5219 0.3184 0.1251 0.0372

25%− 50% 0.2652 0.4582 0.2577 0.0240
50%− 75% 0.1296 0.1506 0.5263 0.1840
> 90% 0.0833 0.0728 0.0909 0.7548

6 Summary and concluding remarks

The results of this paper can be summarized as follows:

(i) The main assertion of Gibrat’s law that growth rates are erratic is not true on average, across firms
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and over time. The estimated average speed of adjustment is far from being zero on average when the

information contained both in the cross sectional and in the time series dimension is used. However, the

finding that the growth of initially very large firms follows a random walk is confirmed here.

(ii) Data show only a very weak evidence of mean reversion. Even if on average ρc < 1, this does not

necessarily mean that initially larger firms grow more slowly than smaller firms. Our analysis shows that

the relative speed of convergence of smaller firms is not necessarily higher than the one of larger firms,

except in the extreme tails of the distribution.

(iii) Even more important, firm sizes do not converge to a common limiting distribution but to firm-

specific steady state size: estimated steady states differ across units . This fact does not imply per se

that firm size drifts unpredictably over time, as argued by some authors (see Geroski, 2001, p. 6). It

is true that a unit root in the process of firm size implies divergence, but the reverse causality does not

necessarily hold, as shown in this paper.

(iv) Initial conditions are important determinants of the estimated distribution of steady states. Initial

differences in size do not seem to disappear over time and to the extent they do, the process occurs

at a very slow rate. Thus, a firm with an initial size below the average is going to narrow the gap

somewhat with respect to larger firms, but it does not seem to increase its relative size in the cross

sectional distribution. In other words, differences in firm size persist.

(vi) The model we used to perform the analysis does not show failings in fitting to data. Moreover,

results are unchanged with alternative models.

In sum, results obtained in this sample contradict two basic implications of both Gibrat’s Law and the

"generalised" mean reversion argument: almost no correlation is observed between initial size and speed

of adjustment, while a strong correlation is found between initial size and the steady state. Thus, there

seem to be systematic differences in growth rates among firms that are not size-specific and may depend

on other firm-specific features that are not observable in our data. Given that these results are sufficiently

robust to different prior specifications, they open rooms for investigating further the determinants of firms

growth. Most likely, size is not the only variable which growth should be conditioned on. Other sources

of heterogeneity (age being a primary - but certainly not the only - candidate) may more plausibly be

responsible for differential growth rates of firms over time. In particular it would be interesting to explore

some common features across clearly divergent/convergent firms as well as the role of other variables in

the explanation of the cross sectional dispersion in estimated steady states. Finally, the mechanisms

through which market selection operates in promoting the growth and the decline of firms should also be

explicitly modelled and tested.

18



At a more general level, the results of this paper strengthens once more the argument that extreme

attention has to be given to treating heterogeneity appropriately in econometric models.
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Appendix A:Descriptive Statistics

Variable Mean Median St. Dev. Skewn. St.Er. Kurtosis St.Er. Min Max
Sales_87 241078, 89 29298 553872, 55 3, 21 0, 17 10, 31 0, 34 229 3101318
Sales_88 270161, 54 34672, 00 619103, 71 3, 22 0, 17 10, 28 0, 34 325 3381416
Sales_89 300946, 61 39205 695208, 69 3, 27 0, 17 10, 73 0, 34 507 3890687
Sales_90 334374, 03 40150 774581, 63 3, 25 0, 17 10, 52 0, 34 102 4203022
Sales_91 380943, 28 51561 874492, 88 3, 28 0, 17 10, 94 0, 34 818 5150610
Sales_92 441702, 08 55082, 50 1026942, 76 3, 29 0, 17 11, 03 0, 34 14 6108043
Sales_93 459848, 30 60263, 50 1065013, 49 3, 27 0, 17 11, 01 0, 34 95 6611241
Sales_94 476994, 19 64368 1107718, 39 3, 28 0, 17 11, 16 0, 34 1885 7018260
Sales_95 518844, 59 67792 1193773, 04 3, 21 0, 17 10, 42 0, 34 597 7367569
Sales_96 560422, 12 76659 1295802, 52 3, 19 0, 17 10, 09 0, 34 2914 7637134
Sales_97 603968, 36 86271, 50 1390207, 25 3, 14 0, 17 9, 46 0, 33 3442 7585652
Sales_98 864057, 23 118964, 0 1982203, 50 3, 09 0, 17 8, 94 0, 33 4730 10038996
Ln_Dev87 −1, 85 −2, 11 2, 00 0, 15 0, 17 −0, 13 0, 34 −6, 96 2, 55
Ln_Dev88 −1, 80 −2, 05 1, 95 0, 22 0, 17 −0, 23 0, 34 −6, 72 2, 53
Ln_Dev89 −1, 77 −2, 04 1, 90 0, 29 0, 17 −0, 26 0, 34 −6, 39 2, 56
Ln_Dev90 −1, 80 −2, 12 1, 94 0, 17 0, 17 0, 06 0, 34 −8, 10 2, 53
Ln_Dev91 −1, 77 −2, 00 1, 90 0, 31 0, 17 0, 29 0, 34 −6, 14 2, 60
Ln_Dev92 −1, 83 −2, 08 1, 98 0, 00 0, 17 0, 98 0, 34 −10, 36 2, 67
Ln_Dev93 −1, 80 −2, 03 1, 91 0, 25 0, 17 0, 14 0, 34 −8, 48 2, 67
Ln_Dev94 −1, 79 −2, 00 1, 88 0, 43 0, 17 −0, 36 0, 34 −5, 53 2, 69
Ln_Dev95 −1, 77 −2, 04 1, 87 0, 41 0, 17 −0, 26 0, 34 −6, 77 2, 65
Ln_Dev96 −1, 75 −1, 99 1, 82 0, 51 0, 17 −0, 33 0, 34 −5, 26 2, 61
Ln_Dev97 −1, 71 −1, 95 1, 80 0, 51 0, 17 −0, 30 0, 33 −5, 17 2, 52
Ln_Dev98 −1, 72 −1, 99 1, 81 0, 50 0, 17 −0, 32 0, 33 −5, 21 2, 45

Appendix B: Some sensitivity analysis

In this appendix we briefly analyze how much does previous posterior analysis change if we use other

reasonable probability models in place of the one used before. We have already pointed out that our

main conclusions on Gibrat’s law and its implication are unchanged under different prior of the same

hierarchical model. Table 1 says that prior A is to be preferred to the others on the basis of the posterior

density and of the model fit, given the test quantity chosen. Nonetheless, results are robust under the

four prior assumptions. Here we specify three alternative probability models and verify how do they fit

the same data in comparison to the benchmark and how do they affect the previous inference. Bayes

factors that compare these models to the benchmark are also computed.
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The first alternative model (MOD1) is a “robust” version of the benchmark and uses the Student-

t distribution for the sample data in place of the normal (e.g. Gelman et al. 1995). The model is

hierarchical and exchangeable in the population θi as before, but now we replace (4) with

ηit ∼ tν
¡
0, σ2

¢
(11)

where tν
¡
0, σ2

¢
denotes a zero-mean Student-t distribution with ν degrees of freedom, and scale σ2. The

modification of the Gibbs sampler is straightforward in that the tν
¡
0, σ2

¢
distribution is just a mixture

of normal distributions with common mean and variances distributed as scaled inverse-χ2. In our case

ηit ∼ tν
¡
0, σ2

¢
is equivalent to

ηit | hi ∼ N
¡
0, hiσ

2
¢

hi ∼ Inv-χ2 (ν, 1)

where Inv-χ2 (ν, 1) denotes a scaled inverse-χ2 with ν degrees of freedom and scale 1. Therefore an

additional step to sample hi must be added to (i)-(iv) above (Section 1.2):

(v) p
¡
hi | Y, ψ−hi

¢
= Inv-χ2

¡
νn, s

2
n

¢
i = 1, ..., n

where νn = ν + Ti, and s2n =
©£
(Gi −Xiθi)

0 (Gi −Xiθi) /σ
2
i

¤
+ ν

ª
/νn. The other steps are slightly

modified to account for the presence of hi, while the assumption on σ2 is, as before, σ2 ∼ IG
¡
v
2 ,

δ
2

¢
.

The second alternative (MOD2) is a hierarchical non-exchangeable model where there is no indepen-

dence between θi and σ2i . Concretely we replace the second level of the hierarchy (6) with the following

θi ∼ N
¡
θc, σ

2
iΣc

¢
, i = 1, 2, ..., n

where the prior variance of the population structure is tied to the sampling variance of the observation git.

In this way, the prior belief about θi is calibrated by the scale of measurement of git and a high-variance

prior distribution is induced on θi if σ2i is large (e.g. Kadyiala and Karlsson, 1997 for similar priors in

the context of VARs). The modification of the Gibbs sampler does not requires additional steps but only

an adjustment on the conditional posterior distributions of all parameters due to the presence of σ2i in

the prior for θi.

The last model (MOD3) is a non-hierarchical, non-heterogeneous model where all firms have the same

population coefficients. This model is chosen for the sake of comparison with that part of the empirical

literature on Gibrat ’s law based on cross-section or homogeneous panel-data setups. In this case the

model is

git = x0itθc + ηit,

ηit | σ2 ∼ N
¡
0, σ2

¢
i = 1, 2, ..., n, t ≥ ti
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where it is assumed that p
¡
θc, σ

2
¢
= p

¡
σ2
¢
p
¡
θc | σ2

¢
with p

¡
σ2
¢
= IG (v/2, δ/2) as before and

p
¡
θc | σ2

¢
= N

¡
µ, σ2C

¢
. It is easy to show that the conditional posterior distributions of θc and σ2,

given the hyperparameters v, δ, µ and C are

p
¡
θc | σ2, Y

¢
= N

"
B1

ÃX
i

X 0
iGi + C−1µ

!
, σ2B1

#
p
¡
σ2 | θc, Y

¢
= IG (vn/2, δn/2)

whereB1 =
¡P

iX
0
iXi + C−1

¢−1
, vn = v+k+

P
i Ti, δn = δ+

P
i (Gi −Xiθc)

0
(Gi −Xiθc)+(θc − µ)

0
C−1 (θc − µ),

and k = 2 is the dimension of θc.

Each model is estimated under two prior assumptions on the hyperparameters, as described in Table

4.

Table 4. Prior information: Alternative models
model prior v δ ν so So µ C

MOD1 E
¡
σ2 = σ̌2

¢
4 k + 2 20 ∗ I µ̌ Č

F 5 1 4 k + 2 20 ∗ I µ̌ Č

MOD2 G 5 1 – (Σc = I) µ̌ Č
H 10 1 – k + 2 20 ∗ I µ̌ Č

MOD3 L 5 1 – – – µ̃ 100 · I
N 10 1 – – – µ̌ Č

Here σ̌2 = 0.5
³
σ̄2 + σ2pool

´
, σ̄2 = (1/NT )

P
i

³
Gi −X 0

i θ̂i

´0 ³
Gi −X 0

i θ̂i

´
, with θ̂i = (X 0

iXi)
−1

X 0
iGi,

σ2pool = (1/NT )
¡
Y −Xµpool

¢0 ¡
Y −Xµpool

¢
, and the remaining notation has been defined in section

2. All prior hyperparameters have been chosen as before, reflecting both sample data information and

previous studies. Notice, in particular, two features. First, σ2 and Σc are assumed constant in the priors

MOD1-E and MOD2-G respectively: In these cases the corresponding steps in the Gibbs sampler (iii and

iv, respectively) are simply not activated. Second, overall the prior assumptions are such that, for each

model specification, the first prior is relatively less informative than the second one.

Estimation results are reported in Table 5. As for MOD1 results are reported only for ν = 4, we have

also fitted a range of Student-t distributions with 1,2,5,10, 30 and infinite degrees of freedom (the latter

being just the normal model already fitted in the previous section).

The main conclusion on the Gibrat’s law seems to be robust across different model specifications. Table

5 shows that in all cases the values of the Bayes factor BF01 are always lower than unity, while Figure 11

provides evidence in favour of no apparent sensitivity of inferences to the hyperparameter ν: if anything,

as ν decreases the posterior mean of ρc becomes lower. The remaining issues on the mean reversion

and the persistence of differences in steady states are also supported with the same qualitative evidence

reported previously.
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Table 5. Estimation and testing: Alternative models
prior ρc (5% — 95%) ln (BF01) ln (BF02) ln (BF12) ln (BFss) ln (m̂ (y)) B-p
E 0.92 (0.85 — 1.00) −5.51 553.15 558.66 −815.21 2258.23 0.97
F 0.91 (0.85 — 0.97) −8.07 724.86 732.93 −871.71 2755.67 0.80
G 0.95 (0.87 — 1.03) −1.05 424.73 425.78 −873.79 981.38 0.98
H 0.88 (0.70 — 1.05) −48.01 621.96 668.97 −882.53 70.42 0.02
L 0.97 (0.92 — 1.01) −1.97 – – – 899.82 0.25
N 0.97 (0.92 — 1.02) −1.07 – – – 900.39 0.15

Finally two features deserve some attention. First, the “robust” alternative to the benchmark model,

which uses a Student-t in place of the normal, provides the highest values of the marginal likelihood

under a given model. In fact, under both MOD1-E and MOD1-F, the marginal likelihood is also higher

than under any of the priors of the benchmark specification. This means that, in comparing a discrete

set of models, as those described here, using Bayes factors, one would choose MOD1-F over all the

others, or, alternatively, in averaging over all models, one should weight MOD1-F more. Second, when

no heterogeneity is allowed for, the posterior distribution of ρc closely resembles the previous results of the

literature. Incidentally, notice that under the latter prior assumption, the mean of ρc is a priori set equal

to 0.90, and therefore that the posterior result is a genuine update of the prior. The fact that the posterior

mean of ρc is higher than in specifications where heterogeneity is accounted for is a well known result in

the classical analysis of dynamic panel data models when units are pooled as if they were homogeneous.

Pesaran and Smith (1996), for instance, show how the neglect of coefficient heterogeneity in dynamic

panel data models distorts the estimation value of the parameter ρc toward the unit, irrespective of its

true value.
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