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Introduction



Chapter 1

This is a time for looking at the data and saying let’s do what makes the
most sense
(New York Times, 24 April 2020)"

Introduction

Overwhelming amounts of data, statistics and predictions about the current
COVID19 situation were presented to society last year. This illustrates the
growing importance of teaching statistics and probability in the classroom, to
help students develop the statistical literacy needed to understand claims
provided in our data-based society (Watson & Callingham, 2020).

Research Topic
Statistical literacy is considered one of the 21st-century skills that students

should acquire. Gal (2002) defines statistical literacy as the ability to interpret,
critically evaluate and reason with statistical information. Statistical inference is
at the heart of statistics as “it provides a means to make substantive evidence-
based claims under uncertainty when only partial data are available” (Makar &
Rubin, 2018, p. 262).

Learning inferences is difficult for students, and therefore in most
countries, including the Netherlands, not taught until Grade 10 or higher. Many
difficulties of students are caused by a limited understanding of key statistical
concepts required for inferences (Castro Soto et al., 2007; Konold & Pollatsek,
2002). An emphasis on complex formal procedures in Grades 10 to 12 and
higher education, exacerbates students’ conceptual problems. To help students
overcome these difficulties, informal approaches have been sought in recent
decades. Engaging in activities that involve informal inferences in the early
years might facilitate learning about more complex inferential statistics later on
(Zieffler, Garfield, delMas, & Reading, 2008). Makar and Rubin (2009) define
informal statistical inference in terms of three main principles: generalization
beyond data, data as evidence for these generalizations, and probabilistic
reasoning about the generalization. In an informal approach, familiar
experiences are incorporated into inferential processes to facilitate the
understanding of statistical concepts required. Recently developed digital tools
provide opportunities to deepen students’ conceptual understanding.

1 Quote by Dr. Peter Collignon, a physician and professor of microbiology at the
Australian National University who has worked for the World Health Organization
(Cave, 2020). Vanquish the Virus? Australia and New Zealand Aim to Show the Way -
The New York Times (nytimes.com)
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Introduction

The increasing use of digital technology in today’s society requires an
educational shift towards learning from and with digital tools. This is
particularly urgent for statistics education, where digital technology is
indispensable for interpreting statistical information (Gal, 2002; Thijs, Fisser, &
Van der Hoeven, 2014). Insight into underlying statistical models is
fundamental for such interpretations (Manor & Ben-Zvi, 2017), and in
particular for making inferences. Digital environments, such as VUstat and
TinkerPlots, offer an informal approach to deepen students’ understanding of
statistical modeling and models (Biehler, Frischemeier, & Podworny, 2017).
Within these environments, students can build a model of a given situation for
simulating samples, which enables them to informally investigate the behavior
of the model. By visualizing sample and sampling distributions—at varying
sample sizes and at varying numbers of repeated samples—students can explore
sampling variability, (un)likely sample results, and uncertainty involved in
inferences. During these modeling activities, key concepts for inferences are
visualized, explored and deepened. As such, modeling with digital tools seems
promising for introducing statistical inference. Figure 1.1 shows an example of
statistical modeling in TinkerPlots, in the context of a black box. A black box
filled with 1,000 marbles, 750 yellow and 250 orange, is modeled in the bar
graph top left. A simulated sample size 40, and the sampling distribution for
repeated samples are visualized on the right.

Given the importance of and difficulties in teaching statistical inference,
knowledge about efficient learning trajectories for secondary school students is
needed. Embedding informal inferential activities in earlier years seems
promising, in particularly when combined with learning from and with digital
tools. However, little is known about how statistics curricula with a descriptive
focus can be transformed to a more inferential focus, to anticipate subsequent
steps in students’ statistics education. More knowledge is needed about well-
substantiated learning trajectories. This is especially important for students in
the pre-university stream (VWO is the Dutch abbreviation), the 15% best
achieving students of our educational system, for whom statistical knowledge is
essential in preparing for higher education. The aim of this research project is to
gain knowledge about a theoretically and empirically based learning trajectory
to introduce 9th-grade students to statistical inference. The guiding research
question is:

How can a theoretically and empirically based learning trajectory
introduce 9th-grade students to statistical inference?



Chapter 1

Figure 1.1. Tllustration of the digital environment of TinkerPlots

Research Methods

As educational resources and teaching materials in which 9th-grade students are
introduced to statistical inferences hardly exist, the formulated research question
involves a dual question. Answering the question requires both the design and
the evaluation of the learning trajectory. A design-based research method
(Bakker, 2018) seems to address this duality. According to Euler (2017), a
design-based research begins with the following question: How can an intended,
initially vaguely stated, goal be achieved with a yet-to-be-developed design? As
the research process progresses, interventions are conducted and evaluated.
Design-based research is characterized by a cyclical process in which
educational materials for learning environments are designed, implemented, and
evaluated, for following cycle(s) of (re)design and testing (McKenney &
Reeves, 2012). In this research project, three cycles were completed, starting
from a one-class teaching experiment, through an intervention in three classes,
to implementing the learning trajectory in thirteen classes at different schools.
Furthermore, between cycles 2 and 3, a case study was conducted into learning
from and with technology. In particular, this domain-specific case study focused
on the intertwined development of learning techniques for using a digital tool
and conceptual understanding. Figure 1.2 provides an overview of the cycles
and studies in this research project, and the chapters of the thesis.
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Introduction

Figure 1.2. Overview of the phases in the research project and the chapters of
the thesis.

As a design and research instrument to structure and connect the elements
involved in a learning trajectory, we used a Hypothetical Learning Trajectory
(HLT). According to Simon (1995), who introduced this notion, and Simon and
Tzur (2004), an HLT consists of a learning goal for students, a description of
promoting activities that will be used to achieve these goals, and hypotheses
about the students’ learning processes. Based on a literature study, an HLT was
developed and implemented during the first research cycle. In following cycles,
the initial HLT was (re)designed, implemented and tested, to develop an
efficient trajectory.

Research Overview

Chapters 2 to 5 present the results from research cycles 1 and 3, and the findings
from the case study. Results obtained from cycle 2 are not elaborated in this
thesis, to reduce overlap between chapters. Insights from cycle 2 were used for
(re)design in cycle 3. We report in Chapter 2 on the first three steps of the
trajectory and in Chapter 4 on the whole trajectory, respectively. The case study
is presented in Chapter 3, and Chapter 5 reports on a quantitative evaluation of
the whole designed trajectory. We now elaborate on how these four chapters
align with the aim of this research project: the design of a theoretically and
empirically based learning trajectory for introducing statistical inference.

11



Chapter 1

Chapter 2 presents the results of the first cycle that focused on the design,
implementation and evaluation of the first part of a learning trajectory for
introducing 9th-grade students to statistical inference. Twenty Grade-9 students
(14-15 years old) took part in the learning trajectory. In the first three steps of
the trajectory, ideas of repeated sampling with a black box and statistical
modeling were embedded, to introduce students to key concepts of inferences.
In particular, this study addressed the following research question:

RQ1: How can repeated sampling with a black box introduce 9th-
grade students to the concepts of sample, frequency distribution,
and simulated sampling distribution?

Chapter 3 presents the results of the domain-specific case study. This study
examined 9th-grade students’ intertwined development of techniques for using
TinkerPlots and conceptual understanding of statistical modeling, by using the
theoretical perspective of instrumental genesis. In this study, we addressed the
following question:

RQ2: Which instrumentation schemes do 9th-grade students
develop through statistical modeling processes with TinkerPlots
and how do emerging techniques and conceptual understanding
intertwine in these schemes?

Chapter 4 reports on the results of the third research cycle on the design,
implementation and evaluation of the whole 8-step learning trajectory. In this
study, the designed learning trajectory was empirically substantiated by
analyzing students’ progression during a large-scale intervention. The aim was
to evaluate how the eight steps of the trajectory fostered students’ learning
processes and proficiency in statistical inference. We addressed the following
research questions:

RQ3.1: What are the specific effects of the designed Learning
Trajectory (LT) on students’ understanding of statistical inference,
in terms of the intended LT-step related learning goals?

RQ3.2: How do the designed steps of the learning trajectory foster
students’ learning processes?

Chapter 5 presents the results of a quantitative study on the effects of the
learning trajectory on students’ proficiency in the domains of statistical literacy,
and inferences in particular. Although the designed learning trajectory

12



Introduction

concentrated on statistical inference—the SI domain within statistical literacy—
we conjectured that a focus on more complex learning activities for statistical
inference would also have a positive effect on students’ understanding of other
domains of statistical literacy. In this study, we addressed the following
research question:

RQ4: What are the effects of a learning trajectory for statistical
inference on 9th-grade students’ statistical literacy?

Chapter 6 presents the general conclusions. Here, the main findings of the four
studies are summarized, aggregated, and discussed. The contribution of the
research project is elaborated, including implications for future research and
educational design.
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Repeated Sampling with a Black Box to Make
Informal Statistical Inference Accessible

This chapter is based on

Van Dijke-Droogers, M. J. S., Drijvers, P. H. M., & Bakker, A. (2020).
Repeated sampling with a black box to make informal statistical inference
accessible. Mathematical Thinking and Learning, 22(2), 116-138.



Chapter 2

Abstract

While various studies suggest that informal statistical inference (ISI) can be
developed by young students, more research is needed to translate this claim
into a well-founded learning trajectory (LT). As a contribution, this paper
presents the results of a cycle of design research that focuses on the design,
implementation and evaluation of the first part of a LT for ISI, in which 9th-
grade students (N = 20) are introduced to the key concepts of sample, frequency
distribution and simulated sampling distribution. The results show that a LT
starting from repeated sampling with a black box may support the accessibility
of these concepts, as these students were able to make inferences with the
frequency distribution from repeated samples as well as with corresponding
simulated sampling distributions. This suggests a promising way to make ISI
more accessible for students.

Keywords
design research, informal statistical inference, learning trajectory, repeated
sampling, statistics education.
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Repeated sampling with a black box

Introduction

Drawing inferences about an unknown population is at the heart of statistics,
and therefore important to learn. Sample data are commonly used to reason
about a larger whole. For informed citizenship in a society in which data play an
increasingly important role, reasoning with statistical information is essential
(Gal, 2002). As such, statistical reasoning is considered as one of the 21st
century skills that students should acquire (Thijs, Fisser, & Van der Hoeven,
2014).

However, learning and applying statistical inference is difficult for
students. The emphasis on formal and procedural knowledge results in the
inability of students to interpret the results (Castro Sotos, Vanhoof, Van den
Noortgate, & Onghena, 2007) or to understand statistical concepts such as
sampling, variation and uncertainty (Konold & Pollatsek, 2002).

Recent research suggests that studying informal statistical inference (ISI)
at an early age may facilitate the later transition to formal procedures (Zieffler,
Garfield, delMas, & Reading, 2008). In general, ISI focuses on ways in which
students without knowledge of formal statistical techniques, such as hypothesis
testing, use their statistical knowledge to support their inferences about an
unknown population based on observed samples. Although ISI has several
definitions, the commonly used framework from Makar and Rubin (2009)
identifies three key principles: generalization beyond data; data as evidence for
these generalizations; and probabilistic reasoning about the generalization. At
an informal level, familiar experiences can be used for making such inferences.
By turning common predictions and expectations into inference processes,
interpreting and understanding statistical concepts become more accessible
(Paparistodemou & Meletiou-Mavrotheris, 2008).

Although various studies have shown that ISI can be developed in young
students (Ben-Zvi, 2006; Doerr, delMas, & Makar, 2017; Makar, 2016;
Meletiou-Mavrotheris & Paparistodemou, 2015) more research is needed to
translate these promising results into compact theoretically underpinned
learning trajectories in which students are introduced to sampling and the
associated probability component in a short period of time. In particular, it is
important to investigate how students can learn to draw informal inferences and
what learning steps are needed to develop this ability among young students, as
well as which learning activities may foster these learning steps. In most
countries, school curricula for grades 7-9 focus on descriptive statistics (Ben-
Zvi, Bakker, & Makar, 2015) and, as a result, pay little attention to informal

17



Chapter 2

statistical inference. This also holds for the Dutch curriculum, in which statistics
education progresses from descriptive statistics in the early years, to preparing
for a more formal approach to inferential statistics from grade 10 and in higher
education (Van Streun & Van de Giessen, 2007). As time in educational
practice is limited, both in the Netherlands and abroad, we aim for a concise
approach.

This research focuses on the question of how to provide students with
opportunities to learn to draw conclusions about a population based on samples.
To provide an answer to such a how-question we look for an idea of how such a
learning goal can be achieved (design), to implement this idea, and to find
evidence that the learning goal was indeed achieved. Hence, the aim of the
research reported here is to design, implement, and evaluate the first part of a
learning trajectory (LT) for 9th-grade students, that focuses on informal
inferential reasoning and three statistical key concepts of sample, frequency
distribution, and simulated sampling distribution.

Theoretical Background

To set up the study’s theoretical background, we now elaborate the role of
informal inferential reasoning and the key statistical concepts to enhance ISI.

The Role of Inferential Reasoning to Enhance 1Sl

This research focuses on inferential reasoning underpinning interpretations of
sample data. In contrast to descriptive statistics, which concerns describing the
data under investigation, inferential reasoning includes handling sampling
variation and uncertainty. An inferential statement is fairly meaningless without
the reasoning in which it must be embedded (Makar, Bakker, & Ben-Zvi, 2011).
Therefore, an inference should be accompanied by reasoning based on the data.
Following Zieffler et al. (2008), we consider informal inferential reasoning as
making inferences about unknown populations based on observed samples
without using formal techniques such as hypothesis testing using probability
distributions. Informal inferential reasoning is about drawing on, utilizing, and
integrating knowledge from meaningful experiences, as decisions are
commonly made on the basis of predictions and estimates. These experiences
can be used to make statistical concepts accessible. Informal inferential
reasoning may include foundational statistical concepts, such as the notion that
a sample may be surprising given a particular claim and the use of statistical
language.

18



Repeated sampling with a black box

Key Statistical Concepts for ISl

Informal inferential reasoning, and the use of statistical concepts to seek
evidence for interpretations of data, can be developed through various
experiences with data over time (Makar et al., 2011). The question is which
statistical concepts are important for 9th-grade students who are inexperienced
with sampling. From the literature, three concepts appear to be central: (1)
sample (including ideas of sampling variation, sample size, and repeated
samples), (2) frequency distribution of data obtained from repeated sampling,
and (3) simulated sampling distribution. Figure 2.1 provides an overview of the
three central aspects and the build-up in handling variation and uncertainty:
from the introduction to variation in observed samples, by visualizing variation
within a frequency distribution, towards interpreting variation and uncertainty
of samples with the simulated sampling distribution, which we elaborate on
below.

First, inferential reasoning involves understanding the concept of sample.
However, students are often reported to have conceptual problems with
samples. On the one hand, students may assume every sample to be different
and are therefore hesitant to draw conclusions about a population (Ben-Zvi,
Aridor, Makar, & Bakker, 2012). On the other hand, students may consider a
sample as a mini-population with the same characteristics as the underlying
population and, as a consequence, students expect a small sample size to be a
good reflection of the underlying population (Tversky & Kahneman, 1971).

Figure 2.1. Overview of key concepts for ISI and the connection with handling
variation and uncertainty
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Chapter 2

This is confirmed by Innabi and El Sheikh (2007), who showed that students in
grade 11 did not take the sample size into account when interpreting sample
results. Students often make grand statements based on small samples and are
insufficiently aware of the role of sample size. Experimenting with repeated
sampling enables students to become aware of the variation and uncertainty of a
sample, but also of the “representativeness” of a sample (Saldanha &
Thompson, 2002). Through repeated sampling, students are confronted with
both variation and similarities, which allows them to gain insight into the
variation versus stability of particular characteristics. Wild, Pfannkuch, Regan
and Horton (2011) invited students to experiment with various sample results
from a given population, with variation in sample size and sample repetitions, to
raise awareness and understanding of sampling variation. In this respect, Wild
and Pfannkuch (1999) emphasized the importance of the exchange and
comparison of sample results. Although repeated samples vary, some sample
results are more likely than others. Thinking about the question: “What happens
if a sample is repeated?” contributes to getting a grip on variation and
uncertainty. This “what if” question is paramount in understanding statistical
inference (Rossman, 2008).

With respect to the second key concept, a graph of the frequency
distribution from repeated samples allows for visualization of obtained results
and gives an overview of variation and stability among samples. A sample leads
to data, a dataset has particular characteristics (such as proportion), and these
characteristics are compiled in the frequency distribution of results from
repeated sampling. The horizontal axis of a graph of such a distribution contains
the values of the dataset characteristic. The vertical axis shows the number of
samples for which each value occurred. A graph of the frequency distribution
from repeated samples can be made manually or by using a computer and gives
insight into (un)likely sample results. As such, the graph of the frequency
distribution functions as a model of obtained results from repeated sampling and
can be used to display sampling variation and, as a next step, to further
investigate variation and uncertainty.

As a third key concept, the simulated sampling distribution can be
utilized as a model for making statements about variation and uncertainty. If
used as intended, the simulated sampling distribution extends the concept of
frequency distribution from step 2, that functioned as a model (or visualization)
of obtained sample results. Experts in statistics may think of these as
conceptually the same (cf. Sfard & Lavie, 2005), but from a learning
perspective there may still be a developmental transition from a model of into a
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Repeated sampling with a black box

model for (Gravemeijer, 1999). The switch from a visualization of specific
datasets to a more abstract simulation model for interpreting variation and
uncertainty, we assume, enables emergent statistical reasoning. Such a sampling
distribution, based on a large number of simulations, can easily be made with
computer software (such as TinkerPlots). This simulated sampling distribution
can be used to determine informally the probability of certain sample results
(Rossman, 2008; Watson & Chance, 2012) and can assist in determining
whether a sample result is likely (Garfield, Ben-Zvi, Le, & Zieffler, 2015;
Manor & Ben-Zvi, 2015; Pfannkuch, Ben-Zvi, & Budgett, 2018; Watson &
Chance, 2012). Reasoning with the sampling distribution from repeated
sampling is a meaningful preparation for the more formal reasoning with the
theoretical sampling distribution in higher education (Garfield et al., 2015;
Watson & Chance, 2012).

The black box activity in research of Van Dijke-Droogers, Drijvers and
Bakker (2018), seemed a promising way to introduce students to the key
statistical concepts of ISI. Here, students investigated the content of a black box
filled with marbles by gathering, exchanging and comparing results from
physical and later simulated samples with different sizes and different number
of repetitions.

Research Question
Given the importance of informal inferential reasoning and the corresponding
key concepts in enhancing ISI, the main question of this research is:

How can repeated sampling with a black box introduce 9th-grade
students to the concepts of sample, frequency distribution, and
simulated sampling distribution?

Methods

Over the past ten years, research has increasingly focused on informal statistical
inference and has developed various educational materials for young students
(Doerr et al., 2017; Meletiou-Mavrotheris & Paparistodemou, 2015). However,
educational resources and teaching materials in which 9th-grade students are
introduced to concepts of sample, frequency distribution and simulated
sampling distribution in a short period of time, hardly exist. Therefore, this
research required a design research approach. Design research is characterized
by a cyclical process in which educational materials for learning environments
are designed, implemented, and evaluated, for following cycle(s) of (re)design
and testing (McKenney & Reeves, 2012). The research reported here comprised
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a first cycle of design, implementation, and evaluation of a LT for ISI. We
focused on the first steps, as part of a longer LT. We designed a hypothetical
learning trajectory (HLT) of eight steps to map out and structure all elements
involved in the learning and teaching approach, and to make explicit the
expectations about how these elements function in interaction to promote
learning. The LT was implemented and tested during a classroom intervention.
Here, we report on the design, implementation, and evaluation of the first three
steps and indicate how the results of these steps were used for revision.

HLT as a Design Research Instrument

As a design and research instrument to structure and connect the elements
involved in an LT, we used a hypothetical learning trajectory (HLT). According
to Simon (1995), who introduced this notion, and Simon and Tzur (2004), an
HLT consists of a learning goal for students, a description of promoting
activities that will be used to achieve these goals, and hypotheses about the
students’ learning process. It includes the simultaneous consideration of
mathematical goals, student thinking models, teacher and researcher models of
students’ thinking, sequences of teaching tasks, and their interaction at a
detailed level of analysis of processes (Clements & Sarama, 2004). Research by
Gravemeijer, Bowers, and Stephan (2003) showed how an HLT can be used to
bridge the gap between students’ ideas and solutions on the one hand and the
teachers” mathematical goal on the other. In this way, an HLT can give
guidance to anticipate the collective practices in which students get involved
and the ways in which they reason with the various artifacts and activities. An
HLT provides insight into how students learn and aims for a well-founded
theory of the learning process. According to Sandoval (2014), the hypotheses
(or conjectures, as he calls them) in educational design research are typically
about how tools and materials, task structures, participant structures, and
discursive practices lead to required mediating process and intended outcomes.

In this research, the HLT is used as a design and research instrument to
empirically and theoretically connect all elements of the LT, including
theoretical background, learning steps, teaching approach, lesson activities with
tools and materials, practical guidelines for implementation, expected student
behavior, and data collection, involved in the implementation of the LT. This
report focuses on the role of the first three steps. Because our HLT was
extensive, we restrict ourselves in this report to a concise description of
theoretical background, activities designed, hypotheses and corresponding
indicators of students’ learning behavior, data collection, and implementation
characteristics.
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Repeated sampling with a black box

Educational Guidelines to Frame the HLT

Educational guidelines to promote inferential reasoning and key concepts,
extracted from literature, formed the starting point of the HLT design. To
promote inferential reasoning, an inquiry-based approach with meaningful
contexts is recommended (Ainley, Pratt & Hansen, 2006; Ben-Zvi et al., 2012;
Van Dijke-Droogers, Drijvers, & Tolboom, 2017; Franklin et al., 2007; Makar
& Rubin, 2009; Pfannkuch, 2011). In particular, a holistic approach, in which a
concrete investigation question is answered by going through all steps of
statistical investigation from collecting to interpreting data, is expected to
stimulate reasoning about generalizations, variation, and uncertainty. This
approach was also addressed by Lehrer and English (2017), who recommended
systematic and cohesive involvement of students in practices of inquiring,
visualizing, and measuring variation instead of a piecewise approach. Rossman
(2008) advised starting with categorical data, so that students can focus on the
inferential process and only switch to more complex data later. Categorical data
can be captured by means of a sample proportion, while summarizing numerical
data requires the determination of measures of center and spread. In addition,
the distribution of one sample with numerical data may lead to confusion with
the sampling distribution.

To promote students’ concepts of sample and sampling variation,
Saldanha and Thompson (2002) advocated investigating repeated samples. Wild
et al. (2011) advised an approach in which students experiment with sample size
and repeated samples from a given population. In this respect, Wild and
Pfannkuch (1999) suggested that students should exchange and compare their
sample results. The use of growing samples can help students understand the
effect of sample size and the relation between sample and population (Bakker,
2004). With the growing samples task design, students are introduced to
increasing sample sizes that are taken from the same population. For each
sample, they draw informal inferences based on their data. Subsequently, they
predict what might change in a following larger sample. Students are required to
search for and reason with variable processes and are encouraged to think about
how certain they are about their inferences. This inquiry-based growing samples
approach can help students enhance their inferential reasoning (Ben-Zvi et al.,
2012).

As a next step, letting students think about the question: “What happens if
a sample is repeated?”” contributes to understanding of variation and uncertainty
(Rossman, 2008). Additionally, making predictions, which are then tested,
stimulates students’ involvement and statistical reasoning (Bakker, 2004).
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When working with a computer model for simulations, a strong connection with
a meaningful experiment is preferred (Chance, Ben-Zvi, Garfield, & Medina
2007; Konold & Kazak, 2008; Manor & Ben-Zvi, 2015).

An Outline of the HLT

To design the HLT, the above educational guidelines were translated into
hypotheses about students’ learning. This three-step HLT—addressing the
concepts of sample, frequency distribution, and simulated sampling
distribution—is summarized in Table 2.1. The central column presents the
hypothesis about how to promote students’ understanding of each concept; the
last column shows the connection with educational guidelines. The connection
between the designed learning activities and the hypothesized students’ learning
processes is shown in Table 2.2. The upper part of this Table displays the
features of each step. For each HLT step, Row 1 provides a brief description of
the designed activity, Row 2 contains the key concepts, Row 3 indicates the
type of expected inferential reasoning, and Row 4 describes the student activity.

For each step, a concise description is given of the designed activities, the
corresponding hypothesis and indicators of students’ learning behaviour that
would support the hypothesis.

The first HLT step: How many yellow balls does the black box contain?
The first HLT step is carried out during Lesson 1 of the intervention. At the
start of Lesson 1, the first task is to investigate the number of yellow balls in a
black box filled with a mix of 1,000 yellow and orange balls, by looking
through a small viewing window. The students shake up the box to mix the
objects and estimate the content within the given time according to their own
approach. Students note their findings on a student worksheet. Next, the sample
results are exchanged and discussed in a whole-class discussion. Students repeat
the experiment with a larger viewing window. Again, they note their findings
on a worksheet. At the end of Lesson 1, they compare their estimates from a
small and a large sample and make an inference about the effect of sample size.
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Repeated sampling with a black box

Table 2.2. Overview of Designed Teaching Activities for each HLT Step

Step 1 Step 2 Step 3
Teaching Conduct Imagine the Simulate sampling
activity physical black frequency- distribution of
box experiment  distribution at more  physical black box
(with small and  than 100,000 experiment to
large window) repetitions of interpret variation
physical black box and uncertainty
experiment (with ICT)
Concept Sample Frequency Simulated sampling
Sampling distribution on data distribution from
variation from repeated repeated sampling
Repeated sampling
sampling
Sample size
Inferential ~ In words with In words with In words with
Reasoning  argumentation argumentation from  argumentation from
on: the frequency the simulated
sampling distribution on sampling
variation, (un)likely sample distribution on
repeated results variation and
sampling and uncertainty
sample size
Student Estimate the Sketch the expected  Inferential
activity content of the frequency reasoning with the
black box distribution of data simulated sampling
from >100,000 distribution
repetitions.

Determine (un)likely
sample results

The hypothesis in the first step, concerning the concept of sample, is that, in
conducting the designed activity, students become aware of sampling variation
and that they investigate the effect of repeated sampling and sample size. The
following indicators are considered as supporting the hypothesis:
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la) Students note that sample results vary;

1b) Students choose a repeated sampling approach, with calculating the
average, to estimate the number or proportion of yellow balls;

Ic) Students note that it is possible to estimate the content based on samples;

1d) Students note that it is impossible to determine the exact content based on
samples;

le) Students note that the larger the sample size, the more confident they are
about their estimate;

1f) Students note that working with a larger sample (usually) leads to a better
estimate of the content.

The second HLT step: What happens if this experiment is repeated?

In Lesson 2, students are asked to think about the question “What happens if
this experiment is repeated many times?” During a whole-class discussion, the
students share their expectations for the number of yellow balls in a sample of
40 from a box consisting of 750 yellow and 250 non-yellow balls and discuss
the boundaries of possible sample results. Subsequently, students are asked to
sketch on their worksheet the expected frequency distribution if the experiment
was repeated 100,000 times. The students are given a coordinate system with
the values 0 to 40 along the horizontal axis and no values vertically. As a
follow-up, students are asked to estimate the probability of ranges of particular
sample results, based on their sketch of the frequency distribution, and to note
this on their worksheet.

The hypothesis in the second step is that engaging in the designed activity
prepares students to make the conceptual switch from using the frequency
distribution as a visualization of (model of) results obtained from repeated
sampling to using it as a model for interpreting variation and uncertainty. As
such, it was expected that students would understand that most sample results
will be close to the population proportion and strong deviations are unlikely,
and that the frequency distribution can be used to determine the probability of
ranges of particular sample results. The following indicators are considered as
supporting the hypothesis:

2a) Students note that sample results corresponding to the population
proportion will often occur;

2b) Students note that strongly deviating sample results are unlikely to appear;

2c) Students sketch a graph of the frequency distribution with a peak at the
population proportion (in this case 30);

2d) Students sketch a graph of the frequency distribution in which the extreme
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values (in this case 0—10 or 35—40) hardly occur;
2e) Students estimate the probability of ranges of particular sample results on
the basis of their sketched frequency distribution.

Figure 2.2. Screenshot of the VU Stat sampling distribution app
(https://www.vustat.eu/apps/yesno/ index.html)

The third HLT step: How can computer simulation help?

In Lesson 3, students are asked to simulate the experiment from Lesson 1 with a
computer to investigate variation and uncertainty. To this end, they use a
sampling distribution app from VU Stat. In this app, the population is displayed
using colored balls, which creates a strong connection with the black box
activity. In our view, the app seems user-friendly, with easy input of the
population size, population proportion and sample size. As shown in Figure 2.2,
the software provides a clear overview of the population in the upper screen, of
each individual sample result in the middle screen, and of the sampling
distribution for many repetitions in the lower screen. Students simulate the
sampling distribution with a large number of repetitions and use this distribution
as a model for investigating most common sample results with accompanying
estimates of the population. Subsequently, we expect students to use the
simulated sampling distributions from a given population at varying sample
sizes and at varying numbers of repetitions as a model for investigating the
effect of sample size and repeated samples on the accompanying estimates of
the population. Students note their findings on a student worksheet.
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The hypothesis in the third step, concerning the simulated sampling
distribution, is that engaging in the designed activity makes students aware that
the simulated sampling distribution can be used as a model for interpreting
variation and uncertainty, and more particularly that repeated sampling with a
larger sample size reduces the variation in the accompanying estimates of the
population and hence leads to a more certain inference; and that sampling with a
larger number of repetitions leads to less variation in the mean and hence to a
better estimate of the population. The following indicators are considered as
supporting the hypothesis:

3a) Students compare the simulated sampling distributions at varying sample
sizes and note that repeated sampling with a larger sample size leads to less
variation in the accompanying estimate of the population;

3b) Students compare the simulated sampling distributions at varying sample
sizes and note that repeated sampling with a larger sample size leads to a
better estimate of the population;

3c) Students compare the simulated sampling distributions from varying
number of repetitions and note that from repeated sampling with a larger
number of repetitions the mean of these samples is less variable;

3d) Students compare the simulated sampling distributions from varying
number of repetitions and note that repeated sampling with a larger number
of repetitions leads to a better estimate of the population;

3e) Students describe how the simulated sampling distribution from repeated
sampling can be used to determine most common sample results.

Each HLT step focuses on one key concept, in which entailing aspects—for
example sample size, repeated sampling, sampling variation, (un)certainty of an
estimate, probability of samples, visualizations—are addressed from an
exploratory perspective from the concrete black box in step 1 to a more abstract
perspective in step 3 by simulating the sampling distribution by repeated
sampling. An overview of the build-up in complexity by these aspects of ISI is
displayed in Table 2.3.

Data Collection

With respect to the first step, data included individual student worksheets filled
in by students who worked in pairs with the black box and video-recordings
from a 10-minute whole-class discussion. In the second step, we collected data
from student worksheets that were individually filled in by students and video-
recordings from a 12-minute whole-class discussion. For the third step, we
collected data from student worksheets that were individually filled in by
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students who worked in pairs on a computer and eight video-recordings of 2-
minute interactions between teacher and students.

Table 2.3. Overview of Indicators expected in Different Data Sources, by
Entailing Aspects of ISI

HLT step 1 HLT step 2 HLT step 3
Sample Frequency Simulated
distribution sampling
distribution
Build-up in Introduction to Visualization of Interpretation of
complexity variation and variation variation and
uncertainty uncertainty
Data source ~ WD1' SWI? wD2'  SwW2? TSI3®  SW3?
Sample size le, 1f  le, If 3a, 3b
Repeated b Ib 2a2,2b  2¢,2d 3,3 3c,3d
sampling
Sampling 3a, 3b, 3c, 3a, 3b,
variation la 2a,2b  2c,2d 3d 3¢, 3d
(Un)certainty le. 1d
of estimate of  1c, 1d ie ’ 3b, 3d
population
P ;‘r’tkl’z‘sll;fy of bu oy 2024 3a,3b,3c, 3a,3b,
b . 2¢ 3d  3¢,3d
sample results
Determination
of (un) likely 22,26 2d 33, 3b, 3¢, 3a, 3b,
3d 3¢, 3d
sample results
Use of 2c, 2d, 3a, 3b, 3¢, 3a, 3b,
visualization 2e 3d 3¢, 3d

' Whole-class Discussion (WD), 2 Student Worksheet (SW), 3 Teacher-Student
Interaction (TSI)
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The video recordings were made by a research assistant and were preceded by
detailed instruction on specific recording details. The worksheets of the students
were distributed at the start of each lesson and collected at the end, to prevent
information being added or lost.

Implementation Characteristics

To empirically verify whether the three hypotheses could be confirmed, we
implemented this LT in one class at a secondary school in the Netherlands. In
this report we focus on three 45-minute lessons, the first three of a more
extensive series of ten lessons. We do so because this is where the students are
introduced to the three key concepts by repeated sampling with the black box.
The subsequent five steps of the LT, concerning seven more lessons, consist of
applying these concepts in new situations with build-up in complexity of data.

Participants

The participants consisted of twenty 15-year-old students in Grade 9 of the pre-
university level, who are among the 20% best performing students in the Dutch
education system. The twenty students formed one class with both talented and
less gifted mathematics students. The students were inexperienced with
sampling. They had some basic knowledge of descriptive statistics: center and
distribution measures, such as mean, quartiles, class division, absolute and
relative frequencies, and boxplot. The lessons were conducted during the
regular mathematics lessons over a period of one week.

The teacher was the first author. In this design research, it was an
advantage that the teacher-researcher was so familiar with the designed
materials. This allowed all attention to be focused on the design without
deviations from the designer’s intensions. Although there is added value in
investigating field-based trials of an activity to see how teachers tend to
implement the materials, at this stage, it is sensible to tackle challenges one by
one (Tessmer, 1993).

Data Analysis

To answer the research question, we analyzed the data with respect to the
indicators that would support the hypotheses as formulated in the HLT. The
main data sources were the student worksheets and the video recordings of both
the whole-class discussions and the teacher-student interactions. Table 2.3
displays the distribution of the expected occurrence of indicators in the different
data sources by sub-area of ISI.
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Answering the how-question of our research includes design,
implementation, and evaluation. To make the connection between these phases
explicit, we work out indicator 1f as an illustrative example. The other
indicators were elaborated in a similar way. Indicator 1f states: “Students note
that working with a larger sample (usually) leads to a better estimate of the
content.” In the design phase we designed a student activity in which students
collect data, analyze their data, and formulate an inference on the basis of a
given investigation question. The activity concerns the context of a black box
experiment and is built up according to the educational ideas of repeated and
growing samples. The full HLT incorporated a detailed description of the
designed activity, including all implementation issues involved. During the
implementation phase in lesson 1, students worked on the designed activity in
pairs and noted their data collection and data analysis, as well as their inference
(estimate of the content) along with an indication of their (un)certainty, on their
worksheet as an answer to tasks 1-3. In the following whole-class discussion,
the results were exchanged and discussed. Subsequently the teacher posed the
question: “What happens if we enlarge the viewing window?”” Different options
were exchanged and discussed, with attention for the uncertainty involved.
After the whole-class discussion, students doubled the sample size (larger
window) of their black box and again collected data, analyzed these and made a
new inference with an indication of their (un)certainty, and noted the results on
their worksheet as an answer to tasks 4-6. After that, students were asked in
task 7 on the student worksheet to compare their answers for tasks 1-6 and
draw a conclusion about the effect of sample size on the estimate of the content.
During the analyses we used data from tasks 1-7 on the student worksheets and
video data of the whole-class discussion. The data analysis of these sources is
elaborated on below.

All video data, both whole-class discussions and teacher-student
interactions, were transcribed and coded. The code book consisted of the
indicators in Table 2.3. The unit of analysis during the discussions and
interactions was a central question brought forward by the teacher to check out
the indicators, and the corresponding reactions by the students. For example, a
central question in the discussion of step 1 was “What do you know for sure
about the number of yellow balls in the black box?” which refers to indicators
Ic and 1f. To distinguish clear instances and less clear instances, the evidence
was coded as strong, weak or no evidence. Strong evidence refers to indicators
that were explicitly present during the class discussion or interaction, for
example conclusions that were expressed literally or assumptions that were used
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and repeated more than once. Weak evidence refers to indicators that were
partly observed, for example incomplete conclusions or assumptions discussed
indirectly. No evidence refers to indicators that were attended during the
discussion but were not confirmed or contradicted.

Student worksheets were coded according to the same code book. The
worksheets consisted of structured and open tasks. For the analysis, only open
tasks were used in which students were explicitly asked to clearly motivate their
answer. The worksheets contained specific tasks that were directly related to the
indicators. For example, task 6 (“Are you sure of your estimate from a larger
sample?”’) and 7 (“What did you learn from a larger sample?”’) on Worksheet 1
refer to indicators 1d and le, respectively. The frequency with which each
indicator was coded was noted.

Indicators that were not attended to during the whole-class discussion or
on the worksheet were indicated as “non-applicable.” A second coder was used
to analyze the video data of the whole-class discussions and the teacher-student
interactions, as well as the answers to open tasks on the worksheets. A random
sample of 25% of the data was checked by the second coder. Cohen’s kappa
was .83, indicating a good interrater reliability.

Results

For each hypothesis, this section describes whether the supporting indicators
were observed.

First Step: Sample

The hypothesis in the first step, introducing the concept of a sample, was
confirmed as the indicators 1a to 1f were coded in the data collected. Table 2.4
displays the observed indicators.

Table 2.4. Overview of Results for LT Step 1

Student worksheet Video (strong,
Indicators (N =20) (observed weak, no
number of students) evidence)
la. Students note that their sample Non-applicable Strong
results vary
1b. Students choose a repeated
sampling approach, with calculating n=20 Strong

the average, to estimate the number
or proportion of yellow balls
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Ic. Students note that it is possible to

estimate the content based on n=20 Strong
samples

1d. Students note that it is impossible

to determine the exact content based n =20 Strong
on samples

le. Students note that the larger the
sample size, the more confident they n=17 Strong
are on their estimate

1f. Students note that working with a
larger sample (usually) leads to a n=20 Strong
better estimate of the content

The strategies for investigating the number of yellow balls in a black box with a
small viewing window that students showed on their worksheet, corresponded
to indicator la to 1d. Table 2.5 gives an overview of these results on Worksheet
1 on small samples from the black box.

As a first strategy, after shaking up the box to mix the objects, most students (14
out of 20) counted the visible yellow balls in the viewing window and
extrapolated this number into the total content. They then repeated this shaking
and counting five to ten times and used the average of these counts to estimate
the content. This strategy was also expressed during the whole-class discussion,
in which Ruben (all names are pseudonyms) added the following:

Teacher: How did you get the estimate?

Joerie: We counted the number of yellow balls and counted the total
number of balls in the window. Then we converted the numbers
into the total content. We repeated this about ten times and then
calculated the average.

Teacher: Are there students with a different approach?

Ruben: Well, about the same thing, but we counted the orange balls, there
are less of them, and then converted to the total. We repeated this
about seven times and calculated the average.
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Table 2.5. Answers on Worksheet 1 on Small Samples (size 20) from the Black
Box (N =20, number of students)

Task Students’ answers Examples from written work
1. Estimate 682, 750, 750, 625, 700, 730,

the number of 700, 735, 700, 725, 750, 675,

yellow balls 675, 730, 750, 725, 682, 733,

in the black 700, 625

box. (estimate of each student) (n =
20).
2. Explain Approach 1: count balls, We took ten samples with
your calculate average, convert to the twenty balls, calculated the
estimate. contents of the entire box (n = average and multiplied this
14). by 50.

Approach 2: estimate the ratio of Always around 15— 16
yellow balls after shaking a few yellow and the remaining
times and convert to the entire  orange.

box (n =6).
3. How Not confident (n=2). Not sure, just guessing.
confident are
you about Quite confident (n=16). We don't know exactly, but
your it's about this number.
estimate?

Most confident (n=2). Most confident, but not

100% sure, because we
calculated the averages and
extrapolated this number to
the content.

As a second strategy, after shaking up the box, some students (6 out of 20)
based their estimate not on counts, but on ratios. For example, one of these
students indicated: “We have shaken the black box several times and there are
always about 15-16 yellow balls and the remaining ones are orange.” All
students decided to shake and measure several times, which showed that the
students were confronted with sampling variation when estimating the content
and opted for repeated sampling to get a better estimate. The students’ estimates
ranged from 625 to 750. Most students were quite confident about their
estimate. Only two students indicated that it was a guess and two students were
most confident—although not 100% sure—because their estimate was based on
a calculation with the average from multiple counts.
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As a follow-up activity, students worked with a larger viewing window.
Most students were more confident about their estimate based on a larger
window and all students noted that a larger window led to a better estimate of
the content, which corresponded to indicators le and 1f. Table 2.6 provides an
overview of these results with students’ answers on Worksheet 1 with larger
samples from the black box.

Table 2.6. Answers on Worksheet 1 with Large Samples (size 40) from the
Black Box (N = 20)

Task Students’ answers Examples from written

work

4. Estimate the
number of yellow
balls in the black
box.

744,750, 714, 720, 720, 730,
720, 728, 725, 725, 750, 731,
731,730, 714, 725, 744, 728,
725, 720 (estimate of each
student) (n = 20).

5. Explain your Approach 1: count balls,

estimate. calculate average, convert to
the contents of the entire box
(n=20).
6. Are you More confident than before, = More sure because the

confident about
your estimate from

with the small window (n =
17).

estimates are now less
variable.

a larger sample? More sure because you have
more information.
Not sure yet because the

results still vary.

Still not confident (n = 3).

7. What did you A larger sample size gives a
learn from a larger better estimate (n = 20).
sample?

A larger sample gives more
information about the
content.

With this larger window, all students used the first strategy of counting the
number of yellow balls several times and converting the average to the entire
content. This time students’ estimates showed less variation, as they ranged
from 714 to 750. Most students (17 out of 20) wrote that they were more
confident of their estimate based on this larger sample. Some students
mentioned in this respect: “We are more confident because the estimates are
now less variable” and others quoted: “More sure because you have more
information.” Three students wrote that they were not confident because the
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sample results still varied. However, these three did indicate in the next task that
the best way to estimate the content was to use a larger sample.

Although the students initially gave a numerical value as an estimate of
the total number of balls, they later switched to an interval, which revealed
indicators lc and 1d. This transition became clearly visible during the
discussion when the teacher explicitly asked: “What do you know for sure
about the number of yellow balls in the black box?”

Daphne: Well, that three-quarters of the balls are yellow, and one-quarter
are orange.

Teacher: Are you sure about the three-quarters?

Daphne: Yes, a bit more or less, because.... Yes, there are more yellow

balls than orange balls.

Bas: I think the number of yellow balls is around, uhm, 700. It may be
little less. In any case, it is between the 625 and 750.

Jesse: Yes, it is in any case between 600 and 800.

Here, Bas took the extreme values of the observed samples as limits for the
possible number of yellow balls. Jesse took a broader interval. Both showed that
they understood that sample results vary, but can be used to estimate the
population. Jesse’s reply indicated that he understood that these extreme values
were global estimators that might vary due to chance.

Second Step: Frequency Distribution

Regarding the second step, introducing the concept of frequency distribution,
the hypothesis was confirmed. The results showed that indicators 2a to 2e were
observed. Table 2.7 displays the observed indicators.

The whole-class discussion focused on the question “What happens if this
experiment is repeated?” Students mentioned that results that resembled the
population proportion were most likely to appear and that strong deviations
were unlikely but possible, which confirmed the expected students’ behavior as
described in 2a and 2b. However, it seemed that some students overestimated
the possibility of strongly deviating results, as they suspected that with a large
number of repetitions there would certainly be outliers. At the same time,
students seemed to become aware of the difference between possibility and
chance, which followed from the next interview fragment.
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Teacher: What sample result is unlikely?

Iris: Eh, that all the balls are orange.

Bas: That is possible, though there are more than 40 balls in the box.
Iris: Yes, but little chance that this will happen.

Table 2.7. Overview of Results for LT Step 2

Indicators Student Video
worksheet (strong,
(N=20) weak, no
(observed evidence)
number of
students)
2a. Students note that sample results
corresponding to the population proportion Non-applicable  Strong
will often occur;
2b. Students note that.strongly deviating Non-applicable ~ Strong
sample results are unlikely to appear;
2c. Students sketch a graph of the frequency
e . . Non-
distribution with a top at the population n=20 anolicable
proportion (in this case 30); PP
2d. Students sketch a graph of the frequency
e . . Non-
distribution in which the extreme values (in  n=20 anolicable
this case 0—10 and 35-40) hardly occur; PP
2e. Students estimate the probability of ranges
. . Non-
of particular sample results on the basis of n=12 aoolicable
their sketched frequency distribution'**; PP
'Supplement: Students estimate the
o . Non-
probability of ranges of particular sample n =20 .
applicable
results roughly
*Supplement: Students estimates did not
. o Non-
correspond to their frequency distribution n=7 aoplicable
sketched PP
3Supplement: Students overestimated the _6 Non-
probability of strongly deviating results applicable

39



Chapter 2

All students were able to understand the frequency distribution of data from
repeated sampling, as they made a good sketch of a visualization (or a model) of
their expectations in a distribution with a peak at 30 and falling to (almost) zero
at the extremes, which corresponded to indicators 2c¢ and 2d. In doing so, all
students demonstrated that they were aware that samples vary, but that a sample
result that resembled the population proportion (75%) would occur most
frequently in more than 100,000 repetitions. The drawings could be divided into
the four types shown in Figure 2.3. Eleven students correctly sketched the
frequency distribution in the shape of a bar diagram with a peak at 30 and a
negative skew (Type 1). Five students indicated that for so many repeated
samples, the sample results would not increase/decrease monotonously, but
local peaks might occur (Type 2). These five students also correctly sketched
the global features of the frequency distribution, although local peaks are
unlikely to occur in such a large number of repetitions. These students probably
thought that coincidence played a role in this, and they did not (yet) realize that
the distribution of samples will stabilize after so many repeated samples (known
as the law of large numbers, which we do not expect students to understand
here). Two students sketched an almost linear course (Type 3) and two students
outlined a smooth curve (Type 4). However, the latter might be caused by the
word sketch rather than draw in the task.

Table 2.8. Students’ Estimate of the Probability of a Range of Particular
Sample Result on Worksheet 2 (N = 20)

Task Probability Examples of written work

0,
éét?rx?;edglzou Eﬁlzmé))St) 0% Very small, but it is possible though.
probability of a A very small probability actually,
sample result 1% (n=06) almost 1%, because there are simply
(number of many more yellow than orange balls.
yellow balls) of ... because there will always be a
less than 10 ata 5% (n=13) chance, only it gets less because the
sample size of larger majority has that color.

40? (population

% (n =
proportion 75%) 10% (n=3) 75 out of 100 balls are yellow.

Empty (n=2) (due to time limitations)

Students were able to estimate the probability of certain sample results roughly,
but their estimates did not always correspond to their sketched frequency
distribution and some students overestimated the probability of strongly
deviating results, and, as a consequence, indicator 2e was only partially
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observed. In several tasks, students were asked to estimate the probability of
ranges of particular sample results. As an example, Table 2.8 shows the results
of one task, in which students were asked to estimate the probability of a sample
result of less than 10 in a sample of 40 from a population (size 1,000 and
proportion 75%).

Table 2.9. Tllustrative Example of the Working Method on Worksheet 2

Task llustrative example from one student’s
work

Sketch the expected frequency
distribution on the number of
yellow balls in a sample of 40, if
the first-step physical experiment
were repeated 100,000 times.
(population proportion 75%)

How do you estimate the I estimate the probability at 10%, because
probability of a sample result most balls are yellow.

(number of yellow balls) of less

than 10 at a sample size of 40?

(population proportion 75%)

Although it was expected that students would describe their estimate of the
probability in words, students apparently felt the need to quantify it (probably
because this activity was part of the mathematics lesson) and chose to use
percentages. All students estimated the probability of a sample result under 10
less than or equal to 10%, with only six out of twenty students estimating this
probability close to zero. These answers demonstrated that students understood
that the probability of a strongly deviating result was small. However, this
probability was overestimated as six of them indicated that it would be 5% or
higher.

A remarkable result in determining the probability of ranges of particular
sample results was that the frequency distribution sketched by the students did
not always correspond to their answers (7 out of 20). Table 2.9 shows an
example. Although this student wrote down a numerical value, suggesting that
he made a calculation or at least made a specific estimate from his sketch, the
value did not match his sketched frequency distribution. It seemed that the
estimate was based on his intuitive idea of probability rather than being
calculated or estimated using his frequency distribution. However, two other
students explicitly mentioned that they did calculate the probability, “I estimate
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the probability at 0.01% which is about 10 out of 100,000 times.” In this case,
the calculation shown was the basis for the correct reasoning.

Type 1: Correctly sketched frequency Type 2: Correctly sketched global
distribution in the form of a bar graph form of the frequency distribution in a
with a peak at 30 and a negative skew bar graph with a peak at 30, but with
(n=11). (unlikely) local peaks (n=5).

Type 3: Correctly sketched global Type 4: Correctly sketched global

form of the frequency distribution in a form of the frequency distribution

bar graph with a peak at 30, but with with a peak at 30, but with an

almost linear progression (n=2). unrealistic smooth line (continuous
distribution) (n=2).

Figure 2.3. Four types of students’ sketches (N = 20) of the expected results of
repeated sampling (100,000 repetitions) with sample size 40 in a frequency
distribution

Third Step: Simulated Sampling Distribution

With regard to the third step, introducing the concept of simulated sampling
distribution, the hypothesis was confirmed as the data analysis revealed
indicators 3a to 3e. Table 2.10 displays the observed indicators.

The students were able to simulate the sampling distributions at varying
sample sizes and from varying number of repetitions and to use these
distributions as a model for interpreting the variation and uncertainty involved.
By comparing these distributions, they noted on their worksheet that a larger
sample size led to less variation in the accompanying estimate of the population
and hence to a better inference, and in addition they noted on their worksheet
that a larger number of repetitions lead to less variation in the mean of the
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samples and hence to a better estimate of the population, which confirmed
indicators 3a to 3d.

Figure 2.4. Example of filled-in table on Worksheet 3

The students could simulate the sampling distributions from repeated sampling
easily and independently. They determined the most common sample results for
samples with different sizes and different number of repetitions by checking the
boundaries of the 95% area with the computer tool. This tool also made it easy
to determine the average sample result. Students were asked to examine the
effect of sample size and number of repetitions on the sampling distributions. In
order to investigate this, they could use the tables on their worksheet. Figure 2.4
displays one filled-in table of a student.

The students were free to decide which population proportion, sample
size, and number of repetitions they wanted to examine and compare. Based on
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the simulated sampling distributions, they filled in Columns 2 and 3 and
subsequently converted these values to the accompanying estimates of the
population (size 1,000) in Columns 4 and 5.

By comparing sampling distributions with different sample sizes, students
noted that there was less variation in the corresponding estimates of the
population and concluded that a larger sample size led to a more accurate
outcome. Table 2.11 gives an overview of students reasoning about the effect of
sample size on the estimate of the population. In the same way, students
compared simulated sample distributions for a varying number of repetitions
and found that the average sample result for a large number of repetitions
remained almost the same, and from this they concluded that more repeated
samples provided a better estimate of the population.

Table 2.10. Overview of Results for LT Step 3

Indicators Student worksheet Video
(N =20) (strong,
(observed number weak, no
of students) evidence)

3a. Students compare the simulated
sampling distributions at varying sample
sizes and note that repeated sampling with
a larger sample size leads to less variation
in the accompanying estimate of the
population;

=]
Il

20 Strong

3b. Students compare the simulated
sampling distributions at varying sample
sizes and note that repeated sampling with
a larger sample size leads to a better
estimate of the population;

=
Il

20 Strong

3c¢. Students compare the simulated
sampling distributions from varying
number of repetitions and note that from
repeated sampling with a larger number of
repetitions, the mean of these samples is
less variable;

n=20 Strong
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3d. Students compare the simulated
sampling distributions from varying
number of repetitions and note that
repeated sampling with a larger number of
repetitions, leads to a better estimate of the
population;

n=20 Strong

3e. Students describe how the simulated
sampling distribution from repeated
sampling can be used to determine most
common sample results;

Non-applicable Weak

Table 2.11. Students’ Estimate of the Probability of a Certain Sample Result on
Worksheet 2 (N = 20)

Task Examples from written work
1. What do you notice The estimates from a larger sample size are closer
when you compare the together.

population estimates

from a small sample size =~ With a larger sample size, the average sample
with those from a larger ~ result, and the population estimate, are closer
one? together.

With a larger sample size, there is less variation in
the population estimates.

2. Based on the ... leads to a more accurate conclusion.
simulated sample
distributions, draw a ... gives a more precise picture of the number in the

conclusion on the effect  population.

of sample size on the

estimate of the ... reduces the spread of the estimates, which in turn
population. Complete the makes your estimate of the population more precise.
following sentence:

A larger sample size ...

Since most students used the boundaries of the 95% to compare the sampling
distributions, the teacher asked several individual students what these
boundaries meant and how one could use them. These video-taped interactions
between teacher and student (TSI) showed that the students’ overall idea of the
95% area was correct. For example, based on the screen with the 95% area of
the sampling distribution one student explained:
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The 95% area consist of two borders, a limit at 2.5% and a limit at
97.5% of the sample results. This is so that you can clearly see
what the most common sample results are. The sampling variation
is sometimes very large because you carry out many samples.
Through the 95% area you can see clearly what the samples
usually have as a result.

Not all students were surveyed, and the open nature of the question made it hard
to confirm their understanding of the 95% area; as a consequence, we
considered indicator 3¢ as partly observed, even though all students were able to
describe how the sampling distribution could be used as a model to interpret
variation and uncertainty and to determine most common sample results.

Conclusion and Discussion

In this research we looked for opportunities to make ISI accessible to 9th-grade
students. Educational guidelines were extracted from literature and translated
into hypotheses about a learning trajectory for students. We addressed the
question of how the first part of a learning trajectory that focuses on repeated
sampling with a black box introduces students to the concepts of sample,
frequency distribution, and simulated sampling distribution. This article reports
on the design, implementation and evaluation of the first three steps of a LT for
ISL.

The first step of the LT focused on the introduction of sampling. The
hypothesis was that students would become aware of sampling variation with
categorical data and investigate the effect of repeated sampling and sample size
on estimating the population, by conducting the designed activity with the black
box. The results show that the indicators associated with the hypothesis were
observed. The LT enabled students, inexperienced with sampling, to reason
with sample data in a short period of time, including the handling of variation
and uncertainty. To estimate the population—the content of the black box—
students chose a repeated sampling approach to reduce errors caused by
sampling variation. In this specific black-box context, students viewed their
sample as “a subset of the population” and not as “a small-scale version of the
population” which supports reasoning about variation (Saldanha & Thompson,
2002). Students did not know how to interpret the variation in data, as they
noted that they were not entirely confident about their estimates due to the
variation in outcomes. This result is in line with studies by Tversky and
Kahneman (1971) and Ben-Zvi et al. (2012). The use of whole-class discussions
where students exchange and compare their results from repeated sampling
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(Wild & Pfannkuch, 1999), along with the growing-samples principle (Bakker,
2004; Ben-Zvi et al., 2012), in which students discuss and test their expectations
about increasing sample sizes, was found transportable to our LT. Along the
lines of this approach, students predicted what would happen in a following
larger sample. While drawing larger samples and exchanging the results, the
role of sample size on variation became visible for students. Students
experienced and noted that a larger sample size (usually) leads to less variation
in the estimate of the population proportion and hence to a better inference. The
confrontation with diversity in sample data from the black box supported
students’ inferential reasoning about the boundaries of variation. Estimates of
the population proportions were supported by arguments on sampling variation,
repeated sampling, and sample size. As such, this physical black-box
experiment seemed a meaningful context to introduce students to the concept of
sampling.

The second step of the LT focused on the introduction of the concept of
frequency distribution from repeated sampling. The hypothesis was that for
students the frequency distribution was primarily a visualization of results
obtained from repeated samples. Through considering how this distribution
might look like with many repeated samples, students were stimulated to make
the conceptual switch to using it as a model for interpreting variation and
uncertainty. Along this way, it was expected that during this step, through
discussing the question “What happens if this experiment is repeated” and by
imagining and visualizing the frequency distribution of 1,000 repeated samples
from the black box, students would understand that most sample results will be
close to the population proportion and that strong deviations are unlikely. In
addition, they were expected to understand that this frequency distribution can
be used to estimate the probability of ranges of specific sample results (for
example a result of less than ten). The results from step 2 show that most of the
corresponding indicators were observed. The question of what happens if the
experiment is repeated (Rossman, 2008) was found crucial in this LT. It
promoted students’ inferential reasoning as they considered and discussed
possible sample results. Moreover, this question led to discussion about the
difference between probability and chance. By having students draw a sketch of
their expectations for many repeated samples in a bar chart, the shape of
frequency distribution became visible.

This visualization offered a lead to more enhanced reasoning about
variation and uncertainty. As all students were able to consider, sketch, and
reason about variation and uncertainty with the frequency distribution on
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repeated sampling, students were expected to be able to determine the
probability of ranges of particular sample results by using their prior knowledge
of ratios. However, as a remarkable result, not all students applied their prior
knowledge of ratios to their sketched frequency distribution; some determined
the probability on other (maybe more intuitive) ideas. Another finding in this
respect is that some students overestimated the probability of strong deviations,
which is not surprising at this stage, but can be a point for attention in
subsequent lessons. From these results, visualizing the expected frequency
distributions on many repeated samplings facilitated more enhanced reasoning
about variation and uncertainty, where determining the probability of particular
sample results is a point for attention.

The third step focused on the introduction of the concept of sampling
distribution. The hypothesis was that students would understand that this
distribution can be used as a model for investigating variation and uncertainty.
More particularly, that students understand that sampling with a larger number
of repetitions leads to less variation in the mean and hence to a better population
estimate, and that sampling with a larger sample size reduces the variation in the
accompanying estimates of the population and hence leads to a more certain
inference, by simulating and comparing sampling distributions with varying
sample sizes and from varying number of repetitions. The results of step 3 show
that the indicators that supported the hypothesis were observed. From students’
experience with the frequency distribution of many repeated samples in step 2,
the transition to the simulation of the sampling distribution, also called
resampling (Garfield et al., 2015; Manor & Ben-Zvi, 2015; Watson & Chance,
2012), was easily made. The students were already familiar with the shape of
this distribution. The students were able to determine the most likely sample
results by using the digital tool. Here they used the boundaries of the 95% area,
which were available in the tool. The students simply adopted these boundaries.
Although most students were able to give a correct description of these
boundaries, the results do not confirm whether all students understood these
boundaries and their application. The comparison of distributions from repeated
sampling gave them insight into the effect of repeated sampling and sample size
on the estimate of the population. As such, the results show that students were
able to use the idea of a simulated sampling distribution as a model for further

investigating variation and uncertainty.

This study gave an insight into how a LT that focuses on the concept of
sample, frequency distribution, and sampling distribution can enhance 9th-grade
students’ informal inferential reasoning. The results show how students used
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these concepts to underpin their inferences, especially with regard to variation
and uncertainty. In addition, the results show what barriers students encountered
during their work on the HLT.

From the viewpoint of the researcher as an experienced teacher, the main
element in this LT that allowed students to go through the three steps smoothly
seemed to be the accessibility of the three successive steps. From their concrete
experiences with sampling variation in step 1, through imagining and
visualizing the scaling up of this experiment in step 2, the students could easily
make the transition to reasoning with the sampling distribution in step 3. From
their point of view, the computer took over their manual work. This approach
provided them insight into how the sampling distribution arises and how it can
be used as a model for investigating possible sample results to interpret
variation and uncertainty. Known difficulties concerning the three main
concepts of sample, frequency distribution, and sampling distribution, hardly
occurred and apparently were avoided. As a consequence, this approach seems
to help students engage with these concepts, which supports them in using new
insights in new situations, making ISI accessible.

In our study, the idea of model of to model for was primarily used as a
design heuristic to promote emergent modeling (Gravemeijer, 1999). In
retrospect, we have become intrigued by what happens cognitively when
students make the transition from seeing a graph as a representation (model) of
a frequency distribution to seeing a dataset as a distribution with particular
characteristics that help to make inferences (model for). It seems promising to
analyze such transitions through the theoretical lens of objectification
(reification, reflective abstraction, or hypostatic abstraction). Where it concerns
the learning of function (Sfard, 1991), it is known that students initially see
functions as processes, and typically not as objects with characteristics. The
desired dual understanding of functions or other mathematical objects as both
process- and object-like has been referred to as “procept” (Gray & Tall, 1994).
In our case, we speculate that the sampling process in which students see
(sampling) distributions emerge may be such a process view, which forms a
basis for seeing a distribution as an object (cf. Bakker, 2007b). From such a
perspective, the question arises whether objectification is indeed the mechanism
that enables the cognitive transition between the learning steps, and thus
conceptualization.

Objectification involves constructing an object in a representational
system, for example the visualization of a sample, experimenting with this
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object and then observing the results of experimenting, as a reflection phase.
New objects can be created in the reflection phase, when part of an object is
seen as an entity in itself (Bakker, 2007a). The central point of this reflection
phase is that the new objects formed by this process can be used as a means for
further objectification, for new, higher-level processes, and for further steps in
improving additional knowledge, and thus conceptualized as an independent
entity. According to Sfard and Lavie (2005), the development of objectification
begins with participation in offered routines with the object, whereby these
routines gradually transform into real explorations with the object as an
independent entity. They emphasize that this learning process is a one-way
street, which is difficult to reverse, making it hard for adults to recognize. With
regard to the transfer from LT step 1 to step 2, objectification may involve the
transfer of sampling as the process of creating elements of a dataset, to a sample
as an element or new object in the frequency distribution from repeated samples
in step 2. In this way, objectification can be viewed as the mechanism
underlying the ideas of repeated and growing samples. With regard to the
transfer from LT step 2 to 3, objectification may facilitate the transfer of the
frequency distribution as a model of results generated from repeated sampling
into a model for further investigating variation and uncertainty. Given the
importance of such mechanism of objectification we recommend follow-up
research in this area.

Our advice for redesign of the HLT focuses on two main points. The first
point includes the integration of students’ prior knowledge about proportions to
determine the probability of ranges of particular sample results with the
frequency distribution. This could be achieved by calculating proportions by
using (and discussing possible) units on the vertical axis of the (expected)
frequency distribution and by applying and discussing this distribution in
multiple and more different situations. The second point for redesign is to pay
more attention to reasoning with the simulated sampling distribution in various
situations and not automatically use the 95% area. Discussion on students’
analyses and not only on the results, will support students’ development of
strong mathematical arguments (McClain, McGatha, & Hodge, 2000).

Considerations for using the LT in other settings are the following. The
LT was implemented in the classroom of the teacher-researcher, who was very
familiar with the class and the designed materials. We are aware that this
favorable condition should be taken into account when readers want to use the
ideas presented here in other contexts. Researchers who would like to repeat
such activities should also consider that most Dutch students are not used to
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whole-class discussions during the mathematics lessons. In our research, it was
important to encourage them to reason and discuss with each other from the
beginning of the trajectory. Teachers and researchers should also take into
account that Dutch students are used to closed assignments from their textbook
and are unfamiliar with working with more open and inquiry-based tasks.
Another point of consideration is that we worked with pre-university students,
the top 20% of our education system. In other situations, students may need
more time. As the results in this research are based on a small-scale pilot in the
class of the teacher-researcher, these results are not generalizable to a regular
classroom without further research.

This research that focused on repeated sampling with the black box as a
first part of a LT seems a promising proof of principle how to make ISI—e.g.,
reasoning about variation and uncertainty—accessible for students along the
lines of sample, frequency distribution, and simulated sampling distribution.
The results of this study will be used to revise the first part of the LT, and as a
next step, in a follow-up study, to (re)design the whole LT, and to improve
effectiveness, efficiency, scale up and compare our HLT with alternatives.
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Abstract

Digital technology is indispensable for doing and learning statistics. When
technology is used in mathematics education, the learning of concepts and the
development of techniques for using a digital tool are known to intertwine. So
far, this intertwinement of techniques and conceptual understanding, known as
instrumental genesis, has received little attention in research on technology-
supported statistics education. This study focuses on instrumental genesis for
statistical modeling, investigating students’ modeling processes in a digital
environment called TinkerPlots. In particular, we analyzed how emerging
techniques and conceptual understanding intertwined in the instrumentation
schemes that 28 students (aged 14-15) develop. We identified six common
instrumentation schemes and observed a two-directional intertwining of
emerging techniques and conceptual understanding. Techniques for using
TinkerPlots helped students to reveal context-independent patterns that fostered
a conceptual shift from a model of to a model for. Vice versa, students’
conceptual understanding led to the exploration of more sophisticated digital
techniques. We recommend researchers, educators, designers, and teachers
involved in statistics education using digital technology to attentively consider
this two-directional intertwined relationship.

Keywords
statistical modeling, instrumental genesis, statistical reasoning, TinkerPlots,
simulated sampling distribution
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Introduction

The increasing use of digital technology in our society requires an educational
move towards learning from and with digital tools. This is particularly urgent
for statistics education where digital technology is indispensable for interpreting
statistical information, such as real sample data (Gal, 2002; Thijs, Fisser, & Van
der Hoeven, 2014). For such interpretations, understanding underlying
statistical models is fundamental (Manor & Ben-Zvi, 2017). Current
technological developments offer digital tools—for example TinkerPlots,
Fathom, and Codap—that provide opportunities to deepen understanding of
statistical modeling and models. These digital tools enable students to build
statistical models and to use these models to simulate sampling data, and
therefore offer means for statistical reasoning with data (Biehler, Frischemeier,
& Podworny, 2017). As such, modeling with digital tools is promising for
today’s and tomorrow’s statistics education.

Although statistics education is developing as a domain distinct from
mathematics, the use of digital tools is a shared problem space and collaboration
within shared spaces can strengthen each domain (Groth, 2015). From other
domains in school mathematics, for example algebra, it is well known that as
soon as digital tools are used during the learning process, the development of
conceptual understanding becomes intertwined with the emergence of
techniques to use the digital tool (Artigue, 2002; Drijvers, Godino, Font, &
Trouche, 2013). For teachers, researchers, educators, and designers, insight into
this intertwined relationship of learning techniques and concepts is a
prerequisite for deploying digital tools in such a way that they are productive
for the intended conceptual understanding. In the meantime, due to a lack of
insight into this intertwining, undesired influence of techniques for using the
digital tool on the intended conceptual development can be overlooked. This
complex relationship, however, has so far received little attention in research on
technology-supported statistical modeling processes.

A useful perspective to grasp the relationship between the learning of
digital techniques and conceptual understanding is instrumental genesis
(Artigue, 2002). In this theoretical view, learning is seen as the simultaneous
development of techniques for using artifacts, such as digital tools, and of
domain-specific conceptual understanding, for example statistical models and
modeling. The perspective of instrumental genesis seems promising to gain
knowledge about learning from and with digital technology. As such, the aim of
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this study is to explore the applicability of the instrumental genesis perspective
to statistics education, and to statistical modeling processes in particular.

Theoretical Framework

In this section we elaborate on two main elements of this study: statistical
modeling and instrumental genesis.

Statistical Modeling: Techniques and Concepts

Digital tools for statistical modeling have the potential to deepen students’
conceptual understanding of statistics and probability, and enable them to
explore data by deploying techniques for using the tool. They also offer
possibilities to visualize concepts that previously could not be seen, such as
random behavior (Pfannkuch, Ben-Zvi, & Budgett, 2018). Such educational
digital tools, for example TinkerPlots, provide opportunities for statistical
reasoning with data, as students build statistical models and use these models to
simulate sample data (Biehler et al., 2017).

Modeling processes with a digital tool such as TinkerPlots require the
development of digital techniques. Digital TinkerPlots techniques for setting up
statistical models and simulating data are helpful to introduce key statistical
ideas of distribution and probability (Konold, Harradine, & Kazak, 2007). The
research by Garfield, delMas, and Zieffler (2012) suggests that students can
learn to think and reason from a probabilistic perspective—or, as the authors
call it, “really cook” instead of following recipes—by using TinkerPlots
techniques to build a model of a real-life situation and to use this model for
simulating repeated samples. This way to understand the probability involved in
inferences is also reflected in our previous study (Van Dijke-Droogers, Drijvers,
& Bakker, 2020) in which an approach based on repeated sampling from a black
box filled with marbles seemed to support students in developing statistical
concepts. In this approach, students developed TinkerPlots techniques to
investigate what sample results would likely occur by chance. Statistical
modeling in the study presented here requires TinkerPlots techniques for
building a model by choosing a graphical representation (e.g., a bar or pie
chart), entering population characteristics (e.g., population size, attributes, and
proportions) and entering the sample size, of a real-life situation from a given
context to solve a problem. Next steps include TinkerPlots techniques for
simulating repeated samples by running the model and visualizing the results in
a sampling distribution, for enabling to reason about probability—taking into
account number of repetitions and sample size—and to answer the problem
using simulated data.
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Statistical modeling processes with TinkerPlots also require, in addition
to the development of TinkerPlots techniques, an understanding of the concepts
involved. The literature elaborates several viewpoints on statistical modeling.
We discuss three viewpoints and indicate how we incorporated them in our
study. First, Biischer and Schnell (2017) argue that the notion of emergent
modeling (Gravemeijer, 1999)—the conceptual shift from a model of a context-
specific situation to a model for—can also be applied to statistical reasoning in
a variety of similar and new contexts. Second, statistical modeling involves the
interrelationship between the real world and the model world. This relationship
is elaborated in Patel and Pfannkuch’s framework (2018) that displays students’
cognitive activities about understanding the problem (real world), seeing and
applying structure (real world—model world), modeling (model world-real
world), analyzing simulated data (model world), communicating findings
(model world-real world). Third, for reasoning with models and modeling,
Manor and Ben-Zvi (2017) identify the following dimensions: reasoning with
phenomenon simplification, with sample representativeness, and with sampling
distribution. Statistical modeling includes the process of abstracting the real
world into a model and then using this model for understanding the real world.
In short, Biischer and Schnell (2017) emphasize the importance of developing
context-independent models for statistical modeling processes, Patel and
Pfannkuch (2018) outline the interaction between the real and the model world,
and Manor and Ben-Zvi (2017) address the different dimensions when
reasoning with models. These viewpoints provide insight into the development
of concepts for statistical modeling. In the study presented here, we embodied
the viewpoints in the design of students’ worksheets. On these worksheets,
students are requested to build and run a model of a real world situation in
TinkerPlots and to use this model, by simulating and interpreting the sampling
distribution of repeated samples, to understand the real world situation.

Understanding and reasoning with the simulated sampling distribution
from repeated samples is, as mentioned by Manor and Ben-Zvi (2017), essential
for statistical modeling. However, the concept of sampling distribution is
difficult for students. The study by Garfield, delMas, and Chance (1999)
focused on the design of a framework to describe stages of development in
students’ statistical reasoning about sampling distributions. Their initial
conception of the framework identified five levels that evolve from (1)
idiosyncratic reasoning—knowing words and symbols related to sampling
distributions, but using them without fully understanding and often incorrectly—
through (2) verbal reasoning, (3) transitional reasoning and (4) procedural
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reasoning, towards (5) integrated process reasoning—complete understanding
of the process of sampling and sampling distributions, in which rules and
stochastic behavior are coordinated. In our study, these levels will be used to
indicate students’ conceptual understanding of statistical modeling. Students’
difficulties in reasoning with the sampling distribution are often related to
misconceptions about basic statistical concepts such as variability, distribution,
sample and sampling, the effect of sample size and confusion of results from
one sample with the sampling distribution. According to Chance, delMas, and
Garfield (2004), ways to improve students’ level of understanding statistical
modeling include techniques for exploring samples, comparing how sample
behavior mimics population behavior, and for both structured and unstructured
explorations with the digital tool. As such, conceptual understanding of
statistical modeling involves the building, application and interpretation of
context-independent statistical models—in our study the sampling distribution
of repeated sampling—to answer real-life problems.

Instrumental Genesis

Using digital tools in a productive way for a specific learning goal requires
insight into the intertwined relationship between emerging digital techniques
and conceptual understanding. A useful perspective to grasp the intertwining of
learning techniques and concepts is instrumental genesis. A fundamental claim
in this theory is that learning can be seen as the intertwined development, driven
by the student activity in a task situation, of techniques for using artefacts—for
example a digital tool—and cognitive schemes that have pragmatic and
epistemic value (Artigue, 2002; Drijvers et al., 2013). In this perspective, the
conception of “instrument” and instrumental genesis are used in the sense
described by Artigue (2002):

The instrument is differentiated from the object, material or
symbolic, on which it is based and for which is used the term
“artefact”. Thus an instrument is a mixed entity, part artefact, part
cognitive schemes which make it an instrument. For a given
individual, the artefact at the outset does not have an instrumental
value. It becomes an instrument through a process, called
instrumental genesis, involving the construction of personal
schemes or, more generally, the appropriation of social pre-existing
schemes. (p. 250)

According to Vergnaud (1996), a scheme is an invariant organization of
behavior for a given class of situations. Such a scheme includes patterns of
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action for using the tool and conceptual elements that emerge from the activity.
In the study presented here, the tasks on students’ worksheet intend to construct
personal instrumentation schemes consisting of TinkerPlots techniques and
conceptual understanding of statistical modeling. The identification of schemes
can structure and deepen the observation of students’ emerging technical actions
and statistical reasoning, and hence provides insight into the intertwined
development of techniques and concepts.

As the application of instrumental genesis within the field of statistics
education hardly exists, we present an example from a study within the context
of algebra. Table 3.1 shows an instrumentation scheme concerning the use of a
symbolic calculator for solving parametric equations, from a study by Drijvers
et al. (2013). The intertwined relationship can be seen, for example, in scheme
D. Here, students were asked to solve the parametric equation with respect to X.
On the one hand, in order to use the correct techniques, students must be able to
identify the unknown in the parameterized problem situation to enter the correct
command “‘solve with respect to X” into their computer algebra calculator. On
the other hand, the available options of the tool invite students to distinguish
between the parameter and the unknown. In the study by Drijvers et al., the
identification of students’ instrumentation schemes provided insight into how
the learning of techniques for using a computer algebra system and the
conceptual understanding of solving parametric equations emerged in tandem.
Furthermore, the identified schemes helped the researchers to reveal several
conceptual difficulties students encountered while solving parametric equations
with the digital tool.

As a second example, we present the findings from one of the scarce
studies on instrumental genesis within the field of statistics education,
conducted by Podworny and Biehler (2014). In their study, within a course on
hypothesis testing and randomization tests with p values, university students
used simulations with TinkerPlots. Students noted their own schemes to plan
and structure their actions. These schemes drawn up by students proved useful
as a personal work plan; however, it was difficult to identify common
instrumentation schemes and to unravel how TinkerPlots techniques and
conceptual understanding emerged together. Our study differs from theirs, as we
identified our students’ schemes by observing their actions and reasoning.

In general, instrumental genesis is considered an idiosyncratic process,
unique for individual students. Yet, it takes place in the social context of a
classroom, and as researchers we are interested in possible patterns. As such,
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identifying instrumentation schemes concerns the complexity of unraveling
patterns in the diversity of individual schemes that students develop. The study
presented here seeks to identify common instrumentation schemes by observing
students’ actions and reasoning when statistically modeling in TinkerPlots, and
then to use these schemes to zoom in on the genesis of the schemes to reveal
how emerging TinkerPlots techniques and the conceptual understanding of
statistical modeling intertwine.

Table 3.1. Example of an Instrumentation Scheme for Solving Parametric
Equations with a Computer Algebra System (Drijvers et al., 2013)

Digital techniques Conceptual understanding

A. Use the Solve-option of the Knowing that the Solve command can be
Graphing Calculator and used to express one of the variables in a
enter the given function parameterized equation in other variables

B. Enter the ‘=0’ sign Knowing the difference between an

expression and an equation

C. Enter the unknown to solve Realizing that an equation is solved with
(%) respect to an unknown

D. Solve the equation with Being able to identify the unknown in
respect to x the parameterized problem situation

E. Give the solution for the Being able to interpret the result,
parametrized equation particularly when it is an expression, and

to relate it to graphical representations

Indicate the unknown to solve

An equation should contain an = sign
Notice the scope of the square root sign

v

solve(x2+b-x+ IEOE)

Jb%-a-p - -(Ew)

I 3 TF &

‘solve with respect to x' = ‘express x in terms of b’
A solution can be an expression
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Research Aim and Question

To explore the applicability of the instrumental genesis perspective to statistics
education, and to statistical modeling in particular, we conducted an explorative
case study. This study focuses on 14-to-15-year-old students’ intertwined
development of learning techniques for using TinkerPlots and conceptual
understanding of statistical modeling. We address the following question:

Which instrumentation schemes do 9th-grade students develop
through statistical modeling processes with TinkerPlots and how
do emerging techniques and conceptual understanding intertwine
in these schemes?

Methods

This study is part of a larger design study on statistical inference. Our previous
study focused on the design of a learning trajectory in which students were
introduced to the key concepts of sample, frequency distribution, and sampling
distribution, with the use of digital tools (Van Dijke-Droogers et al., 2020). As a
follow up, this study focuses on the specific role of digital techniques on
conceptual understanding by examining how 28 9th-grade students work on
TinkerPlots worksheets, which were designed to engage in statistical modeling.

Design of Student Worksheets

A suitable stage to investigate students’ instrumental genesis—their
development of schemes that include TinkerPlots techniques and conceptual
understanding of statistical modeling—is after the introduction of the tool and
the concepts, when they engage in the emergent modeling process of applying
gained knowledge in new real-life situations. Prior to working with the
TinkerPlots worksheets, students had a brief introduction to the tool and
concepts. These preparatory activities were designed within the specific context
of a black box with marbles and involved three 60-min lessons. Two of these
lessons concentrated on physical black box experiments and one on simulations.
Both the physical and simulation-based preparatory activities introduced
students to statistical modeling by addressing concepts such as sample,
sampling variation, repeated sampling, sample size, frequency distribution of
repeated sampling and (simulated) sampling distribution (Chance et al., 2004).
The introduction of TinkerPlots techniques was done in the third 60-min lesson
through a classroom demonstration of the tool by the teacher, followed by
students practicing themselves using an instruction sheet. On this instruction
sheet, the TinkerPlots techniques for making a model, simulating repeated
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samples and visualizing the sampling distribution were listed. The brief
introduction on techniques and concepts focused on the black box context only.

For the study reported here, we designed five worksheets. In one 60-min
lesson per worksheet, we invited students to apply and expand their emerging
knowledge from the preparatory black box activities in new real-life contexts.
The design of the worksheets was inspired by studies from Patel and Pfannkuch
(2018), Manor and Ben-Zvi (2017), and Chance et al. (2004). In each
worksheet, the students were asked to build and run a model of a real world
situation in TinkerPlots and to use this model, by simulating and interpreting the
sampling distribution of repeated samples, to understand the real world
situation. The structure of these worksheets is shown in Table 3.2. In each
Worksheet (W1 to W5) a new context was introduced. We chose contexts with
categorical data to minimize the common confusion between the distribution of
one sample and sampling distribution (Chance et al., 2004) and to optimize the
similarity with the black box context in the preparatory activities. When
carrying out the tasks on W1 to W5, students could use the TinkerPlots
instruction sheet from the preparatory activities. The aim of the worksheets was
to expand students’ understanding of statistical modeling—that is, the building,
application and interpretation, of context-independent statistical models; in our
study, the sampling distribution of repeated sampling—by using TinkerPlots as
an instrument.

Participants

We worked with two groups, each consisting of fourteen 9th-grade students.
Group 1 consisted of students in school year 2018-2019 and Group 2 of
students in school year 2019-2020. All students were in the pre-university
stream, and thus belonged to the 15% best performing students in our
educational system. The students were inexperienced in sampling and had no
prior experience in working with digital tools during mathematics classes.

The students in Group 1 went through the preparatory activities described
earlier during the regular math lessons in school. Their teacher had been
involved in the research project and had already carried out these lessons
several times. All twenty students from the class were invited to participate in
the session at Utrecht University’ Teaching and Learning Lab (a laboratory
classroom) and fourteen of them applied. During the lab session, these students
worked on Worksheets 1-3 (W1 to W3), the initial phase of the teaching
sequence. For practical reasons—such as missing regular classes and travel
time—multiple research sessions with the same students were not possible.
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Table 3.2. Structure of Designed Worksheets 1-5

Worksheet component

Student activity

a. Explore and identify
important factors from
a given real-life
problem to build a
population model in
TinkerPlots

b. Build and run the
model by simulating
sample results and
examine the behavior
of the model

c. Examine and interpret
the simulated results
by using the sampling
distribution

d. Answer the problem
using the simulated
data

Try to understand the situation and the data
collection by defining the problem, making
predictions and considering variation. Apply
structure by identifying all known real world
factors, considering model tools in TinkerPlots to
represent real world factors and evaluating
whether all relevant factors are included in the
model.

Use TinkerPlots to examine the behavior of the
model by visualizing single sample results and
repeated sample results in respectively sample and
sampling distributions by, checking variation in
simulated data distributions at varying sample
sizes and varying number of repeated samples,
comparing these data with the contextual
knowledge, evaluating model fit by checking how
simulated data mimic the model.

Interpret the results of simulated data by
identifying and using TinkerPlots tools to answer
specific tasks and, in addition, by considering (the
probability of a specific) range of outcomes,
sampling variability, effect of sample size and
number of repeated samples.

Communicate findings by stating background to
the problem, making model informed decisions,
recognizing effects of underlying randomness and
stating limitations of the decisions.

Therefore, one school year later, we performed lab sessions again, but with a
different group of students, here called Group 2. These students from the same
school and with the same teacher as Group 1, went through the same
preparatory lessons and W1 to W3 during their regular math lessons at their
school. Again, fourteen students applied to participate in the research sessions at
the university. These students in Group 2 were similar to those in Group 1:
They performed at a similar level in mathematics, as their overall grades for the
school year averaged 6.6 on a scale of 10, which was comparable to 6.9 in
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Group 1. In addition, students’ performance in the preparatory tasks averaged 8
on a scale of 10 in both groups. The teacher judged the starting level of the two
groups to be similar. During the research sessions, the students of Group 2
worked on W4-WS5, the more advanced phase of the teaching sequence. An
overview of participants can be found in Table 3.3.

Table 3.3. Overview of Participants and Data Collection

Participants Data collection
Group  School  Average Average grade Data from Total time
year math preparatory students’ work duration
grade tasks recordings
2018 — W1-W3
I (n=14) 2019 6.9 8 Initial phase 28 hrs
2019 — W4-W5
2 (n=14) 6.6 8 More advanced 17 hrs
2020
phase

Data Collection

The data consisted of video and audio recordings from two classroom
laboratory sessions. During the first 5-hour session in Utrecht University’
Teaching and Learning Lab, the fourteen students of Group 1 worked in teams
of two or three on the designed W1-W3. The advantage of this lab setting over
a classroom environment was that detailed video recordings could be made of
students’ actions in TinkerPlots and their accompanying conversations. The
students were specifically asked to express their thoughts while solving the
problem, the think-aloud method (Van Someren, Barnard, & Sandberg, 1994).
The teams worked on a laptop, the screen of which was displayed on an
interactive whiteboard. Figure 3.1 shows the setup in the lab. During the second
lab session, we collected video and audio recordings from fourteen students of
Group 2, while working on W4—W5.

Data Analysis

The data analysis consisted of three phases: (1) identifying common
instrumentation schemes, (2) examining the global scheme genesis process
during the work, and (3) examining the scheme genesis process in depth (Table
3.4).
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Figure 3.1. Students working with TinkerPlots in Utrecht University’s
Teaching and Learning Lab

Table 3.4. Overview of Data Analysis

Phase and objective Outline Data-driven /
theory-driven

Phase 1: Step 0 (Prior to data collection): Theory-driven

Qualitative Data Preformulating instrumentation

Analysis schemes based on theories on

Identification of statistical modeling

students’ Step 1: Observing each student ata  Data-driven

instrumentation certain local segment of the teaching

schemes sequence

Step 2: Categorizing data from step  Data- and

1, by using preformulated theory- driven
instrumentation schemes

Step 3: Identifying global patterns of Data- and
instrumentation schemes for more theory- driven
students, by using the categorized

data of step 2

Phase 2: Interpretive Defining technical levels for Theory-driven
Content Analysis TinkerPlots techniques and

Examination of conceptual levels for understanding

students’ scheme statistical modeling
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development by Refining and specifying technical Data- and
identifying their and conceptual levels in each theory-driven
TinkerPlots techniques instrumentation scheme

and levels 9f Assigning levels to student actions ~ Data- and
understanding when working on W1 and W5 theory-driven

statistical modeling
during the work

Phase 3: Further examining how TinkerPlots Data-driven
Case study techniques and understanding

More detailed statistical modeling intertwine in the

examination of schemes students develop, that is,

students’ scheme how techniques may support

development conceptual understanding and the

other way around, by zooming in on
developing personal schemes of
students

In phase 1 of the analysis, we used a combined approach of theory-driven (prior
to data collection) and bottom-up (based on the data) to identify emerging
instrumentation schemes. The final results can be found in Table 3.7. To
identify the schemes, we conducted qualitative data analysis as defined by
Simon (2019): A process of working with data, so that more can be gleaned
from the data than would be available from merely reading, viewing, or
listening carefully to the data multiple times (p. 112). In step 0, prior to the data
collection, we defined preformulated schemes. These schemes were based on
the theories on statistical modeling (Biischer & Schnell, 2017; Chance et al.,
2004; Gravemeijer, 1999; Manor & Ben-Zvi, 2017; Patel & Pfannkuch, 2018),
and instrumental genesis (Artigue, 2002), and on expertise developed in
previous interventions (Van Dijke-Droogers et al., 2020). In these
preformulated schemes, specific TinkerPlots techniques were related to
students’ understanding of statistical modeling. In step 1, we observed each
student at a certain local segment of the teaching sequence, for example
building a model of the population (W1 Task 5), and analyzed the techniques
and concepts that were manifested in students’ actions and reasoning at that
local segment. In step 2, we categorized the data from step 1 by using the
preformulated schemes. To do this categorization, at the same time as
preformulated schemes were assigned, we expanded, refined and adjusted them
to include the observed data. In step 3, we used the categorized data of step 2 to
identify patterns for more students. By systematically and iteratively going
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through the categorized data, both within one student over several schemes and
across students, we identified global patterns in emerging instrumentation
schemes. These global patterns occurred to a certain extent in every student and
across students while working on each worksheet. By adapting the
preformulated schemes to the global patterns, we identified students’
instrumentation schemes.

Table 3.5. Technical Levels for Using TinkerPlots

Level Description

1. Non-user Students are not able to carry out the TinkerPlots
techniques.

2. Limited user Students carry out the TinkerPlots techniques by

following the instructions stepwise; the techniques
are still carried out hesitantly; haphazard trial and
error or simply trying something.

3. Developing user Students carry out correct TinkerPlots techniques
by following the instructions most of the time;
incorrect techniques are used but later corrected.

4. Experienced user Students carry out correct TinkerPlots techniques
fluently—that is, fast and without mistakes—
sometimes augmented by newly explored
TinkerPlots techniques.

5. Expert / Discerning Students make well considered decisions for
user correct TinkerPlots techniques.

Concerning phase 2 of the analysis, the data for examining students’
instrumental genesis, that is, their scheme development during the work, we
used interpretive content analysis (Ahuvia, 2001). This variant of content
analysis allowed us to identify both explicitly observed and latent content of
students’ technical actions and reasoning. To identify possible progress in
students’ TinkerPlots techniques, we defined five technical levels of
proficiency. These levels were based on Davies’ (2011) levels of technology
literacy and refined by both our experiences from previous research and the
collected video data. Davies defined six levels of users (non-user, potential user,
tentative user, capable user, expert user and discerning user) each of which
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corresponds to ascending levels of use: none, limited, developing, experienced,
powerful, and selective. For our study (Table 3.5) we merged the last two levels
of technology literacy, as our students were unable to reach the highest level in
the short period of time working on W1 to W5. Based on the observed data, we
specified the five technical levels for wusing TinkerPlots, for each
instrumentation scheme. The specified technical levels were used to analyze
students’ scheme development during the work on W1 and W35, respectively. To
identify possible progress in students’ understanding of statistical modeling, we
defined five conceptual levels. The conceptual levels are displayed in Table 3.6.
The conceptual levels were merely based on the previously described levels by
Garfield et al. (1999). These conceptual levels for understanding statistical
modeling were further specified for each instrumentation scheme on the basis of
the observed video data and prior experiences.

Table 3.6. Conceptual Levels of Understanding Statistical Modeling

Level Description
1. Incorrect Wrong statements and/or incorrect using words and
reasoning symbols related to the specific item of conceptual
understanding.

2. Idiosyncratic ~Knowing words and symbols related to the specific item of
reasoning conceptual understanding but using them without fully
comprehending and often incorrectly.

3. Verbal Verbal understanding of the item but unable to apply it to
reasoning the actual behavior. For example, the student can
reproduce that results from a larger number of repeated
samples lead to a better estimate of the population but does
not understand how key concepts such as variability and
range are integrated.

4. Transitional  Correctly identifying one or two features of the item
reasoning without fully integrating these features. For example,
identifying and relating just one or two of the features (1—
3) in understanding that results from more repeated
samples lead to a better estimate of the population: more
repeated samples lead to (1) a smoother sampling
distribution, without local peaks, with (2) a peak at the
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population proportion and (3) to an average that resembles

the population.
5. Integrated Understanding of the process of sampling and sampling
process distributions. For example, understanding the effect of
reasoning simulating a larger number of repeated samples to the

shape, peak and average of the sampling distribution and
that, as a consequence, more repeated samples lead to a
better estimate of the population.

The specification of both the technical and conceptual levels for coding the data
was discussed in-depth with experts in this domain. Although the students
worked in teams of two or three, we analyzed their proficiency levels
individually. We did so as we noticed considerable differences in individual
proficiency within one team and also because there was cooperation and
consultation between teams. To check the reliability of the first coder’s analysis,
a second coder analyzed the video data of students’ activities with W1 and W35,
for both the coding of technical and conceptual levels. A random sample of 5%
of the data (30 out of 600 fragments) was independently rated by the second
coder. The second coder agreed on 85% of the codes. Deviating codes, which
were limited to two levels difference at most, were discussed until agreement
was reached.

In phase 3, to further examine the intertwined relationship between
developing TinkerPlots techniques and understanding statistical modeling, that
is, how techniques may support conceptual understanding and vice versa, we
used case studies to investigate students’ instrumental genesis. In these case
studies, we zoomed in on developing personal schemes of students in both the
initial and more advanced phase.

Results

In this section, we first present the six instrumentation schemes we identified,
each including TinkerPlots techniques and conceptual understanding of
statistical modeling (Table 3.7). Second, we describe students’ global scheme
development during the work, by presenting the levels at which the students
used the techniques and concepts while working on Worksheets 1 and 5. Third,
we describe two students’ cases to reveal in more detail the intertwinement of
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emerging techniques and conceptual understanding in the personal
instrumentation schemes that students developed.

Identified Instrumentation Schemes

In observing students’ work, we identified six instrumentation schemes, called
(A) Building a model, (B) Running a model, (C) Visualizing repeated samples,
(D) Exploring repeated samples, (E) Exploring sample size, (F) Interpreting
sampling distribution (see Table 3.7). Column 1 provides a description of each
scheme, column 2 displays a screenshot of students’ TinkerPlots techniques for
the scheme at stake, and column 3 shows students’ understanding of statistical
modeling that we could distil from their reasoning during these actions. Each
instrumentation scheme incorporates a specific modeling process, ranging from
building a population model by exploring and identifying important information
in a given real-life problem in scheme A, to answering a given problem by
interpreting the simulated sampling distribution from repeated sampling in
scheme F. As such, the identified instrumentation schemes display how specific
TinkerPlots techniques occurred simultaneously with particular elements in
students’ understanding of statistical modeling.

Students’ Global Scheme Development

We now describe students’ instrumental genesis by presenting the observed
levels at which the students used the TinkerPlots techniques and demonstrated
their understanding of statistical modeling in their reasoning, throughout the
teaching sequence. In each Worksheet (W1 to W5), instrumentation schemes A
to F were addressed. Data from group 1 while working on W1 were used to
indicate students’ level in the initial phase of the teaching sequence, and data
from group 2 while working on W5 for the more advanced phase. Students'
technical actions with TinkerPlots were coded in technical levels for each
scheme and for each student. For example, concerning W1 scheme A, five
students out of fourteen in group 1 were unable to build a population model.
They encountered difficulties in finding the input options for the parameters of
the population model or for graphical representations of the model and,
therefore, we coded their actions for W1 scheme A as technical level 1. As
another example, concerning W5 scheme A, six students out of fourteen in
group 2 were capable of making well thought out choices from newly explored
TinkerPlots options to make a model, for example by using non-instructed
options for graphical representations like pie chart or histogram, and we coded
their actions technical level 5.
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Students’ average technical levels for each instrumentation scheme on
respectively W1 and W5 was calculated to identify students’ global
development during the work. For example, students’ average technical level
score on W1 in scheme A was calculated from five students whose actions were
coded technical level 1, seven students who scored level 2 and two students on
level 3, which resulted in an average technical level score of 1.8. Likewise, we
coded students’ reasoning and calculated their average conceptual levels for
each scheme A to F, while working on W1 and W5. The change in performance
on technical and conceptual level from the initial phase in W1 to the more
advanced phase in W5 is visualized in Figure 3.2. When comparing students’
work on W1 to W5, students showed an improving level of proficiency in their
application and control of the tool as well as in their usage and expression of
statistical concepts in their accompanying reasoning. As students’ development
of TinkerPlots techniques and conceptual understanding of statistical modeling
was observed simultaneously, the results show a co-development of techniques
and concepts.

It is interesting to note that in schemes C and D we observed more
progress in students’ average conceptual level score than for their technical
level score. Both these schemes required more complex TinkerPlots techniques
than the other schemes. In the initial phase, concerning these two schemes, most
students of group 1 worked carefully according to the TinkerPlots instruction
sheet, which enabled them to use the correct techniques. For example,
concerning students’ TinkerPlots techniques in scheme C during the initial
phase with W1, all fourteen students had difficulty using the history option in
TinkerPlots to visualize the sampling distribution. They all followed the
instruction stepwise. Seven of them made mistakes in their actions—for
example, not knowing how to enlarge the history window to enter all required
information or not being able to select a useful characteristic for the history
option—which made it difficult for them to visualize a correct sampling
distribution, and as such, their actions were coded technical level 2. The other
seven students made a correct visualization, although they encountered
problems with displaying a clear bar chart or entering the correct values, and, as
such, their actions were coded technical level 3. Students’ reasoning during the
initial phase focused on the correct technical actions. For the seven students that
were unable to visualize a correct sampling distribution, we also observed
incorrect reasoning, that is, wrong statements or incorrectly using words and
symbols related to sample, variability, repeated samples and sampling
distribution, and we coded their reasoning conceptual level 1. In the data of five
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of the seven students that managed to display a correct sampling distribution,
we observed superficial but correct reasoning, that is, noticing that the graph
looks more or less the same as on the instruction sheet and reading the values on
the horizontal axis for common sample result; as such, we coded their reasoning
conceptual level 2. The two other students that visualized a correct sampling
distribution were in one team. They discussed that the shape of the sampling
distribution was not in line with their expectations, as they expected a smooth
bell curve. Later in this section we present in detail the work of these two
students.

Figure 3.2. Development of students” average Technical Level (TL) and
Conceptual Level (CL) for each instrumentation scheme from Worksheet 1 to 5.
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In the more advanced phase (W5), with regard to students’ technical level in
Scheme C, all fourteen students in group 2 displayed a correct sampling
distribution and were coded level 3 or higher. Four of them explored a quick
start for simulating and adding repeated sample results to a sampling
distribution; their actions were coded technical level 5. Concerning students’
conceptual level in scheme C with W5, all students’ reasoning was coded level
4 or higher, as they correctly stated that more repeated samples led to a
smoother shape of the sampling distribution with a peak and average that
resembled the modeled population proportion. For example, a student quoted:

This is in line with our expectations. Most of the sample results
seem to be in between 43 and 47. This bar at 42 is a bit high [local
peak], but yeah, it can happen that within these 100 repeated
samples, there are incidentally more with 42...

With regard to the intertwinement of developing techniques and conceptual
understanding, based on our findings in scheme C and D, it appeared that for
schemes that required complex TinkerPlots techniques, a strong technical focus
in the initial phase occurred together with less proficiency on conceptual level,
and, additionally, that in the more advanced phase within those schemes,
students’ statements shifted from discussing techniques to reasoning with
concepts, which resulted in more progress for conceptual understanding. In
schemes A, B, E and F, we observed a more balanced co-development. Lastly, it
is worth mentioning that in the advanced phase most students (10 out of 14)
were capable of using the simulated sampling distribution from repeated
sampling as a model for determining the probability of a specific range of
sample results, and, as such, to interpret the statistical model to solve a given
problem.

Two Cases

In this section, we present two cases of students as illustrative examples of how
we zoomed in on the observed data to reveal the intertwining of emerging
TinkerPlots techniques and conceptual understanding of statistical modeling in
the personal schemes students develop. First, we present the case of Elisha and
Willie (all student names are pseudonyms) while working on W1, as it
illustrates how conceptual understanding influenced TinkerPlots techniques and
vice versa in the initial phase. Second, we present the case of William and
Brenda while working on W5 in the more advanced phase.
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Breakfast worksheet
Introduction: Research at a primary school into the breakfast habits of pupils
showed at the beginning of the school year that 210 of the 300 pupils eat
breakfast daily. The school management wants to investigate again the
number of students having daily breakfast at the end of the school year.
However, asking all pupils is a lot of work and therefore they decide to take a
sample of 30.

Task 5: Assume that the number of pupils having daily breakfast remained
the same during the school year. Use TinkerPlots to simulate sample results
(number of pupils having daily breakfast) from the given population and
sample size. Fill in the table below, based on the simulated results.
Sample size 30 Simulated sample results in
interval notation [...;...]

Most common results

Exceptionally low results

Exceptionally high results

Task 8: In the past school year, a lot of attention has been paid to stimulating
'daily breakfast' at the school. The school management wants to use the
results from the sample of 30 to determine whether the breakfast behavior of
pupils has improved. Suppose the sample shows that 23 out of 30 pupils have
breakfast daily. Can the school management, based on this result, conclude
that the pupils' breakfast behavior has improved? Support your answer with
the simulated sample results.

Figure 3.3. Tasks 5 and 8 from Worksheet 1
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4a. 4b.

Figure 3.4. Building a population model on Worksheet 1 task 5: the expected
model (4a) and Willie and Elisha.s model (4b)

The Case of Elisha and Willie

We focus on Elisha and Willie’s work on W1 tasks 5 and 8 (Figure 3.3). We
start by highlighting some of their actions and reasoning, followed by an
evaluation of how their developing TinkerPlots techniques influenced their
conceptual understanding and vice versa. To answer W1 task 5, we expected
students in scheme A of the instrumentation scheme to develop TinkerPlots
techniques for entering the population characteristics as shown in Figure 3.4a.
However, when entering the sample size in scheme B, Elisha and Willie
incorrectly entered 100. Later on, when they arrived at scheme F—interpret the
results using the sampling distribution—the following discussion in Excerpt 1
took place while the two students were looking at the simulated sampling
distribution on their screen (see Figure 3.5a).

[Excerpt 1]

Willie:  According to this graph, the sample results vary between 58 and
80 pupils who have breakfast every day [silence]. But... how is this
possible? We only have 30 pupils in one sample......

Elisha:  Yes, but we have already filled in 100 [points to the input option
‘repeat’ on the screen, see Figure 3.4b] and we should have
entered 30.

Willie:  But why, we do it [simulating repeated samples] 100 times, don't
we? We do it 100 times with 30 pupils.
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Elisha:  Yes, exactly. We repeat it 100 times with 30 pupils. And now, we
get for one such thing [points at the visualization of one sample on
the screen] a result of 73 pupils who eat breakfast daily and 27 not,
that is not correct. So, here [points again to the input option
‘repeat’ on the screen, see Figure 3.4b], we should have entered
the sample size, which is 30, instead of entering 100.

Following this discussion, they deleted their work and started again by entering
a population model, but now with a correct sample size of 30. This time, in
Scheme C, they entered 100 for the number of repeated samples. This resulted
in the simulated sampling distribution of Figure 3.5b. Here, the discussion in
excerpt 2 took place.

[Excerpt 2]

Willie: This graph looks weird. What went wrong? Look at all those
bumps.

Elisha: Let's do it again [more repeated sampling]. And maybe, we

should simulate more than 100 repeated samples. The more, the
better, right?

Willie: [After simulating 200 extra repeated samples, their simulated
sampling distribution looked like Figure 3.5¢c]. Yes, that's the way
it should look like. Next time we just have to enter more
repetitions right away. That’s simply the best. So, for now, most
of the samples are between 18 and 24.
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Figure 3.5. Willie and Elisha’s simulated sampling distributions from repeated
sampling for Worksheet 1 task 5 (a) Simulated sampling distribution for
Worksheet 1 with an incorrect sample size of 100 instead of 30. (b) Simulated
sampling distribution for Worksheet 1 with sample size 30 and 100 repeated
samples, showing a ‘bumpy’ shape. () Simulated sampling distribution for
Worksheet 1 with sample size 30 and 300 repeated samples, showing a
‘smooth’ shape.

After the discussion in excerpt 2, they used the simulated sampling distribution
(Figure 3.5¢) to correctly answer task 5 and 8. For task 5, they stated that most
common sample results will vary from 18 to 24 out of 30, they indicated sample
results varying from 15 to 17 out of 30 as exceptionally low and results varying
from 25 to 27 exceptionally high. They ignored the possibility of sample results
below 15 and above 27, probably as these results were not displayed on the X
axis of their simulated sampling distribution. For task 8, they stated that 23 out
of 30 seemed to be better than 21 out of 30, however, 23 was not exceptionally
high and, therefore, the school management could not conclude that the
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breakfast habits of pupils have improved. Elisha added that she regarded a
sample of 30 as very small in this case.

In summary, the case of Elisha and Willie showed how their conceptual
understanding and TinkerPlots techniques co-developed and influenced each
other. From excerpt 1, it seems that they mixed up the option in TinkerPlots for
entering sample size with entering the number of repeated sampling. When the
(incorrect) simulated sampling distribution was displayed on their screen, this
sampling distribution did not correspond to their conceptual expectations. The
mismatch led them to investigate the options available to see what the problem
was, which resulted in applying the correct technical option for entering sample
size. Here, their conceptual understanding fostered their technical actions. From
excerpt 2, we see how Elisha and Willie used the technical options for repeated
sampling to get a better, less “bumpy and smoother” representation of the
sampling distribution. The technique of increasing the number of repeated
samples helped them understand the effect of more repeated samples by giving
them a better picture of the sampling distribution. In this way, the technique of
repeated sampling fostered their conceptual understanding of the effect of
adding more repeated samples on the sampling distribution in Scheme D.

From excerpt 2, it was difficult to distil the depth of the students’
conceptual understanding about adding more repeated samples in scheme D.
Although they stated that they should enter a larger number of repetitions next
time, and that a larger number of repetitions would lead to a better graph of the
sampling distribution, they did not express clearly how they thought these two
were related. However, later on, in W1 task 14, they explicitly mentioned that
next time they should simulate a larger number of repeated samples at once in
order to reduce the influence of possible outliers and to achieve a well-shaped
sampling distribution. Combining students’ statements over several tasks and
schemes helped us to identify their understanding of specific concepts.

The Case of William and Brenda

We focus on the work of William and Brenda on W5 tasks 7 and 9 (Figure 3.6).
Instead of getting started with TinkerPlots after reading task 7, these two
students started a 5-min discussion about possible answers. Excerpt 3 presents a
small part.
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Worksheet 5: LED lights

Introduction: A do-it-yourself shop is not satisfied with the quality of LED
lights they sell. There are too many complaints from customers about
defective lights. They are therefore considering a switch to supplier B. This
supplier guarantees that at least 90% of the lights will function. The do-it-
yourself shop has therefore ordered a batch of 10,000 LED lights. Before
selling them in the shop, they use a sample to verify whether the supplier's
claim is correct.

... Task 7: Suppose there are 42 functioning LEDs in the sample (size 50).
What advice would you give the shop about the purchase of the batch of LED
lights? Justify your answer.

... Task 9: On closer inspection, the shop doubts whether a sample size of 50
would be appropriate. Which sample size would you recommend? Justify
your answer.

... Task 12: Because the shop has doubts about the quality of the LED lights
from supplier B, they ordered a batch of 10,000 from supplier C. They also
examine this batch with a sample of 50 to determine whether this batch may
be better than the batch of supplier B.

Open the file "LED lights supplier C" with TinkerPlots. Simulate repeated
samples from the hidden population model of supplier C. Based on the
simulations, estimate the number of functioning LEDs in the total batch of
10,000 LEDs. Justify your answer.

Figure 3.6. Tasks 7, 9, and 12 from Worksheet 5
[Excerpt 3]

William: 42 out of 50, that’s not 90%, because then it should be 45, this
is not enough. So don’t buy it.

Brenda: I agree. 42 is not sufficient. Don't do it.

William: Or... (silence)... it's just a small sample size, only 50. In our
earlier social media task with a sample of 50, there was a lot of
variation, then 42 is not that unusual.
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Figure 3.7. William and Brenda’s simulated sampling distributions from
repeated sampling for Worksheet 5 task 7. (a) Simulated sampling distribution
for 100 repeated samples in Worksheet 5 with a left border of the grey area at
5%. (b) Simulated sampling distribution for 100 repeated samples in Worksheet
5, second attempt, with a left border of the grey area at 16%. (C) Simulated
sampling distribution for 500 repeated samples in Worksheet 5 with a left
border of the gray area at 5%.

As the discussion progressed, they decided to model the task in TinkerPlots.
Without discussing the TinkerPlots techniques, they succeeded within a few
minutes and without any hesitations to display the sampling distribution as
shown in Figure 3.7a. Their goal was to determine the most common results—
in their strategy the middle 80% of the samples—by placing borders for the
lowest and highest 10%. After they moved the lower border of the gray area
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back and forth a number of times, it turned out to be impossible to get exactly
10% into the left part of the sampling distribution. On that point, the following
discussion took place.

[Excerpt 4]

William: This is not a good sampling distribution.

Brenda: How is that?

William: It is not possible to get 10% here [pointing to the left part in
the sampling distribution]. It is either 5% or 13%

Brenda: And now what? There's not much we can do with this. Can't

we do it again? Then maybe it will be better.

They decided to delete everything and start all over again. This resulted in the
sampling distribution of Figure 3.7b. Then the discussion in Excerpt 5 took
place.

[Excerpt 5]

William: This isn't much better... now we have 8% or 16%...

Brenda: Let's just do it again.

William: Again? Wait, | think we can do this again faster. We can leave
this [points to sub screen 1, 2 and 3] and only have to do the
repeats again.

[....]

William: We should have discovered this earlier, that would have saved
us a lot of work with the previous worksheets. In fact, we
always investigate the same thing, but with a different subject.

Brenda: How do you mean?

William: Well, we investigate possible sample results with a given

samples size to answer the questions. It doesn't really matter
whether it's breakfast, social media or lights.

This third attempt also resulted in a left area smaller than 10%. At that moment
they decided to increase the number of repetitions, as that usually gives a better
picture. After William said: "You can probably add samples in a quick way,
without starting all over," they explored the techniques and soon found out how
to add samples. This resulted in the sampling distribution of Figure 3.7c.
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[Excerpt 6]

William: I don't think there is any point in adding more repetitions, it
remains the same. 42 is apparently exactly at the border of
common results. And now what?

Brenda: The sampling distribution hardly changes, so there's no need
for more repetition. | think 42 is not much. Most results are
higher

William: Okay, based on these sampling distributions we find 42 to be

too few. So our advice is not to buy!

Later on, when they worked on W5 task 9, they fully agreed that the sample size
was too small. Brenda stated: “The larger sample the better the results, but very
large is not convenient,” at which point William proposed to pick a sample size
of 200. As with task 7, they wanted to explore a fast way in which they did not
have to remove all the sub screens. To this end, they discussed the views on
each sub-screen and finally decided that only sub screen 1 could remain. Here,
they discussed concepts such as sample size, difference between sample size
and number of repeated samples, and the relationship between the tables and dot
plots. When using a fast method for larger sample size, the effect of larger
sample size confirmed their conjecture.

In summary, the case of William and Brenda in the more advanced phase
showed a focus on conceptual understanding when reading the task, a focus that
we saw in almost all students in W5. Excerpt 4 illustrates how the two students,
after reading task 7, discussed concepts such as variation, probability and
sample size. Moreover, in this excerpt, they related this task to a previous task
and context (the context of W3). This also appeared in the second part of
excerpt 5, here we saw how the use of similar TinkerPlots techniques in
different worksheets and contexts enabled William to discover a context-
independent pattern. The TinkerPlots techniques helped him to identify
technical patterns in the modeling process and thus to view the concepts
involved at a more abstract—context-independent—Ilevel. Regarding the
intertwined relationship between TinkerPlots techniques and conceptual
understanding, excerpt 5 showed how their understanding—in this case their
overestimation of variation in many repeated samples—triggered them to
explore new techniques. Also, the other way around, how in excerpt 6 the
techniques helped them to understand that the sampling distribution of many
repeated samples remains stable. Also, their work on W5 task 9 showed, as in
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the case of Willie and Elisha, a two-directional relationship between
TinkerPlots techniques and conceptual understanding. Their understanding of
statistical modeling concerning a general approach and patterns, resulted in a
search for more advanced TinkerPlots techniques by using already modeled
parts of the process in their sub-screens, and also, the techniques strengthened
them in their conjecture about the effect of sample size.

Discussion

The aim of this study was to explore the applicability of the instrumental
genesis perspective to statistics education, and to statistical modeling in
particular. We identified six instrumentation schemes for statistical modeling
processes with TinkerPlots, describing the intertwined development of students’
digital techniques and conceptual understanding. We noticed an increase in their
mastery of the tool as well as in their statistical reasoning, evidencing students’
co-development of techniques and conceptual understanding. We observed a
two-directional intertwinement of techniques and concepts. The two student
cases showed in more detail how students’ understanding of concepts informed
their TinkerPlots techniques and vice versa. Although we found a two-
directional intertwining in all schemes and phases of the teaching sequence, at
particular moments we noticed more emphasis in one direction.

In the more advanced phase of the teaching sequence the results show
how the use of similar TinkerPlots techniques over different worksheets and
contexts enabled students to discover context-independent technical patterns.
Students’ identification of those technical patterns in the modeling process
enabled them to view concepts at a higher, more abstract level. We interpret this
as emergent modeling (Gravemeijer, 1999), which involves the conceptual shift
from a model of a context-specific situation to a model for statistical reasoning
in a variety of similar and new contexts. Although the emphasis here was on
technical patterns that informed students’ conceptual understanding, we also
saw the opposite direction intertwined in this process, as their conceptual
understanding concerning a general approach and patterns resulted in a search
for more advanced techniques by using already modeled parts of the process on
their screen.

In a short period of time, students—who were inexperienced in taking
samples and working with digital tools—learned to carry out the modeling
processes, including interpreting the simulated sampling distribution. Regarding
this promising result, we discuss some possible stimulating factors. As a first
factor, it appeared from the identified instrumentation schemes that the required
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techniques in the digital environment of TinkerPlots strongly align with key
concepts for statistical modeling. This strong alignment probably facilitated
students to overcome initial difficulties concerning variability, distribution,
sample and sampling, the effect of sample size, difference between the sample
and sampling distribution (Chance, delMas, & Garfield, 2004), which we hardly
observed in the more advanced phase. For example, concerning the common
confusion between the sample and sampling distribution, the distinct
visualization of sample and sampling results within the digital environment of
TinkerPlots enabled students to distinguish between both distributions. As a
second factor, the required TinkerPlots techniques invited students to
phenomenon simplification (Manor & Ben-Zvi, 2017). For example, in the
initial phase we observed difficulties in distilling sample size and population
proportion from the context given for entering the correct model, while these
difficulties hardly occurred in the more advanced phase. As a third factor,
applying similar statistical modeling processes in TinkerPlots to varying real-
life contexts allowed students to distinguish and interact between the model
world—using the same digital environment—and the real world using varying
contexts (Patel & Pfannkuch, 2018).

The findings presented in this paper should be interpreted in the light of
the study’s limitations. First, the results of this research are based on students in
a classroom laboratory instead of students’ regular classroom environment. By
conducting the preparatory activities in students’ regular classrooms and
maintaining the same student teams, lesson design and a familiar teacher, we
tried to reduce the influence of the classroom laboratory setting at the
university. Second, due to practical reasons we were confined to working with
two groups of students, group 1 in the initial phase and group 2 in the more
advanced phase of the teaching sequence. Differences between both groups may
have affected students’ global scheme development. However, the students in
both groups performed at a similar level in mathematics and their performances
in the preparatory tasks were comparable. The teacher judged the starting level
of the two groups to be similar. Third, distilling students’ conceptual
understanding from their reasoning was challenging. However, by combining
the sometimes flawed statements made by the students with their accompanying
activities—such as their next action with the tool or their statements later on in
their process—we tried to identify their understanding of the concepts. Fourth,
we worked with pre-university students, the top 15% achievers in our
educational system. Other students may need more time.
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Although we focused on statistical modeling processes using TinkerPlots,
we consider our findings on the intertwining of emerging digital techniques and
conceptual understanding applicable to the broader field of statistics education,
and to other educational digital tools as well. Digital tools for other areas in
statistics education also structure and guide students’ thinking by providing
specific options for entering parameters and commands and/or by facilitating
explorative options that may strengthen students’ conceptual understanding.

Overall, we conclude that the perspective of instrumental genesis in this
study proved helpful to gain insight into students’ learning from and with a
digital tool, and to identify how emerging digital techniques and conceptual
understanding intertwine.

Implications

The study’s results lead to implications for the design of teaching materials and
digital tools, and for future research. In designing teaching materials, it is
important to take into account the two-directional relationship between
emerging digital techniques and conceptual understanding, both during
instruction and during practice. Attention to digital techniques in the initial
phase, especially to more complex ones, seems to have a positive effect on
learning the associated concepts later on. The development of context-
independent techniques and concepts requires sufficient time and practice for
students with different contexts and situations. In designing digital tools, the
intertwined relationship between digital techniques and conceptual
understanding calls for attentive consideration of how the digital techniques are
related to the concepts, to deploy the digital tool in a productive way for the
intended learning goal.

This also suggests an implication for future research on statistics
education using digital tools. Although we focused on statistical modeling using
TinkerPlots—that is, solving real-life problems by the building, application and
interpretation, of the sampling distribution of repeated samples—we assume our
global findings also hold for other statistical processes and digital tools.
However, the specific intertwining of emerging digital techniques and
conceptual understanding is unique for each digital tool and intended learning
goal. To identify the specific intertwinement, we recommend using the
perspective of instrumental genesis in analyzing video and conversation data,
which can be added by using clinical interviews.

On a final note, this study gave an insight into the applicability of the
instrumental genesis perspective in the context of statistics education, and
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statistical modeling with digital tools in particular. Instrumental genesis seems a
fruitful perspective to design technology-rich activities and to monitor students’
learning.
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Abstract

This paper comprises the results of a design study that aims at developing a
theoretically and empirically based learning trajectory on statistical inference
for 9th-grade students. Based on theories of informal statistical inference, an 8-
step learning trajectory was designed. The trajectory consisted of two similar
four step sequences: (1) experimenting with a physical black box, (2)
visualizing distributions, (3) examining sampling distributions using simulation
software, and (4) interpreting sampling distributions to make inferences in real-
life contexts. Sequence I included only categorical data and Sequence II
regarded numerical data. The learning trajectory was implemented in an
intervention among 267 students. To examine the effects of the trajectory on
students’ understanding of statistical inference, we analyzed their posttest
results after the intervention. To investigate how the stepwise trajectory fostered
the learning process, students’ worksheets during each learning step were
analyzed. The posttest results showed that students who followed the learning
trajectory scored significantly higher on statistical inference and on concepts
related to each step than students of a comparison group (n=217) who followed
the regular curriculum. Worksheet analysis demonstrated that the S8-step
trajectory was beneficial to students’ learning processes. We conclude that ideas
of repeated sampling with a black box and statistical modeling seem fruitful for
introducing statistical inference. Both ideas invite more advanced follow-up
activities, such as hypothesis testing and comparing groups. This suggests that
statistics curricula with a descriptive focus can be transformed to a more
inferential focus, to anticipate on subsequent steps in students’ statistics
education.

Keywords
design based research, learning trajectory, simulating repeated samples,
statistical inference, TinkerPlots

94



Introducing Statistical Inference

Introduction

Statistical inference is at the heart of statistics, as it provides a means to make
substantive evidence-based claims under uncertainty when only partial data are
available (Makar & Rubin, 2018, p. 262). Interpreting inferences with
associated uncertainty is difficult for students, which is why, in most countries,
inferences are not taught until Grade 10 or higher. Students' difficulties in
learning inferences mostly relate to limited understanding of key statistical
concepts, such as sample, variability and distributions, and to problems with
understanding complex formal procedures (Castro Sotos et al., 2007). Engaging
in activities that involve informal inferences in the early years, within primary
education or early years of secondary school, seems to facilitate learning about
more complex inferential statistics later on (Makar & Rubin, 2009; Van Dijke-
Droogers, Drijvers, & Bakker, 2020).

However, the pre-grade-10 statistics curriculum in most countries,
including the Netherlands, focuses on descriptive statistics without paying
attention to inferences—with the exception of for example New Zealand, where
a full learning line including inferential activities was developed starting from
primary school. Promising results for informal inferential activities encourage
investigating how these can be embedded in current curricula with a descriptive
focus. Within most mathematical curricula, only limited time is available for
statistics. As such, we need efficient learning trajectories, and knowledge about
crucial steps in such a trajectory.

In this study, we use knowledge from literature on (informal) statistical
inference, and apply knowledge on learning progressions to design and evaluate
an innovative learning trajectory (LT) on introducing 9th-grade students in the
pre-university stream—the 15% best performing students of the Dutch
educational system—to the key concepts for statistical inference. Following
Duschl et al. (2011), we will address the following aspects: how the design
process included the selection of the core idea of the LT; how theories on
statistical inference inform the design of the LT; the identification of the starting
and end point of the LT; how the successive learning steps of the LT mediate
learning; and how the LT aligns with current curricula. To empirically verify
the effects of the designed LT, we implemented the LT at five different Dutch
schools with eleven participating teachers and a total of 267 students. We
analyzed both students’ performance after the intervention, and their progress
during the learning process.
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Theoretical Background

Statistical Inference

Statistical inference concerns interpreting sample results, drawing data-based
conclusions, and reasoning about probability. For students, it is difficult to
understand formal procedures to substantiate their inferences. Many difficulties
involve a poor understanding of the key statistical concepts: sample, variability
and distributions. These key concepts, including the understanding of the effect
of sample size and the idea that a sample characteristic—such as mean or
median—can be used to compare distributions, are essential for understanding
inferences (Bakker, 2004; Chance, delMas, & Garfield, 2004; Konold &
Pollatsek, 2002; Saldanha & Thompson, 2002; Watson & Kelly, 2008). There is
a strong relationship between these concepts: understanding the sampling
distribution relies on understanding the key concept of a sample, in particular on
understanding the balance between sample representativeness and sample
variability (Batanero et al., 1994). Common misconceptions involve neglecting
the effect of sample size on the variance of sample mean or sample proportion
(Tversky & Kahneman, 1971). Another common difficulty involves
probabilistic reasoning, as students tend to provide deterministic explanations
and not to consider the variability involved (Rossman, 2008).

To help students overcome difficulties involved in statistical inference,
informal approaches have been sought in recent decades. In general, this
informal approach focuses on making inferences about unknown populations
based on observed samples without using formal techniques, such as hypothesis
testing. Makar and Rubin (2009) define informal statistical inference in main
principles: generalization beyond data, data as evidence for these
generalizations, and probabilistic reasoning about the generalization. Informal
inferences include data-based claims that go beyond the collected data, in which
the uncertainty involved can be expressed in informal probabilistic reasoning
about the likelihood of the claim. Offering informal activities at an early age—
before the more formal activities in Grade 10 or higher—facilitates the
understanding of key concepts and probabilistic reasoning required for
statistical inference (Paparistodemou & Meletiou-Mavrotheris, 2008; Van
Dijke-Droogers et al., 2020).

The Design of a Learning Trajectory

The design of an LT entails a conjectured route through a set of educational
activities to support students to achieve the intended learning goals. Although
learning is a personal process, unique for each student, a conjectured LT intends
to describe a “possible taken-as-shared learning route for the classroom
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community” (Gravemeijer et al., 2003, p. 52); a learning route needs empirical
validation. Successful implementation of theory in educational practice involves
the design and evaluation in real classrooms of powerful LTs that embody our
present understanding of effective learning (De Corte, 2000).

The theory of Realistic Mathematics Education (Cobb, 2011;
Freudenthal, 1983) provides design heuristics for the development of learning
activities in an LT. First, the learning activities should be set in a context that
enables students to immediately engage and develop associated mathematical
concepts. As such, the learning activities support students in progressing
towards a toolkit of key concepts associated with the learning goals of the LT.
Second, the activities should be structured to support students in developing
models of their concrete mathematical activity that can be used as model for a
network of mathematical objects and relationships (Gravemeijer, 1999;
Streefland, 1991).

The Current Study

The study is part of a larger study to gain knowledge about a theoretically and
empirically based learning trajectory to introduce 9th-grade students to the key
concepts of statistical inference. From another study (Van Dijke-Droogers,
Drijvers, & Bakker, submitted) on the overall effects of the LT on students’
statistical literacy, we know that the LT had a significant positive effect on
students’ understanding of statistical inference as measured by comparing pre-
and posttest results. In the study reported here, we want to know how students
learned something about statistical inference in terms of the intended LT-step
related learning goals of the trajectory. When it comes to experimental studies
that only report pre-post results, a common concern is that the reader may still
not know how to benefit from the intervention reported (Savelsbergh et al.,
2016). We therefore consider it worth spelling out in more detail the design of
the 8-step LT, and its effects on students’ understanding of LT-step related
goals for statistical inference and analyze students’ progression during the
large-scale intervention. As such, we address the following research questions:

What are the specific effects of the designed LT on students’
understanding of statistical inference, in terms of the intended LT-
step related learning goals?

How do the designed LT steps foster students’ learning processes?
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Methods

The designed LT aims at introducing students to key concepts of statistical
inference by using theories of informal statistical inference. We first outline the
design of the LT. We incorporated two main ideas: repeated sampling with a
black box and statistical modeling with a digital tool. Second, we describe the
intervention characteristics and data analysis.

An Outline of the LT

This study comprises the results of a third cycle of design based research.
During cycle 1 and 2, the LT was (re)designed, implemented and evaluated, to
identify the feasibility of the LT, and to further define the starting and ending
points of the LT.

The design of the LT consists of two similar sequences of four learning
steps. Sequence I concerns only categorical data and includes the following
steps: (1) experimenting with a physical black box, (2) visualizing distributions,
(3) examining sampling distributions using simulation software, and (4)
interpreting sampling distributions to make inferences in real-life contexts. In
Sequence II, following Rossman (2008), more complex numerical data are
addressed during LT steps 5 to 8. The first three steps of Sequences I and II
involved 45 minutes each. In the last step of Sequences I and II, three different
real-life contexts were offered with a time duration of 45 minutes per context.
An outline of each LT step including a brief description, examples of learning
activities, and the intended learning goals, is presented in Table 4.1. A more
detailed description can be found in Supplementary Material A.

Repeated Sampling with a Black Box

Repeated sampling with a black box serves as a guiding activity through all
steps of the LT. A black box refers to a box of which only part of the content is
visible—for example, a box with a viewing window that is filled with marbles
or a box filled with notes (see the pictures in Table 1 at LT Steps 1 and 5,
respectively). The black box activities instantiate design heuristics of Realistic
Mathematics Education (Cobb, 2011; Freudenthal, 1983). Starting within the
engaging context of a physical black box experiment—in both Sequences I and
II—enables students to immediately involve and orient towards developing key
statistical concepts (Van Dijke-Droogers et al., 2020). In Sequence I, activities
with a physical black box filled with marbles in LT steps 1 and 2 enable
students to explore the sampling variability involved in repeated sampling.
Varying the size of the viewing window in the physical black box activities
allows students to explore the effects of sample size. These activities
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incorporate ideas of the growing sample task (Bakker, 2004) and repeated
sampling that make key statistical concepts more accessible for students (Van
Dijke-Droogers et al., 2020). Specifically, when those activities are
accompanied by classroom discussions for exchanging and comparing sample
results (Wild & Pfannkuch, 1999). The idea of repeated sampling with a
physical black box is extended in statistical modeling activities in LT steps 3
and 4. In Sequence II, the activities evolve in a similar way from starting with a
physical black box filled with notes in LT steps 5 and 6 to statistical modeling
in LT steps 7 and 8.

Statistical Modeling with Digital Technology

Statistical modeling activities with educational digital tools facilitate—on an
informal level—the exploration of key concepts for statistical inference (Bichler
et al., 2013; Garfield et al., 2015; Manor & Ben-Zvi, 2015; Rossman, 2008;
Saldanha & Thompson, 2002; Watson & Chance, 2012). Digital environments
such as TinkerPlots provide opportunities to easily simulate and visualize
(repeated) samples. In the designed LT, the statistical modeling activities start
within the familiar context of a black box, where students build a model of a
black box—for example filled with 200 red and 400 blue marbles—to simulate
sample results. By visualizing sample and sampling distributions, at varying
sample sizes and at varying number of repeated samples, students explore
(un)likely sample results. The modeling activities within the black box context
gradually evolve to modeling real-life contexts. Modeling activities include
building a model, simulating (repeated) samples, visualizing and interpreting
the results, to solve a given problem. As with the physical black box activities,
these modeling activities attend all stages of the statistical investigation cycle
several times, as students collect data, analyze their data using sample and
sampling distributions, and interpret the results to answer the question posed.
Subsequent modeling activities involve applying gained knowledge into new
contexts, where students deploy modeling activities to solve real-life problems.

Applying similar digital techniques within varying contexts encourages
students to identify context-independent patterns of technical actions (Van
Dijke-Droogers, Drijvers, & Bakker, in press). These context-independent
technical patterns combined with a context-independent understanding of key
statistical concepts, facilitate the conceptual shift from a model of to a model
for, known as emergent modeling (Gravemeijer, 1999; Streefland, 1991). As
such, statistical modeling enhances the use and understanding of context-
independent statistical models, which is essential for interpreting inferences.
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Participants

Eleven teachers participated in the intervention, with a total of 267 students
(Grade 9, aged 14-15 years) from thirteen classes at five different schools. The
teachers were trained for the intervention in two 3-hour sessions in which they
worked through students’ lessons and materials themselves, guided by the
researcher. The teachers decided to replace all regular 9th-grade statistics
lessons with the LT to save time. The students had no experience with using
digital tools during their mathematics lessons. Students were instructed in using
TinkerPlots in LT step 3 through a demonstration by a teacher and they received
an instruction sheet for modeling black boxes that they could use during LT
steps 4 to 8. They had some basic knowledge of descriptive statistics: center and
distribution measures, such as mean, quartiles, class division, absolute and
relative frequencies, and boxplot. A comparison group with students who
followed the regular curriculum was used to interpret students’ performance on
statistical inference. The comparison group consisted of 217 students from ten
classes. All students in the comparison group attended 10-16 regular 9th-grade
statistics lessons during their mathematics lessons. The participating students,
for both the intervention and comparison group, belonged to the 15% best
performing students in our educational system.

Data Collection and Analysis

For Phase 1, addressing the first research question, we developed a pre- and
posttest for Statistical Inference (SI) at the school level, inspired by Watson and
Callingham’s (2003, 2004) work on statistical literacy. The pre- and posttest can
be found in Supplementary Material C and D. Both tests were part of a broader
study on the effects of the designed LT on students’ statistical literacy (Van
Dijke-Droogers et al., submitted). For the study presented here, we focused on
the SI Items of the posttest. The posttest contained 18 SI Items. We selected
four Items from Watson and Callingham (2004), and we designed 14 new Items
related to concepts of SI as addressed in the LT. For the design of the new
Items, we used the structure and phrasing of their Items. To analyze the validity
of the designed test, we conducted two pilot tests in different classrooms, each
consisting of 25 students. Concerning the concurrent validity of the new
designed SI Items, students’ average level scores in the pilots on new designed
and existing SI Items were not significantly different (Mnew = 2.49, SDnew =
0.71, Mex = 2.78, SDex = 1.38, n = 50, t(49) = —1.6; p = .11). To assess the
content and construct validity of test Items, the results of each pilot were used
for in-depth discussion with experts in this area on content, construct,
vocabulary, and clarity. Cronbach’s alpha value was .81, indicating a good
reliability (Taber, 2018). For the data collection, the participating teachers from
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both the intervention and comparison group conducted the test, according to a
clear instruction for testing, from their own students during their regular 45-min
mathematics lessons.

For the data analysis in phase 1 on the posttest results, we defined six SI
levels, based on Watson and Callingham’s levels for statistical literacy (see
Table 4.2). Given that LT steps 1 to 4 and 5 to 8 involve similar concepts and
approaches, we defined specific levels for couples of two: steps 1 & 5, steps 2
& 6, steps 3 & 7, steps 4 & 8 (see Supplementary Material B). By pairing the
LT steps, we were able to analyze at least four test Items per couple. For the
coding, we developed Item-specific level-codes (e.g., Figure 4.2 and 4.3). Two
assessors coded test data from the participating students with the SI level scores
0-6. To indicate students’ performance on the test, we compared students’ test
scores for both the intervention and comparison group, and as such, for
attending the LT or regular statistics curriculum. Students’ results on the pretest
were used to identify students’ initial level. Although the comparison group
attended the regular statistics lessons prior to the pretest, we conjectured similar
pretest results for both groups on statistical inference as the regular lessons only
concerned descriptive statistics. For statistical significance, we used one-way
ANOVA for comparing results from both groups, paired t test for analyzing
students’ progression between the pre- and posttest, and chi-squared test for
comparing students’ distribution over the levels. For reliability of the analysis, a
third coder was asked to process independently a random set of 5% (80 Items)
of the data with students’ reasoning. The third coder agreed on 83% of the
codes. Deviating codes, which were limited to one or two levels difference at
most, were discussed until agreement was reached. Adjustments in the coding
were also applied to the rest of the data.

Table 4.2. Levels for Statistical Inference based on Levels for Statistical
Literacy by Watson and Callingham (2003)

Level General level description

Idiosyncratic engagement with context, tautological use of

1 Idiosyncratic ;
terminology

Only colloquial or informal engagement with context
often reflecting intuitive non-statistical beliefs, single

2 Informal element of complex terminology and setting, and basic
one-step table and graph readings and calculations, not
referring to statistical information given
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Selective engagement with context, often in supportive
formats, appropriate recognition of conclusions but

3 Inconsistent  without justification, and qualitative rather than
quantitative use of statistical ideas, not always referring to
statistical information given

Appropriate but non-critical engagement with context,
. multiple aspects of statistical terminology usage, and
Consistent . p p' . . gy g ..
4 Non-critical statistical skills associated with simple probabilities, and
graph characteristics, not always referring to statistical
information given

Critical, questioning engagement in familiar and
unfamiliar contexts that do not involve proportional

5 Critical reasoning, but which do involve appropriate use of
terminology, appreciation of variability, explicitly
referring to statistical information given

Critical, questioning engagement with context, using
Critical proportional reasoning, showing appreciation of the need
6 . for uncertainty in making predictions, and interpreting
Mathematical . .
subtle aspects of language, explicitly referring to

statistical information given

In phase 2, addressing the second research question, we used two principles by
Wilson (2009) for assessing learning progression. The first principle outlines a
developmental perspective regarding the development of students’
understanding of particular concepts and skills over time—that is, during the LT
instead of assessing final performance. This perspective requires clear
definitions and a theoretical framework of what and how students are expected
to learn. In our study, these are embedded in the description of the designed 8-
step LT. The second principle involves the match between the LT and
assessment. To establish a strong match, we formulated indicators for success of
each LT step. In the design of the learning activities on students’ worksheets,
specific tasks were included that correspond to these indicators. Table 4.3
displays the indicators and corresponding learning activities on students’
worksheet, for each LT step (see Table 4.1 for corresponding learning goals in
each LT step).

Data included students’ worksheets 1 to 8 from each LT step,
accompanied by teachers’ and researchers’ notes. We collected 267 worksheets
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from Sequence I, LT step 1 to 4, and 224 worksheets from Sequence II. The
teacher took notes about each lesson. After each lesson, the researcher contacted
the teacher—through email, call or a meeting in person—to evaluate the lesson
given and to discuss the following steps. In addition, we used researchers’
observation data from two visits in each class about how the teacher and
students interacted with the intervention materials. For the data analysis in
Phase 2, we coded students’ reasoning on their worksheets, for the specific
tasks in each LT step, according to the indicators. Students were explicitly
asked to clearly motivate their answers on their worksheets. Teachers’ and
researchers’ notes were included in the analysis.

Table 4.3. Overview of Indicators and Corresponding Learning Activities on
Students’ Worksheet, for each LT step

LT Indicators Task description per indicator [Worksheet

step Task]

a. Making inferences a. Students make inferences about the content
about content of the physical black box using a small and
physical black box large viewing window [W1.3; W1.6]

1. b. Interoreting effect b. Students mention that an inference based on
o.f lar reF; vie vfrgin a larger viewing window is more reliable as it
wind fw & provides more information about the content

[W1.8]

a. Drawing expected c. Students draw the expected sampling
sampling distribution distribution from 100,000 repeated samples,
from repeated with sample size 40, from a black box filled
samples with 250 yellow and 750 orange marbles [W2a]
lsaalgsi?f ((gigtiltzu tion d. Students use a given sampling distribution
to dgte I’l’%l ine the from 1500 repeated samples (size 50) to

robability of sample determine the probability of a certain range of
fesul ts Y p sample results [W2b.5]
Ezlgéghsr;[atiitlcal e. Students determine most likely sample
TinkerPﬁ) s to results for a black box filled with 300 orange

3. determine the and 200 yellow marbles and samples size 50,
probability of sample using statistical modeling in TinkerPlots
results [W3.13]

4 Using statistical

modeling in
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TinkerPlots for

a. Interpreting effect
of sample size in
real-life contexts

b. Probabilistic
reasoning in real-life
contexts

c¢. Determining the

probability of sample

results, in real-life
contexts

d. Informal
hypothesis testing

a. Students argue that it is a smart decision of
the school management to take a larger sample
size [W4.10]

b. Students argue that the school management
cannot be certain about the breakfast habits of
students, based on a sample result [W4.11]

c. Students use their simulated sampling
distribution to determine the probability of
(un)likely sample results [W4.18]

d. Students determine at what sample results a
school can conclude that the breakfast habits of
students have improved, using statistical
modeling in TinkerPlots— informal hypothesis
testing [W4.18]

Making inferences

Students make inferences about the height of
the population based on samples from a

5. about content physical black box filled with 4,000 notes—
physical black box each note contains the height and gender of one
person [W5]
Drawing expected Students draw a visualization of the population
: distribution (height of 4,000 persons in the
6. population . .
distribution physical black box with notes) they expect,
based on the sample data found [W6]
Using statistical
modeling in
TinkerPlots (given
model) for
a. Making inferences
about the population  a, Students sketch the expected population
; distribution distribution (height of 4,000 persons in the
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- using a small
sample size

- using a large sample

size

b. Interpreting effect
of sample size on
expected population

physical black box with notes) using statistical
modeling in TinkerPlots with a given model for
varying sample sizes [W7.1; W7.8]

b. Students mention that a larger sample size
better reflects the population distribution [7.15]



distribution

c¢. Making inferences
about the population
mean

d. Interpreting effect
of sample size on the
expected population
mean

e. Determining the
probability of sample
results (concerning
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c. Students make inferences about the expected
population mean [W7.1; W7.8]

d. Students mention that a larger sample size
leads to a better estimate of the population
mean [7.16]

e. Students determine the probability of certain
sample results [W7.6; W7.13]

the sample mean)

Using statistical

S Students make inferences about the population
modeling in

proportion of students that spent more than 12

TinkerPlots to . .

3. determine the hours per w.eek on sports, using statistical
probability of sample modehgg w1th a hidden model of the'
results. in real-life population (size 4,000) and sample size 500
contexics [W8.5; W8.6]

Results

We first present students’ results on the posttest to answer research question 1.
Next, we present students’ progress during the intervention to address research
question 2.

Posttest Results on Students’ Understanding of Statistical Inference

With regard to students’ Statistical Inference (SI) level at the posttest, we
reported in another study (Van Dijke-Droogers et al., submitted) that a one-way
ANOVA between both groups indicated that the level score for the intervention
group who attended the LT was significantly higher than for the comparison
group (+0.67, F(1, 482) = 75.0, p < .0005). The results in the study presented
here indicate that the intervention group scored significantly higher than the
comparison group on each coupled LT steps 1 and 5 on using samples, LT steps
2 and 6 on visualizing distributions, LT steps 3 and 7 on repeated sampling and
effect of sample size, and LT steps 4 and 8 on solving real-life problems. The
results are displayed in Table 4.4. Although we conjectured a similar pretest
score for both groups, the results showed that the initial level of the intervention
group on statistical inference was significantly lower than for the comparison
group—probably because the comparison group followed their (descriptive)
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statistics lessons prior to the pretest. The comparison group was not taught
statistics between the pre- and posttest, which explains their similar scores on SI
at both tests.

Table 4.4, Students’ Mean Level Scores on the coupled LT steps at the Pre- and
Posttest

Intervention Comparison Intervention
minus
(n=267) (n=217) Comparison
M(inv.) —
M (SD) M (SD) Mgcom)p.)
SI! 2.45 (0.65) 2.72(0.71) —0.27%*%
Step1 &5 2.10 (1.34) 2.43 (1.41) —0.33%*
Pretest Step2 &6 2.54(0.91) 2.77 (0.96) —0.23%*
Step3 &7  2.48(0.68) 2.75 (0.66) — 0.27%%*
Step4 &8  2.62 (0.94) 2.83(0.92) —0.21%*
sI! 3.34 (0.84) 2.67 (0.84) +0.67%%*
Steps 1 & 5 3.52 (1.26) 2.94 (1.26) +0.58%**
Posttest Steps2 & 6 3.44 (1.31) 2.84 (1.42) +0.60%%*
Steps 3 & 7 2.39 (1.04) 1.85(0.97) +0.54% %%
Steps4 & 8  3.65 (0.97) 2.91 (1.00) +0.74%%%
ST +0.89 (0.92)***  —0.04 (0.71) +0.93%%x*
Step 1 &5 +1.42 (1.71)***  +0.52 (1.57) *** +0.90%**
Progress ok
Preto post  SteP2& 6 +0.91(1.50) ***  +0.06 (1.48) +0.85
Step3 &7 —0.09 (1.15) —0.89 (1.00) ***  +0.80%**
Step4 & 8 +1.04 (1.18)***  +0.08 (1.05) +0.96%**

***p <.0005, ** p <.005, and * p <.05
"Main results for SI (Chapter 5)
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Mrs. Jones wants to buy a new car, either a Honda or Toyota. She wants
whichever car will break down the least. She read in Consumer Report that for
400 cars of each type, the Toyota had more breakdowns than the Honda. She
talked to three friends. Two were Toyota owners, who had no major
breakdowns. The other friend used to own a Honda, but it had lots of
breakdowns, so he sold it. He said he’d never buy another Honda.

Which car should Mrs. Jones buy? Explain your answer

Level Code Description

5 3 Honda based on larger sample size, admitting uncertainty
1 2 Doesn’t matter due to uncertainty
Honda, without mentioning sample size

1 1 Toyota, because of her friends’ experiences
0 0 Other
Grou Average Percent of students per level

p score Level 5 Level 1 Level 0
Comparison 1.87 5.9% 71,0% 23.1%
group
Intervention 3.54 63.7% 35.6% 0.7%
group

Figure 4.1. Students’ achievements on posttest Item 1, taken from Watson and
Callingham (2004)

We now elaborate on three posttest Items for which the results of the
intervention and comparison group were quite different. The first Item is from
Watson and Callingham (2004) and the second and third are newly designed
Items. First, we present the results for posttest Item 1 (see Figure 4.1). Most
students of the intervention group (63.7%) based their advice on data from
research by Consumer Report among 400 participants, and only the minority
based their advice on the personal experiences of Mrs. Jones’ friends (35.6%).
However, in the comparison group, we observed an inverse situation. Here, the
majority of the students based their advice on the experiences of the friends
(71.0%), and only a few students based their opinion on the Consumer Report
survey (5.9%). A chi-squared test on the distribution over levels in percentages
between both groups, confirmed a significantly higher score for the intervention
group (*(2) = 80.84, p < .0005). The results show that students who attended
the LT drew their conclusion on data-based claims. Preferring statistical
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information over personal intuition and bias is an important step towards
statistical inference.

To investigate the game time of 1500 students at a secondary school, a sample
is taken. The students in the sample are asked how much time in hours per week
they spend on gaming. They decide to randomly question 30 students at the
entrance of the school.

6a. Draw in the graph below the sample results you expect.

Expected game time of secondary school students in a sample of
30

Number of students

Game time in hours per week
6b. What average game time(s) do you expect for a sample of 30 students?

Level Code Description

6 2 Range of values corresponding to (the peak of) the graph
(at Item 6a)
Single value corresponding to the graph, with a measure

of uncertainty
4 1 Single value corresponding to the graph
0 0 Other values (not corresponding to the graph)
Average Percent of students per level
Group
score Level 6 Level 4 Level 0
Control group 3.18 19.3% 50.4% 30.3%
Intervention 3.94 28.1% 56.1% 15.7%
group

Figure 4.2. Students’ achievements on posttest Item 6b, newly designed Item

Second, we present the results on posttest Item 6b, a newly designed Item (see
Figure 4.2). Most students from both groups noted one specific value as their
estimate of the sample result. In the intervention group, more students
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considered sampling variability (28.1%) than in the comparison group (19.3%).
In the comparison group, almost one-third of the answers (30.3%) did not match
their answer given in Item 6a, while for the intervention group, only a smaller
one-sixth (15.7%) did so. A chi-squared test on the distribution over levels
confirmed a significantly higher score for the intervention group (¥*(2) = 6.57,
p <.05).

6¢. Explain your answers to Items 6a and 6b.

Level Code Description

5 5 Statement considering the effect of small sample sizes on
variability to explain the shape of the graph and/or the range of
values for the average at respectively Item 6a and Item 6b; the
statement is bedded in the context

4 4 Statement considering variability to explain the shape of the
graph and/or the range of values for the average at respectively
Item 6a and Item 6b; the statement is bedded in the context

3 3 Statement considering variability to explain the shape/peak of
the graph and/or the average (one value or a range) at
respectively Item 6a and Item 6b; the statement is bedded in the
context

2 2 Statement without variability to explain the shape/peak of the
graph and/or the average (one value or a range) at respectively
Item 6a and Item 6b; the statement is bedded in the context

1 1 Vague statement of variability, using context
0 0 Statement without variability, only using context
Grou Average Percent of students per level

P score Level 5 Level 4 Level 3 Level 2 Level 1 Level 0
gr((’)r:gar'son 119 04% 2.1% 13.0% 20.6% 28.2% 35.7%
g;gelj;)’en“on 197  04% 97% 20.6% 31.8% 30.3% 7.1%

Figure 4.3. Students’ achievements on posttest Item 6¢, newly designed Item

Third, we regard the results for posttest [tem 6¢, a newly designed posttest Item
related to Items 6a and 6b (see Figures 4.2 and 4.3). Most students in the
comparison group (63.9% for levels 0-1) focused on the context, without
referring to the data from their sketched graph in posttest Item 6a or their
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average in Item 6b, and without taking variability into account. For the
intervention group, most students (62.6% for levels 2-5) did relate data from
their graph or average to the context, however, half of these students (31.8%,
level 2) argued a specific sample value without taking variability into account.
A chi-squared test on the distribution over levels, confirmed a significantly
higher score for the intervention group ()*(5) = 28.19, p < .0005). As such, the
results for Items 6b and 6¢ show that students who were taught using the LT
performed better on making data-based claims with reference to statistical
information and accompanied by probabilistic reasoning.

Results on Students’ Learning Progression

This section describes whether the supporting indicators for LT steps 1 to 8
were observed in students’ worksheets (see Table 4.5). Column 3 presents the
percentage of students that correctly elaborated the indicator in their work. In
the following part, we highlight results from LT steps 2, 3, 4 and 7, that
provided us with insight into how each of these LT steps fostered or hindered
the students’ learning process.

Table 4.5. Overview of Results for LT Steps 1 to 8

LT step in Observed
Sequence | Indicator result
Categorical data (N =267)
1. Experimenting a. Making inferences about content 100%
with physical physical black box °
black box b. Interpreting effect of larger viewing
. 88%
window
2. Visualizing a. Drawing expected sampling distribution
O 91%
distributions from repeated samples
b. Using (given) sampling distribution to 999
determine the probability of sample results °
3. Modeling a Using statistical modeling in TinkerPlots to 779
black box determine the probability of sample results °
4. Modeling real-  Using statistical modeling in TinkerPlots
life contexts for
a. Interpreting effect of sample size in real-
. 98%
life contexts
b. Probabilistic reasoning in real-life 3%

114

contexts



Introducing Statistical Inference

c. Determining the probability of sample

results, in real-life contexts 3%
d. Informal hypothesis testing 30%
LT step in Observed
Sequence 11 Indicator result
Numerical data (N =224)
j&;iglxﬁ E;Srin;r;tlng Ig/II:flinbgoi;ferences about content physical 100%
black box
6.Visualizing ) . C
distributions Drawing expected population distribution 76%
7. Modeling a Using statistical modeling in TinkerPlots
black box (given model) for
a. Making inferences about the population
distribution
using a small sample size 52%
using a large sample size 81%
b. Interpreting effect of sample size on
expected population distribution 57%
c. Making inferences about the population
mean 100%
d. Interpreting effect of sample size on the
expected population mean. 69%
e. Determining the probability of sample
results (concerning the sample mean) 32%
8. Modeling real-  Using statistical modeling in TinkerPlots to
life contexts determine the probability of sample results, 80%

in real-life contexts

Step 2: Visualizing the black box sampling distribution to make inferences
(categorical data)

In LT step 2, for indicator 2a, most students (91%) drew a correct visualization
of the expected sampling distribution as a global bell-shaped curve with a peak
at 30. These students’ drawings could be divided in four types (see Figure 4.4).
For indicator 2b, 99% of the students correctly determined the probability of a
sample result of more than 34 orange marbles based on the sampling
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distribution given. Students’ drawings and statements demonstrate their
emerging understanding of the sampling distribution—that is, understanding the
visualization of the frequency distribution from repeated sampling and using the
distribution as a model for determining the probability of certain sample
results—in the context of a black box. Although high deviating results were
overestimated in some students’ drawings and incorrect local peaks appeared,
most students correctly drew a bell-shaped curve with a peak at the population
proportion. Furthermore, most students correctly determined the probability of a
certain range of sample results using the sampling distribution given. In a short
period of time, after just one lesson, students were able to draw and interpret the
(expected) sampling distribution. We assume that the physical experiments from
LT step 1, combined with classroom exchange and discussion, facilitated
students for LT step 2. As such, we consider LT steps 1 and 2 as essential
elements to foster students’ learning progress.

Step 3: Modeling a black box to make inferences (categorical data)

For step 3, the findings evidence that 77% of the students were able to use
statistical modeling in TinkerPlots to determine most likely sample results
within the context of a black box. The other 23% of the students incorrectly
noted a vague or deterministic answer, for example: “According to TinkerPlots
probably more orange than yellow marbles” or “A sample will contain 30
orange and 20 yellow.” Teachers noted that most students independently
deployed the required statistical modeling processes in TinkerPlots. Only a few
students needed help in applying the correct digital techniques or interpreting
the displays on their screen, for example the sample and sampling distributions.
Teachers’ feedback for those students mainly consisted of referring to the
physical black box experiment and TinkerPlots instruction sheet, in particular
by making explicit the similarities between the experiment and the TinkerPlots
environment. As such, the initial physical black box activities in LT step 1 and
2 proved meaningful for introducing statistical modeling activities in step 3.

Step 4: Modeling real-life contexts to make inferences (categorical data)

In LT step 4, for indicator 4a and 4b, most students were able to use statistical
modeling for interpreting the effect of larger sample size (98%) and for
probabilistic reasoning in real-life contexts (83%). We observed more context-
independent terminology than in steps 1 to 3, as students’ statements involved
samples, sample size, probability and variability. Teachers indicated that in the
first of three lessons in step 4 about one-third of the students had difficulties
applying statistical modeling in new contexts. Teachers’ instruction with
reference to the black box context worked well for those students with
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problems. During lessons two and three of step 4, these difficulties hardly
occurred. Teachers mentioned that students were inclined to refer back to the
black box context in their (verbal) reasoning while working on their tasks with
real-life contexts.

W2a Task description (for indicator 2a). This task is about a black box filled
with 250 orange and 750 yellow marbles with a viewing window of 40. The
number of observed yellow marbles per sample is noted. Consider what sample
results you expect from 100,000 repeated samples. Make a sketch below, the
horizontal axis displays possible sample results 0 to 40 and the vertical axis
(without values) the frequency

Category Observed Category Observed
Category 1: Bell curve with res_ult Category 2: Bell curve res_ult
peak at 30 and (almost) all N =243 with peak at 30, and N =243
results between 20 and 40 (almost) all results
45% be.twe_en 20 and 40 239,

with (incorrect) local

peaks
Category 3: Bell curve with 25% Category 4: Smooth 7%
peak at 30, and (almost) all bell curve with peak at
results between 0 and 40 30

Figure 4.4. Four types of correct student drawings (N = 243) of the expected
results of repeated sampling (100,000 repetitions) with sample size 40 in a
sampling distribution, with percent per type
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For indicator 4¢ and 4d, 73% of the students substantiated their statement with
data found by statistical modeling in TinkerPlots. Of all students, 31% correctly
stated that the school management can conclude that the breakfast habits of
pupils are improved for unlikely high sample results—that is, for sample results
above 80—and 42% incorrectly mentioned improvement for results higher than
the common ones of 70, based on their TinkerPlots data found. Of all students,
27% did not refer to their TinkerPlots data found (see Figure 4.5).

Students’ inferences within new real-life contexts accompanied by more
sophisticated probabilistic reasoning—that is, more context-independent
language and statistical terminology—confirmed their emerging understanding
of key concepts. Students used their simulated sampling distribution as a model
for probabilistic reasoning in real-life contexts, which is an important step
towards emergent modeling. Regarding indicator 4d, using the sampling
distribution to determine at what sample results it is likely that a given model
can be rejected—an informal approach of hypothesis testing—appeared difficult
for students. Although from steps 1 to 3, students were familiar with sampling
variability, they did not transfer this knowledge to their claim and tend to use
the deterministic approach that any sample proportion found, higher than the
population proportion, indicates a change of population. These results confirm
earlier studies about students’ difficulties in understanding hypothesis testing
(Stalvey et al., 2019). Nevertheless, 30% of the students correctly indicated
when a given model should be rejected.

Step 7: Modeling a black box to make inferences (numerical data)

In LT step 7, for indicator 7a: making inferences about the population
distribution, students tended to reflect the shape of one sample distribution
found in TinkerPlots directly to the population (see Figure 4.6). However, when
using a small sample size, a strict reflection often results in an incorrect
irregular shape of the expected population distribution. Sample distributions for
small sample sizes are less stable—sometimes even called dancing
distributions—than for larger sample sizes. About half of the students (52%)
compensated for these irregular shapes by comparing several (simulated)
sample distributions, probably based on their experiences in LT steps 5 and 6—
concerning classroom exchange and discussion of varying sample distributions
found from the physical black box experiment.
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W4 Task Description. At the beginning of the school year, 210 out of 300
pupils had breakfast daily. At the end of the school year, the school
management wants to investigate whether pupils’ breakfast habits have
improved (e.g., more pupils are having breakfast daily). They decide to take a
sample of 30.
Specific Task Category of Examples of students’ Observed

answers work result

N =267
Correct: “At unlikely high
referring to
. samples results. In

TinkerPlots TinkerPlots most
W4.18 (for data and 31%
indicator 4c) considering common results are

) between 60 and 80, so for
The school sampling . s
S results higher than 80

management variability
decides to takea  Correctly
sample of 100. referring to “For sample results
At which sample TinkerPlots higher than 70, cause in 429
result (size 100)  data, but TinkerPlots most results
is it likely that incorrect were around 70”
pupils' breakfast conclusion
habits have “For sample results
improved? Incorrect, not higher than 70, cause at

referring to the beginning of the 27%

data school year 210 out of

300 had breakfast daily”

Figure 4.5. Percent of students per category of answers on Worksheet 4 Task
18

For indicator 7b, regarding the effect of sample size on the expected population
distribution, most students (78%) correctly stated that the distribution from a
larger sample better reflects the population distribution. Most of these students
(73%) explicitly mentioned that larger sample sizes lead to more stable
distributions: less variability, smoother bell-curve, a peak at the population
mean, and fewer local peaks; the other 27% of these students stated that a larger
sample contains more information which results in a ‘bigger’ distribution: has a
wider range of results and higher bars. For 22% of the students we found
incorrect statements, for example: “The distributions for small and large sample
sizes are quite similar.” For making inferences about the population mean using
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small and large samples, most students (69%) stated that a larger sample leads
to a better estimate of the population mean: more stable, precise and reliable.
The other 31% stated that for the expected population mean, using small or

large samples sizes were quite similar.

Task description. Sketch of expected population distribution for the content of
the black box (height of 4,000 students) (for indicator 7a)

[W7.1] ..., using a small sample size
(40)

Examples of students’ Observed
work at W7.1 result
Sketch of the expected
population distribution 550,
(correct)

Sketch of expected
irregular-shaped
distribution with local
peaks

48%

L i

133 w0 18 [ 30

W My 10 B M0 .M 1N n [

[W7.8] ..., using a large sample size
(500)

Examples of students’ Observed
work at W7.8 result
Sketch of the expected
population distribution 81%
(correct)

Sketch of expected

irregular-shaped
distribution with local
peaks

19%

GO T

m 13 w0 uw

Figure 4.6. Percent of students per category of answers on Worksheet 7 Tasks 1

and 8
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Regarding indicator 7e, most students (68%) had difficulties determining the
probability of certain sample results. Students’ problems mainly consisted of
confusing the sample and sampling distribution. For example, when students
were asked to determine the probability of a sample mean below 1.55 m,
students tended to refer to their simulated sample distribution instead of the
sampling distribution; we also observed the other way around, when students
were asked to determine the probability that a person’s height is below 1.55 m.
We assume that the emphasis on three distributions—that is, sample, population
and sampling distribution—in LT steps 5 and 6 caused confusion.

Overall, teachers explicitly mentioned that the black box as guiding
activity through the learning trajectory was clear and useful, especially the
strong similarities between the physical black box and statistical modeling in
TinkerPlots. Furthermore, teachers described the black box as a concrete,
engaging activity that is free of bias—meaning not related to students’ personal
preference or prior knowledge. The learning of digital techniques for using
TinkerPlots in a short period of time took some time and effort. Teachers
indicated that investing in these techniques was worthwhile, and that most
students deployed the techniques rather easily.

Conclusion and discussion

This article reports on a design study that aimed for a theoretically and
empirically underpinned design of an LT for introducing statistical inference in
Grade 9. We addressed several aspects involved in design research on LT’s as
advised by Duschl et al. (2011). To evaluate the designed LT, we analyzed the
progression made by 267 students. First, the analysis of the posttest results
indicates that students’ understanding of statistical inference as addressed in the
coupled LT steps—in LT steps 1 and 5 on using samples, in LT steps 2 and 6 on
visualizing distributions, in LT steps 3 and 7 on repeated sampling and effect of
sample size, and in LT steps 4 and 8 on solving real-life problems—was
significantly higher among students who took part in the LT than among
students who followed the regular curriculum. These results demonstrate a
higher score for all eight learning steps and, with that, a deeper understanding of
the statistical concepts offered in each step. As such, it appears that all eight
steps combined led to students’ higher performance on statistical inference.
Second, the analysis of students’ worksheets, accompanied by teachers’ and
researcher’s notes, confirms that all eight steps of the learning trajectory
combined contributed in fostering students’ learning. In addition to developing
the statistical concepts addressed within each learning step, we also observed
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progress across the eight successive learning steps—for example, in using more
abstract statistical terminology, data-based reasoning, and context-independent
use of statistical concepts and models. As such, the results empirically
substantiate the theoretically designed learning trajectory.

Although research shows that reasoning and interpreting sampling
distributions is difficult (Batanero et al., 1994; Castro Sotos et al., 2007;
Chance, del Mas, & Garfield, 2004), the findings show that students can
develop key concepts of statistical inference—sample, variability, and
distributions—in a short period of time by using the black box sampling as
guiding activity. Starting from LT steps 1 and 2, students developed an
emerging understanding of the sampling distribution, initially as a visualization
or model of their results, and gradually as a model for determining the
probability of certain sample results. The strong similarity between the physical
black box activities and the modeling activity in the digital environment of
TinkerPlots facilitated the connection of the model to the real world (Konold &
Kazak, 2008; Patel & Pfannkuch, 2018). In following LT steps, the black box
served as a guiding paradigm for students’ reasoning and teacher instructions
about key concepts, in particular while modeling real-life phenomena.

Based on the promising results of this study into an LT for introducing
statistical inference—designed on the basis of current ideas and theories in this
areca—we identify the following design heuristics as useful. First, the learning
activities should be placed in a context that allows students to develop statistical
concepts directly related to the learning goals of the LT—that is, a context that
is recognizable to students, engaging, activating, and representative for the
concepts at stake. Second, although activities may focus on specific statistical
concepts, they should be viewed within the broader perspective of the entire
statistical investigation cycle. Here, it is essential that students go through this
cycle repeatedly, using different contexts with increasing levels of abstraction
and complexity. Third, visual and enactive similarity between material and
digital sources must be ensured for performing statistically identical procedures.
Fourth, explorative and iterative activities with simulation software should be
embedded to facilitate the development of context-independent conceptual
understanding. Fifth, activities should be structured to support learners in
developing a model of their concrete statistical activity that can then be used as
a model for a network of statistical concepts and relationships.

However, when higher order thinking activities were addressed in the LT,
such as informal hypothesis testing or reasoning about population distributions,
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we saw confusion among students. Apparently, more time and more iterations
are needed to anchor the key concepts before proceeding to more complex
statistical concepts and ideas. We therefore suggest in Sequence [I—steps 5 to
8—to focus on repeated sampling using the sample mean and to omit making
inferences about the population distribution. In this way, the key concepts for
statistical inference from Sequence I that emerge from the sample proportion of
categorical data for repeated sampling can be further elaborated in Sequence 11
by using the sample mean of numerical data.

To address more complex statistical concepts in a follow-up LT, repeated
sampling with a black box (or boxes) may also be used as guiding activity. With
regard to hypothesis testing, which is difficult for many students (Stalvey et al.,
2019), a hypothesis concerning the black box content can be used to introduce
the idea of hypothesis testing. For example, by providing a physical black box
filled with marbles and letting students test whether the given proportion is
likely to be true. This also holds for other statistical concepts and ideas, such as
determining the critical area and comparing groups, where the black box
provides opportunities for engaging and guiding activities.

Concerning the use of digital technology in the LT, investigating in
learning to use a digital tool—which took time and effort from both teachers
and students—appeared fruitful for students’ understanding of statistical
inference. The digital techniques for using the tool enabled students to identify
context-independent patterns in action that seemed to facilitate the transition
towards emergent modeling. This transition was reflected in students'
worksheets when they referred to similar previous technical actions and in
students’ terminology that evolved from concrete terms to more abstract
statistical terminology, for example from the term “viewing window” to
“sample.” The development of a statistical vocabulary is essential for students’
understanding of concepts (Watson & Kelly, 2008).

The results of this study can be positioned within the findings of our
larger study. The findings from the larger study using all assessment Items of
the pre- and posttest indicate that the LT also stimulated other domains of
statistical literacy (Van Dijke-Droogers et al., submitted). These findings
suggest that the current Dutch pre-10th grade curriculum can be enriched with
informal statistical inference; we assume that this also holds for other countries
with a focus on descriptive statistics in lower secondary mathematics curricula.

Of course, this study comes with some limitations. Teachers’
implementation of the LT varied, for example in the amount of teacher guidance
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and instruction during the teaching sequence. These differences were visible in
students’ worksheets, with the reasoning of students with the same teacher
being more or less similar. Furthermore, we encountered practical limitations
during the intervention, such as difficulties with installing TinkerPlots on the
school’s computer network and lesson shortening due to extremely high
temperatures. The installation problems caused some delay but did not affect
our study. Due to the lesson shortening, we collected 224 completed worksheets
in Sequence 11, instead of the 267 in Sequence I.

On a final note, the findings suggest that curricula with a strong
descriptive focus can be enriched with an inferential focus—at least for this type
of student population—with the benefit of students learning more about
inference, but not less about descriptive statistics. We recommend that
educators and researchers involved in the design of teaching materials consider
the embedding of black box activities combined with statistical modeling, to
anticipate subsequent steps in the students’ statistics education.
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Abstract

In our data-driven society, it is essential for students to become statistically
literate. A core domain within statistical literacy is statistical inference, the
ability to draw inferences from sample data. Acquiring and applying statistical
inference is difficult for students and, therefore, usually not included in the pre-
10th-grade curriculum. However, recent studies suggest that developing a good
understanding of key statistical concepts at an early age facilitates the
understanding of inferences later on. This study evaluates the effects of a
learning trajectory for statistical inference on Dutch 9th-grade students’
statistical literacy. Theories on informal statistical inference and repeated
sampling guided the learning trajectory’s design. For the evaluation, we used a
pre-post research design with an intervention group (n = 267). To interpret the
significant learning gains of this group, we compared students’ results with
national baseline achievements from a comparison group (n = 217) who
followed the regular 9th-grade curriculum, and with international studies using
similar test items. Both comparisons indicated that the learning trajectory had a
significant positive effect on students’ statistical literacy and on the ability to
make inferences in particular, but also on the other domains of statistical
literacy. These findings suggest that current statistics curricula for Grades 7-9,
usually with a strong descriptive focus, can be enriched with an inferential
focus.

Keywords
statistical literacy, statistical inference, learning trajectory, assessment
instrument, learning effects
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Introduction

In our data-driven society, it is essential for citizens to be statistically literate.
Both our daily activities and professional practices increasingly rely on
statistical information we obtain, either from taking measurements or through
media reports. Statistical literacy concerns the ability to interpret, critically
evaluate, and communicate about statistical information and messages (Gal,
2002). The growing use of and dependence on statistical data requires an
educational approach in which students learn to create and critically evaluate
data-based claims (Ben-Zvi et al., 2015) and, as such, to become statistically
literate.

A core domain of SL is drawing inferences from sample data. However,
learning and applying statistical inferences (SI) is difficult for students (Castro
Sotos et al., 2007; Konold & Pollatsek, 2002). Therefore, in many countries,
including the Netherlands, it is not offered in the pre-10th-grade curriculum.
Recent studies suggest that developing, at an early age, a good understanding of
key statistical concepts of sample, variability and distributions facilitates the
understanding of SI later on (Ben-Zvi et al., 2015; Zieffler et al., 2008).
Innovative educational software for simulating samples and repeated sampling
offers opportunities to make these key concepts accessible (Biehler et al., 2013).

To support students’ SI, a learning trajectory (LT) for 9th-grade students
(14-15-years old) was designed to introduce the key concepts of SI (Van Dijke-
Droogers et al., 2020). Theories of informal statistical inference (Makar &
Rubin, 2009) complemented by ideas of growing samples and repeated
sampling (Bakker, 2004), constituted the design of the LT. This simulation-
based LT comprises an investigative approach that includes all stages of the
statistical investigation cycle—from collecting data to interpreting the results—
with an emphasis on interpreting sample data and reasoning about probability.
Although the focus of the LT is on SI, the approach concretizes broader
underlying statistical concepts, such as measures of center and spread,
distribution and correlation, by means of visualizations. As such, our conjecture
is that the designed LT for introducing SI will also have a stimulating effect on
the other, more descriptive-focused, domains of statistical literacy. Currently,
the typical Dutch pre-10th-grade curriculum is mainly focused on those
descriptive domains. In this regard, the purpose of the LT is to expand the 9th-
grade curriculum with SI, the more complex domain of statistical literacy,
without neglecting the current educational goals on the other domains.
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The aim of the study reported here is to evaluate the effects of the
designed LT for introducing statistical inference on students’ statistical literacy.
Therefore, we wanted to assess students’ performance on SI, and their
achievements on the other descriptive-focused domains of statistical literacy as
offered in the regular curriculum. Because such assessment instruments with a
specific focus on SI hardly exist for our age group, we developed a pre- and
posttest, by adapting and expanding already validated tests. This assessment
instrument enabled us to establish students’ performance on both tests, and
hence to evaluate the effects of the designed LT for statistical inference on
students’ statistical literacy, and on the SI domain in particular.

Theoretical Background

Domains of Statistical Literacy

Statistical literacy (SL) concerns critical thinking that uses statistical
information as evidence (Schield, 2004). This includes the ability to read and
interpret numbers in statements, surveys, tables and graphs and studies how
statistical associations are used as evidence for causal connections. Although SL
has several definitions, the most-used one comes from Gal (2002), where SL is
portrayed as the ability to interpret, critically evaluate, and communicate about
statistical information and messages. According to Rumsey (2002), SL includes
the understanding of basic statistical concepts and ideas in data awareness,
production, understanding, interpretation and communication.

Three domains of SL can be distinguished (Watson & Callingham, 2003).
The average and chance (AC) domain covers determining measures of center
and spread, and calculating and interpreting chance issues, as reflected in the
mathematics curriculum in most Western countries (Watson & Callingham,
2004). The graphing and variation (GV) domain entails creating and
interpreting visual representations of data with the variation involved. The
sampling and inferences domain focuses on statistical inference and, as such,
can be considered as the statistical inference domain within SL. This SI domain
covers working with samples and drawing inferences, where interpreting the
relationship between these two is particularly important in the process of
statistical decision making.

Many secondary school curricula make a distinction between statistics
without probability (descriptive statistics, exploratory data analysis), as
addressed in the GV and AC domains, and statistics with probability (inferential
statistics) as addressed in the SI domain. The latter is usually taught at upper
levels (Burrill & Biehler, 2011). This also holds for the Dutch secondary school
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curriculum, in which statistics education progresses from descriptive statistics
in the early years, to preparing for a more formal approach to inferential
statistics from Grade 10 and in higher education (Van Dijke-Droogers et al.,
2017; Van Streun & Van de Giessen, 2007). In the Dutch curriculum for Grades
7-9, the first two domains of SL are embedded in the descriptive statistics,
whereas the SI domain is not addressed at all.

Statistical Inference

Statistical inference (SI) is at the heart of statistics as “it provides a means to
make substantive evidence-based claims under uncertainty when only partial
data are available” (Makar & Rubin, 2018, p. 262). As such, SI can be
considered both an outcome and a reasoned process for probabilistic
generalizations from data (Makar & Rubin, 2009). SI concerns interpreting
sample results, drawing data-based conclusions, and reasoning about
probability. For most students, it is difficult to understand SI and the uncertainty
involved. Several studies focused on the introduction and conceptualization of
SI. The offering of educational activities of SI at an early age on informal level,
combined with the frequent recurrence of such activities later on, seems to make
SI accessible for students, in particular at the school level (Makar & Rubin,
2009; Paparistodemou & Meletiou-Mavrotheris, 2008; Van Dijke-Droogers et
al., 2020; Zieffler et al., 2008). In general, this informal approach focuses on
ways in which students without knowledge of formal statistical techniques, such
as hypothesis testing, use their statistical knowledge to underpin their inferences
about an unknown population based on observed samples. A widely used
framework for informal statistical inference identifies three main principles:
generalization beyond data, data as evidence for these generalizations, and
probabilistic reasoning about the generalization (Makar & Rubin, 2009).

SI requires an understanding of the key concepts of sample, variability
and distribution—including frequency distribution and (simulated) sampling
distribution. These concepts can be introduced at the school level by using ideas
of simulating repeated samples (Garfield et al., 2015; Manor & Ben-Zvi, 2017,
Rossman, 2008; Saldanha & Thompson, 2002; Watson & Chance, 2012) and
growing samples (Bakker, 2004; Ben-Zvi et al., 2012; Wild et al., 2011). Digital
tools such as TinkerPlots offer opportunities for simulating repeated samples
and to visualize concepts, such as random behavior, distribution and probability
(Garfield et al., 2012; Konold et al., 2007; Pfannkuch et al., 2018). Working
with such simulations stimulates the understanding of statistical models and
modeling processes, that are essential for SI. In the LT we designed, students
start with interpreting the sampling distribution obtained from repeated
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sampling with a physical black box filled with marbles. As a follow-up,
students build and run a model of a real world situation in TinkerPlots and use
this model, by simulating and interpreting the sampling distribution of repeated
samples, to understand the real world situation, and to draw inferences. An
overview of the LT can be found in Table 5.2.

Assessing Statistical Literacy and Inference

Assessment instruments at the secondary school level for SL, with a focus on
SI, are scarce. The situation is very different at the tertiary level; think of the
web-based ARTIST project—Assessment Resource Tools for Improving
Statistical Thinking—by Garfield, delMas and Chance (2002), the CAOS
project—Comprehensive Assessment of Outcomes in a First Statistics Course—
by delMas et al. (2007), the GOALS project—Goals and Outcomes Associated
with Learning Statistics—by Garfield et al. (2012), and the BLIS project—
Basic Literacy in Statistics—by Ziegler (2014). The latter project, BLIS,
involves a compilation of existing Items from the other projects supplemented
with simulation-based questions. The Items in these projects require students to
think and reason, not to compute, use formulas, or recall definitions.

The only studies that seemed useful for our students were the ones by
Watson and Callingham (2003, 2004) and the LOCUS project (Whitaker et al.,
2015), as both focused on Grades 6 to 12. Watson and Callingham's studies
appeared to be particularly suited, as they specifically distinguished between the
three domains of SL. Their approach allowed to identify students' SL, and also
their performance on the domain of SI in particular. Using archived data from
1993-2000, Watson and Callingham empirically developed a 6-level hierarchy
of SL that helped to identify the distribution of Australian middle school
students’ SL across the levels. Their hierarchical levels for SL are presented in
Table 5.1. A follow-up study by Callingham and Watson (2017) showed that
the level construct had remained appropriate and stable over time. This finding
suggests that the identified levels provide a good basis for determining the level
of SL in secondary education. In addition, their longitudinal analysis indicates
that the statistical literacy hierarchy can be used to monitor students’ progress.

Research Question
This study focuses on the question:

What are the effects of a learning trajectory for statistical
inference on 9th-grade students’ statistical literacy?

130



Effects of a Learning Trajectory for Statistical Inference

To answer this question, we examined the effects of the LT on students’
proficiency in the domains of SL, SI in particular. Although the designed LT
concentrates on statistical inference—the SI domain of SL—we conjectured that
a focus on more complex learning activities for SI would also have a positive
effect on students understanding of the other domains of SL.

Table 5.1. Levels of Statistical Literacy as presented by Watson and
Callingham (2003, p. 14)

Level Characteristic of level

Critical, questioning engagement with context, using
proportional reasoning particularly in media or chance
contexts, showing appreciation of the need for
uncertainty in making predictions, and interpreting
subtle aspects of language.

Critical, questioning engagement in familiar and
unfamiliar contexts that do not involve proportional

5. Critical reasoning, but which do involve appropriate use of
terminology, qualitative interpretation of chance, and
appreciation of variation.

Appropriate but non-critical engagement with context,
multiple aspects of terminology usage, appreciation of
variation in chance settings only, and statistical skills
associated with the mean, simple probabilities, and
graph characteristics.

Selective engagement with context, often in supportive
formats, appropriate recognition of conclusions but
without justification, and qualitative rather than
quantitative use of statistical ideas.

Only colloquial or informal engagement with context
often reflecting intuitive non-statistical beliefs, single
2. Informal elements of complex terminology and settings, and basic
one-step straightforward table, graph and chance
calculations.

Idiosyncratic engagement with context, tautological use
of terminology, and basic mathematical skills associated
with one-to-one counting and reading cell values in
tables.

6. Critical
Mathematical

4. Consistent
Non-critical

3. Inconsistent

1. Idiosyncratic
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Methods

To evaluate the effects of the LT, we used a pre-post research design with an
intervention group (N = 267) who engaged with the LT. To interpret the learning
gains of the intervention group, we compared their results with national baseline
achievements from a comparison group (n = 217) who followed the regular
Dutch curriculum at an earlier stage, and compared the results with those of
Australian students (Callingham & Watson, 2017).

An Outline of the Learning Trajectory

A Learning Trajectory (LT) is a design and a research instrument to structure
and connect all elements involved in learning a particular topic. An LT consists
of a set of learning goals for students, learning activities that will be used to
achieve these goals, and conjectures about the students’ learning process. It
includes the simultaneous consideration of mathematical goals, student thinking
models, teacher and researcher models of students’ thinking, sequences of
teaching tasks, and their interaction at a detailed level of analysis of processes
(Clements & Sarama, 2004).

The designed LT introduces the key concepts for statistical inference to
9th-grade students by using an investigative approach with a physical black box
and simulation-based methods (Van Dijke-Droogers et al., 2020), see Table 5.2.
Ideas of repeated sampling and growing samples instantiate the design, both for
working with the physical black box filled with marbles and for simulating
samples using TinkerPlots. All stages of the statistical investigation cycle are
addressed in the LT, as students collect both physical and simulated data,
analyze their data using the sampling distribution, and interpret the results to
answer the question posed. The emphasis is on interpreting sample data and
reasoning about probability. Recent views on statistical models and modeling
(Biischer & Schnell, 2017; Manor & Ben-Zvi, 2017; Patel & Pfannkuch 2018),
and educational guidelines on the use of context, digital tools, exchange and
comparison of sample results, making predictions, and engagement in both
physical and simulation-based activities, are embedded in the design. The
investigative approach and learning activities in the more complex SI domain
also attend to the other domains of SL. For example, the AC domain, average
and chance, is addressed as students summarize their obtained sample data in
measures of center and spread. As another example, the graphing part of the GV
domain is given attention in the visualizations of both sample results and
population models, and the variation part is targeted as students explore results
of repeated samples.
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The LT comprises eight learning steps that are split into two similar parts of
four. Part one considers only categorical data and includes the following steps:
(1) experimenting with a physical black box, (2) visualising distributions, (3)
statistical modeling using TinkerPlots, (4) applying models in new real-life
contexts. Subsequently, in part two, LT steps (5) to (8) include similar steps,
now using more complex numerical data. The eight steps of the LT were
organized in two sequences of six 45-minutes lessons, with a total of twelve
lessons.

Design of the Assessment Instrument

To evaluate the effects of the designed LT, we needed an assessment instrument
to measure 9th-grade students’ SL, and SI in particular. To measure the effects
of the LT on students’ proficiency—i.e., students’ progress when working with
the LT—we developed an assessment instrument consisting of a pre- and
posttest, inspired by Watson and Callingham (2003, 2004). Following Ziegler
(2014), we used existing items from validated tests for the design of the tests,
supplemented by simulation-based items. As such, we used the approach of a
pre- and a posttest from delMas et al. (2017), test items for statistical reasoning
with levels from Watson and Callingham (2004), and expanded these with
newly designed items on statistical inference and simulation.

The pre- and posttest each contained ten clusters of items. Each cluster
included two to six sub items, with a total of 39 and 34 items on the pre- and
posttest respectively. Both tests had a similar composition and a time-duration
of 45 minutes. For each test, we selected five clusters of items from Watson and
Callingham (2004) that covered the three domains of SL. We selected one
cluster item applicable for secondary level from the CAOS test (delMas et al.,
2007). As context was found to be an important factor affecting the difficulty of
items for students, the selection of items was based on educational background,
as well as on familiarity with the context. Table 5.3 provides an overview of the
composition of the pre- and posttest, with reference to sources and
accompanying domains of SL.

Figure 5.1 shows an example of an item from a validated test, in the AC
domain. The level scores in this item refer to Watson and Callingham’s (2003)
hierarchical levels 1 to 6 for SL, supplemented with the null level for incorrect
or uncompleted items. As Figure 5.1 shows, the answers could not be given on
each level: It was not possible to formulate an answer on levels 1 and 2, the
informal and inconsistent level, as all possible answers include the context
information given—Ilevel 3 or higher—or the answer is incorrect—level 0.
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Table 5.3. Overview of Clusters and Items in the Pre- and Posttest

Number of Items Source Domain of SL
(clusters)

Pre Post

17 (5) 18 (5) Watson & Callingham AC-GV-SI
3(D 2(1) CAOS AC

19 (4) 14 (4) Newly designed SI

Note. SL = Statistical Literacy, AC =Average and Chance, GV = Graphing and
Variation, SI = Statistical Inference.

Similarly, based on the item context, some items could only be coded to a
maximum level score of 4 instead of 6. As such, for the selection of items, the
chosen items had to be similar in maximum level score on the pre- and posttest,
for each domain of SL, to compare students’ scores on both tests. The average
maximum scores for SI items on the pre- and posttest were similar, both around
5.6, and, for the GV items, the average maximum scores were also similar, with
around 3.7 for both tests. For AC, however, the maximum scores on the selected
items in the pre- and posttest were rather different, with 5.7 and 4.6,
respectively. To compensate for this difference, a correction was applied to the
posttest results, so that students’ level scores on the pre- and posttest could be
properly compared. Using the corrected AC scores, the average maximum score
on SL was about 5.5 for both tests. As such, we considered the selected items
on the pre- and posttest comparable for both tests, on all domains of SL.

As we were specifically interested in the effects of the LT on students’
understanding of the concepts of SI as addressed in the LT, four additional
items were designed for this study, focusing on the SI domain. For the design,
we chose recognizable contexts and used the structure and phrasing of items
from the two previously described tests. Figure 5.2 shows an example of a
newly designed item with its levels. The level scores of these new items were,
as with the existing items, based on Watson and Callingham’s (2003) level
descriptions, and on the exemplary Items they formulated on the SI domain
(2004).

To analyze the validity of the designed assessment instrument for our
Dutch 9th-grade students, we conducted two pilot tests in different classrooms,
each consisting of 25 students, for the pretest. Concerning the concurrent
validity of the new designed SI items, we expected the students to score on the
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newly designed SI items at a similar level to the existing SI items from Watson
and Callingham (2004). Students’ average level scores in the pilots on newly
designed and existing SI items were not significantly different (Mnew = 2.49,
SDnew = 0.71, Mex = 2.78, SDex = 1.38, n = 50, t(49) = —-1.6; p=".11). For the
other domains, GV and AC, all items were from already validated tests. To
assess the content and construct validity of all test Items for our students, the
results of each pretest pilot were used for in-depth discussion with experts in
this area on content, construct, vocabulary, and clarity. In a similar way, the
posttest was piloted in two other classrooms. The posttest pilots took place after
the large-scale implementation of the pretest. Based on our pretest experiences,
the initial designed posttest was modified slightly—for example, the number of
items was reduced from 38 to 34. The results of the two posttest pilots, each
consisting of 25 students who did not follow the LT or other statistics education
in the intervening weeks, were thoroughly examined to ensure the pre- and
posttest were comparable.

Pretest Item

Nine students in a science class weighed a small object separately on the same
scales. The weights (in grams) recorded by each student are: 6.3 6.0 6.0 15.3
6.1 6.3 6.2 6.15 6.3. The students had to decide on the best way to
summarize these values. Ben said, “I’d use the most common value to get the
mode. That’s 6.3.”

Is Ben’s approach a good way to summarize the information? Explain your
answer.

Level Description Examples of students' reasoning
“Yes, because Ben is using the
Statistical and contextual most common weight for the Item.
6 responses incorporating both However, he does not look at the
positive and negative aspects of  other weights and if the most
method common weight was an extreme

value it would be inaccurate”

Statistical response — positive “Yes, the majority of times it was
s evaluation weighed at 6.3”

Statistical response — negative “No, doesn’t take into account the

evaluation other weights”
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“No, the mode might weigh more

Claims of inaccuracy but with than the others”.

no statistical response — No, it’s not accurate”.

negative evaluation “No, three people might have
4 weighed wrong”

Claims of accuracy but with no

statistical response — positive “Yes, it’s the average weight"
evaluation

Recommendation of other “No, he should have added them up
methods and divided by 9”

Tautological but positive

. . “Yes, because he is using the most
evaluation based on majority or

3 “ . common”
most common
Methodological reasons — .
.\ & . “Yes, it’s easy”.
positive and/or negative « -
. No, too much calculating
evaluations
No reason or apparent logic
0 regardless of evaluation

No response

Figure 5.1. Item with corresponding level description from Watson and
Callingham (2004, p. 138)

Concerning the reliability of the tests, Cronbach’s alpha values were .84 and .85
on the pre- and posttest respectively, indicating a good reliability (Taber, 2017).
To assess the difficulty of the items, p values were calculated. To assess the
discrimination of the items, we used Rit (Item—test correlation) and Rir (item—
rest correlation), using classical test theory. See Table 5.4 for an overview of the
reliability of item characteristics on the pre- and posttest, with accompanying
ratings. For the pretest, we observed moderately difficult items with four easy
Items (p value > .80) and one difficult item (p value <.20). Rit and Rir values >
.30 are indicated as good items, scores between .20 and .30 as medium, and
scores < .20 as poor items (Ebel & Frisbie, 1991). The pretest Rit values
indicated five poor items, twelve moderate and twenty-two good items, and, the
Rir scores indicated eight poor items, sixteen moderate and fifteen good items.
For the posttest, we observed moderately difficult items with four easy items
and no difficult items. The Rit values indicated one poor item, nine moderate
and 24 good items, and the Rir scores indicated two poor items, thirteen
moderate and nineteen good items. We considered these item scores on the pre-
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and posttest to be most acceptable. The pre- and posttest can be found in

Supplementary Material C and D.

Pretest Item

To analyze the number of candies with
strawberry taste in a roll of ‘Minitos’,
700 rolls were checked. Each roll
contained 20 candies. From each roll
the number of candies with strawberry
flavor was counted. The results of
these counts are shown in the graph.
Pieter claims that he had a roll in
which half the candies were
strawberry-flavored last week. Explain
what you think of his claim.

Results for 700 candy rolls

Number of strawberry candies in one
roll

Level Description Examples of students' reasoning
State'rn.e.n tadmitting “Well, it is possible that Pieter is
possibility, but also . ..

. telling the truth, but it is very
acknowledging the . .
o unlikely. According to the graph,
unlikelihood of the event, . »
there is less than 2% chance
6 based on graph
“The story of Pieter is very unlikely.
Statement of low likelihood According to the graph, there is very
based on being an outlier, little chance of having 10 strawberry
with reference to the graph candies in one roll, however, maybe
he was extremely lucky”
State.rn.e.n t 0f1mposs1b1.1 ity or “Maybe Pieter was lucky, it seems
possibility based on being an .

4 . ; . very unlikely to have that number of

outlier without mentioning .. v
strawberry candies in one roll

the graph

Definite statement of ery . S

impossibility or possibility Pieter Is exaggerating, it is

3 . .. L impossible to have that number of
without explicitly referring to . »

strawberry candies in a role
the graph
Statement of possibility
) without acknowledging “That is a large number of strawberry

unlikelihood or reference to
the graph

candies”
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Statement based on personal
experience

No reason or apparent logic
regardless of evaluation

“I hope Pieter likes strawberry flavor”

Figure 5.2. Newly designed Item with corresponding level description on the SI
domain of statistical literacy (SI = Statistical Inference)

Table 5.4. Reliability and Item Characteristics of the Pre- and Posttest

Pretest Posttest
Average Rating Average Rating
measure measure
p value .54 Moderately .62 Moderately
difficult difficult
Rit value .35 Good 42 Good
Rir value .30 Medium/good .36 Good
Cronbach’s a .84 Good .85 Good

Participants

Figure 5.3 provides an overview of participants and data collection. The
participating students from both the intervention and comparison group were in
the pre-university stream, and thus belonged to the 15% best performing
students in our educational system.

For the intervention group, through a national call, in for instance
newsletters for math teachers and on Social Media, we invited Dutch teachers
who were willing to implement the LT in their regular mathematics lessons.
Eleven of them applied, with a total of 267 9th-grade students (aged 14-15
years) from thirteen classes in five different schools. Two teachers participated
with two of their classes. The teachers were instructed for the LT during two
similar 3-hr sessions. The first session focused on LT steps 1-4 and included
the 45-min lessons 1 to 6. The teachers worked through students’ lessons and
materials themselves, guided by the researcher. The second session was similar
to the first one and concentrated on LT steps 5-8, lessons 7 to 12. The project
materials consisted of a teacher guidebook and students’ materials, such as
worksheets, datasets, and physical black boxes with marbles. The teachers of
the intervention group decided to eliminate all the regular 9th-grade statistics
lessons to save time for the LT.
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Intervention

Learning Trajectory \

group
(n=267)

No statistics lessons focus on Sl /

Posttest

\ / Pretest

Comparison

S

Regular Curriculum

group focus on GV and AC
(n=217) ¥

No statistics lessons

~— —
Months4 -7 Months 7-8  Months 8-9 Months 9-10

Figure 5.3. Overview of data collection and statistics education for the
intervention and comparison group in grade 9. GV, AC and SI refer to the three

domains of SL: graphing and variation (GV), average and chance (AC), and
statistical inference (SI)

Subsequently, we invited a comparison group through a national call, with
teachers who did not participate in the intervention, but who were interested in
using the assessment instrument to identify the SL of their students. The effort
for teachers in the comparison group was considerably lower than for the
intervention group. The six teachers of the comparison group only administered
the pre- and posttests on their students (217 in ten classrooms). All students in
the comparison group attended 10-16 regular statistics lessons during their
mathematics lessons before the pretest. The regular curriculum focused on the
AC and GV domains of SL, as described earlier in the section on the domains of
SL. The comparison group attended no statistics lessons in between the pre- and
posttest, and therefore, we expected their results on both tests to be similar. As
such, the average results on the pre- and posttest for the comparison group could
be used as Dutch baseline achievements for the SL of 9th-graders.

One might suggest that posttest results of the two groups are not
comparable because the posttest of the intervention group was taken within 1-2
months after the intervention, and in the comparison group not until 3—4 months
after education. Taking into account the time span between education and
assessment, we could also compare the pretest results of the comparison group
(1-3 months after education) with the posttest of the intervention group (1-2
months after education). However, in retrospect, the comparison group's results
on the pretest, which was taken 1-3 months after their education, was not
significantly different from their results on the posttest. Since the results of the
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comparison group on the pre- and posttest hardly differ, we considered the
consequences of the intervening time to be negligible.

We are aware that teachers from the intervention group who were willing
to ‘go the extra mile’ were possibly more motivated for teaching statistics.
However, the teachers of the comparison group also volunteered, mainly
because they were interested in the performance of their students in the field of
statistics. In this regard, the teachers from both groups had an above-average
interest in teaching statistics. Students in both groups belonged to the 15% best
achieving students in the Dutch educational system. They all successfully
completed the regular statistics curriculum in Grades 7 and 8. Students’ grade
level, from both the intervention and the comparison group, was described as
average according to their performance on mathematics and statistics tests. As
such, we assumed both groups to be comparable.

Data Collection

The data consisted of pre- and posttests from the intervention and comparison
group. The pretest was taken in months 7—8 of the school year 2019-2020, from
the participating students of both groups. The participating teachers took the
test, according to a clear instruction for testing, from their own students during
their regular 45-min mathematics lessons. The posttest was taken in months 9—
10 of the school year in a similar way, by the teachers during their regular
lessons in their own school, see Figure 5.3.

Data Analysis

For the analysis, we first graded the pre- and posttest level scores for the
intervention group on the domains of SL with two assessors, and we compared
the scores of the intervention group with Dutch baseline achievements from the
comparison group. Second, we compared the level scores for both groups with
findings by Callingham and Watson (2017).

First, for assessing students’ proficiency on the domains of SL, the pre-
and posttest data from the participating 9th-grade students were coded with the
level scores 0-6 for SL (Watson & Callingham, 2003), as described in the
section on the assessment instrument. To indicate students’ progress for the
intervention group, we compared changes in students’ pre- and posttest scores.
To indicate students’ achievements, we compared the posttest scores of the
intervention and comparison group, and as such, for being taught through the
LT or the regular statistics curriculum. Graphical representations were used for
data exploration. Several statistical measures were calculated, such as center
and spread, and proportions for level scores. For significance, we used paired t
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tests for comparing pre- and posttest results, one-way ANOVAs for comparing
results from both groups, and chi square tests for comparing students’
distribution over the levels. For students’ proficiency level at SL, we calculated
the mean of students’ average scores on the AC, GV and SI domain, allowing
us to compensate for the inequality in the number of Items per domain.

Second, to further interpret the effects of the LT on students’ SL, we
compared our findings with the studies by Watson and Callingham and with
their distribution of Australian students from Grades 6 to 9 found across the
levels for SL. As our assessment instrument was mainly based on their validated
tests and hierarchical level construct for SL, we considered the results for our
students to be comparable to theirs. In this regard, we expected the distribution
in levels for our 9th-graders to be broadly similar to their distribution found for
grade 9, and also expected that most students would score on level 3—4 for SL.
Concerning the comparison of our students’ average level scores with those of
Australian students (Callingham & Watson, 2017), estimates for the Australian
students’ average level score per grade were calculated using the distribution of
students across the levels.

For reliability of the analysis, a second coder was asked to independently
grade a random set of 5% (250 Items) of the pre- and posttest data with
students’ reasoning. The third coder agreed on 83% of the codes. Deviating
codes, which were limited to one or two levels difference at most, were
discussed until agreement was reached. Adjustments in the coding were also
applied to the rest of the data.

Results

In this section, we first present the level scores for the intervention group on the
domains of SL at the pre- and posttest, and we compare these results with Dutch
baseline achievements from the comparison group. Second, to further interpret
students’ level scores, we compare our results with findings from Watson and
Callingham (2017).

Students’ Level Scores for SL
Table 5.5 displays students’ proficiency on the domains of SL in level scores
for the pre- and posttest for the intervention and comparison group, including
their progress from pre to post.

When comparing the results for SL on the posttest, a one-way ANOVA
between both groups indicated significantly more proficiency on SL for
students who followed the LT in comparison with Dutch baseline achievements
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from the comparison group, who followed the regular curriculum (+0.33; F(1,
482) = 24.6, p < .0005). On the pretest, a one-way ANOVA between both
groups indicated the average level score for the intervention group on SL was
significantly lower than the score for the comparison group (—0.37; F(1, 482) =
34.9, p <.0005). The lower score was to be expected, as the intervention group,
unlike the comparison group, did not have 9th-grade statistics lessons prior to
the pretest. Furthermore, the lower level score of —0.37 for the intervention
group relative to the comparison group on the pretest turned out to be almost
equal in size to their higher level score of + 0.33 on the posttest. Since the
intervention group had an educational disadvantage of about one school year
relative to the comparison group at the pretest, their score on the posttest could
be interpreted as almost one school year advantage.

Table 5.5. Students’ Mean Level Scores on the Domains of SL at the Pre- and
Posttest for the Intervention and Comparison group, Including their Progress
from Pre to Post

Intervention

Intervention Comparison

_ N minus
(n=267) (n=217) Comparison
M (SD) M (SD) M(I) —-M(C)
SL 2.60 (0.61) 2.97 (0.68) _0.37%xx
SI 2.45 (0.65) 2.72 (0.71) _0.27%xx
Pretest
GV 2.07 (0.63) 2.29 (0.58) —0.22%%*
AC 3.29 (1.38) 3.92 (1.31) —0.63%*%*
SL 3.28 (0.69) 2.95 (0.78) +0.33%%*
SI 3.34 (0.84) 2.67 (0.84) +0.67%**
Posttest
GV 2.59 (0.81) 2.38 (0.88) +0.21*
AC 3.92 (0.88) 3.80 (1.06) +0.12
SL +0.68 (0.86)*** —0.02 (0.73) 0.70%%
Preto S +0.89 (0.92)***  _0.04 (0.71) 0.93 %%
Post GV +0.52(0.98)**  +0.09 (0.94) 0.43%5%
AC  +0.63(1.53)*  —0.11(1.45) 0.74%%%

*p <.05, ** p <.005, and ***p <.0005
Note. SL = Statistical Literacy; SI, GV, AC are domains of SL; SI = Sampling and
Inference, GV = Graphing and Variation; AC = Average and Chance.

146



Effects of a Learning Trajectory for Statistical Inference

Regarding students’ progress on SL, a paired t test between the pre- and posttest
for the intervention group indicated the average posttest score was significantly
higher than the score on the pretest (+ 0.68, t(266) = 13.0, p < .0005). The
average level score for the comparison group on the pretest was, as expected,
not significantly different from their score on the posttest (—0.02, t(216) = 0.4, p
=.65). Students’ results on SL confirmed our conjecture that following the LT
had a clear positive effect on students’ SL.

Students’ Level Scores on the Specific Domains of SL

With regard to the SI domain of SL, on the posttest, a one-way ANOVA
between both groups indicated that the level score for the intervention group
who followed the LT was considerably higher in comparison with the Dutch
baseline achievements from the comparison group (+0.67, F(1, 482) = 75.0, p <
.0005). For the comparison group, the pre- and posttest scores on SI were again,
as for SL, not significantly different, using a paired t test for differences
between the pre- and posttest (-0.04, t(216) = 0.9, p = .40). On the pretest,
however, when comparing both groups, the score for the intervention group was
slightly, but significantly, lower than the level score for the comparison group
(-0.27, F(1, 482) = 18.5, p < .0005). We did not expect this lower score.
Although the comparison group followed the regular statistics curriculum, the
SI domain was not offered in the regular lessons, so we expected a similar score
for both groups. Concerning students’ progress for the intervention group, a
paired t test between the pre- and posttest indicated that their average level
score on the posttest was considerably higher than on the pretest (+0.89, 1(266)
= 13.0, p <.0005). The results for the intervention group were in line with our
expectations, as we hypothesized that the investigative approach and more
complex learning activities for SI as embedded in the LT would support all
domains of SL, and SI in particular.

Concerning the GV domain of SL, a one-way ANOVA between both
groups indicated that the posttest score for the intervention group was slightly,
but significantly, higher than the score for the comparison group (+0.21, F(1,
482) =7.4, p =.01). Although we expected the intervention group that followed
the LT with a focus on SI to progress in the other domains, we did not expect
them to reach higher scores than the baseline achievements from students who
followed the regular curriculum with a focus on GV and AC. The pre- and
posttest scores for the comparison group on the GV domain were not
significantly different (+0.09, t(216) = 1.4, p = .18). With respect to students’
progress on GV, a paired t test between the pre- and posttest for the intervention
group indicated that their posttest score was significantly higher than their
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pretest score (+0.52, t(216) = 8.7, p < .0005). Regarding students’ level for the
GV domain, it is important to note that the average maximum scores for the test
Items used in this domain were, as elaborated earlier in the methods section,
considerably lower than for Items in the other domains. Therefore, the GV level
score cannot be used for comparison with other domains.

For the AC domain, a one-way ANOVA between both groups indicated
that the posttest score for the intervention group that followed the LT was
comparable with the Dutch baseline achievements from the comparison group
(+0.12, F(1, 482) = 1.8, p =.18). As for the GV domain, the posttest score on
the AC domain for the intervention group was higher than we expected, as the
LT focused on SI. Concerning students’ progress, a paired t test between the
pre- and posttest for the intervention group indicated that their posttest score
was significantly higher than their pretest score (+0.63, t(266) = 15.8, p <
.0005). The comparison group scored similar on both the pre- and posttest (—
0.11, t(216) = 1.1, p = .26). The findings on the domains for SL confirmed our
conjecture that following the LT had a clear positive effect on students’ SL and
SI, and more moderate effects on the GV and AC domains.

Students’ Level Score on SL in Comparison with those of Australian
Students

To further interpret the proficiency of students, we compared our results with
those of Australian students (Callingham & Watson, 2017). In doing this, we
compared the distribution of students over the levels for SL, and we compared
students’ average level scores on SL. The distribution of students over the levels
of SL on the pre- and posttest, is presented in Table 5.6.

Table 5.6. Students’ Distribution over Levels of SL

Level 1 Level2 Level3 Leveld Level5 Level6

Pretest SL 0 0 0 o

intervention (n = 267) 11.2% 25.5% 56.6% 6.7% - -
Posttest SL 0 0 0 0 o
intervention (n = 267) 1.1% 13.5%  44.6% 39.3% 1.5% -
Pretest SL

0, 0, 0, o - -
comparison (n = 217) 4.1% 17.5%  53.9%  23.5%

Posttest SL

0 0, 0 o - -
comparison (N = 217) 6.5% 203%  46.1%  27.2%
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Figure 5.4. Comparison of students’ level scores on statistical literacy (SL)
with Australian grade results from findings by Callingham and Watson (2017)
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The pretest scores for the intervention group corresponded most closely to the
performance of Australian students in grade 6 (Callingham &Watson, 2017)
and, as such, were lower than we expected. Figure 5.4 visualizes the comparison
of students’ distribution over the levels. A chi-squared test on the distribution
over levels in percentages, between the pretest score for the intervention group
and each Australian grade 6 to 9, confirmed the highest p value, and with that
the best fit, for grade 6 (x*(4) = 6.26, p = .18). The pretest mean level score for
the intervention group 2.60 (0.70) also corresponded to the estimate of the mean
level score for Australian grade 6. The estimates per grade were calculated
using the distribution of their students across the levels. Table 5.7 summarizes
the comparison of both groups with Australian grade results, based on the
distribution of students over the levels and average level scores. Regarding the
posttest score for the intervention group, the results corresponded most closely
to Australian Grades 7-8. The chi-squared test confirmed the similarity between
the posttest scores for the intervention group and Grades 7-8, as the highest p
values found were y*(4) = 6.2, p = .184 and y*(5) = 11.3, p = .05, for Grades 7
and 8 respectively. The posttest average level score for the intervention group
3.28 (0.69) also corresponded most closely to the estimate of the level score for
Australian Grade 8 (3.3). The pre- and posttest scores for the comparison group
were quite similar. According to the findings by Callingham and Watson, the
scores for the comparison group corresponded most closely to Australian
Grades 6—7. The chi-squared test confirmed the similarity, as the highest p
values found were for Australian Grades 6 and 7 (x*(4) = 9.3, p = .05 and y*(4)
= 5.8, p = .22 respectively). The mean level score for the comparison group on
the pretest 2.97 and the posttest 2.95 also corresponded to the estimate of the
level score for Australian Grades 6-7, respectively 2.6 and 3.1.

Concerning the effects of the LT, the posttest score on SL for the
intervention group that followed the LT appeared to be more advanced than the
score for the comparison group. Moreover, from the comparison with findings
by Callingham and Watson (2017), the advantage for the intervention group on
SL corresponded again, as in our earlier findings, with about one school year
higher. Furthermore, the calculated estimates of students’ average level score
per grade from the study of Callingham and Watson indicated that students’
progress per year from Grades 6 to 9 is roughly 0.25. When we compare the
posttest SL level score for the intervention group 3.28 (0.78) with the score for
the comparison group 2.95 (0.69), the difference of 0.33 between both groups
again corresponds to a level difference of more than one school year.
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Table 5.7. Students’ Proficiency in Comparison to Grade-Results of Australian
Students (Callingham & Watson, 2017), Based on the Distribution of Students
over the Levels and the Average Level Scores

. Distribution and average level
Statistics

Dataset education similar to that found in grade X
by C&W
Pretest Intervention No 9th-grade
group (N =267) statistics lessons Grade 6
Pre- and posttest Regular 9th-
grade Grade 6-7
Control group (n=217) .
curriculum
Posttest Intervention Learning
group (N =267) Trajectory Grade 7-8

Conclusion and discussion

The aim of this study was to evaluate the effects of a learning trajectory for
statistical inference on 9th-grade students’ statistical literacy, and on their SI in
particular. Theories of informal statistical inference complemented by ideas of
growing samples and repeated sampling, guided the design of the LT.

Based on students’ level scores on the pre- and posttest and the
comparison with Dutch baseline achievements from the comparison group, we
conclude that the LT had a significant positive effect on students’ SL, and in
particular on the SI domain. Furthermore, students who were taught using the
LT showed significant improvements on the other domains of SL as well. With
regard to SL, the posttest results showed significantly more proficiency for
students who followed the LT in comparison to the Dutch baseline
achievements from the comparison group. Regarding the domains of SL,
students’ level score on the SI domain for the intervention group was
significantly higher than for the comparison group. Furthermore, the scores for
the intervention group on the GV domain—graphing and variation—were
slightly, but significantly higher than for the comparison group, and their scores
on the AC domain—average and chance—were comparable with the national
baseline achievements from the comparison group. In comparing our results
with those of Australian students (Callingham & Watson, 2017), the posttest
results for the intervention group corresponded most closely to Grades 7-8,
while the national baseline achievements from the comparison group equaled
Grades 6—7.
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Furthermore, the lower level score on SL on the pretest for the
intervention group relative to the comparison group turned out to be almost
equal in size to their higher posttest score. Since the intervention group had an
educational disadvantage of about one school year relative to the comparison
group at the pretest, their score at the posttest could be interpreted as an almost
one school year lead. Moreover, the comparison with findings by Callingham
and Watson also reflected a one school year lead, as the results for the
intervention group were most similar to Grades 7-8, while those for the
comparison group were more equivalent to Grades 6—7.

In discussing these conclusions, there are a few points to consider. The
first involves the low level of proficiency of our students on SL relative to
Australian students (Callingham & Watson, 2017). We expected our students to
score one the posttest on grade 9 level, and not on Grades 6—7 and Grades 7-8,
for the intervention and comparison group respectively. These lower scores may
be due to the fact that our Dutch pre-10th-grade statistics curriculum is more
limited than the Australian curriculum for students in Callingham and Watsons’
research (https://www.australiancurriculum.edu.au/). Another issue in this
respect is that the average maximum attainable score on the GV Items on both
tests was lower (about 3.7) than for the other domains (about 5.5), which
negatively affected students’ overall SL scores. When we compensate for the
lower GV Item scores, the SL average level scores of participating students
increase by about 0.3. When we then compare the adjusted SL scores with the
Australian grade-results, the grade-results for our students increase with almost
one school year, and, as such, were closer to our expectations.

The second point considers effect sizes. The use of effect sizes is
complex and disputed, and only makes sense for comparing similar studies
(Bakker et al., 2019; Cohen, 1988; Schifer & Schwarz, 2019; Simpson, 2017).
The only study we could find that is similar enough to judge the differences
found is Novak (2014), since it shares content and design with ours. Novak’s
study involved the evaluation of a simulation-based intervention for an
introductory statistics course at the university level. A pre-post research design
was used with two random intervention groups and a total of 64 students, where
both groups followed a slightly different simulation-based intervention. By
comparing the pre- and posttest, Novak found a significant learning effect on
students’ statistical knowledge with Cohen’s d = 0.45, and the effect on
students’ conceptual knowledge was approaching significant with Cohen’s d =
0.18. In comparing our results with theirs, the effects of the LT on students’ SL
and on the SI domain appeared considerably positive with Cohen’s d = 0.90 and
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Cohen’s d = 1.12 respectively, and we also found clear positive effects on the
GV and AC domains.

Limitations of our study are the following. First, we worked with students
from the pre-university level, the 15% best performing students of our
educational system. As such, the results in this research are not generalizable to
regular classrooms without further research. Second, the intervention group
took the posttest close after following education based on the LT. The
comparison group completed their 9th-grade statistics lessons in the first part of
the school year. By the time of the pretest, conducted 1-3 months after
completing their statistics lessons, the students from the comparison group had
possibly forgotten specific topics that not often recur, such as the median. To
identify possible changes in their performance due to the time interval of a few
months, the pre- and posttest were taken at two separate moments with an
intervening time period of about two months. The tests were taken at the same
time of the school year as for the intervention group to limit influences such as
natural growth, in months 7-8 and 9-10 respectively. Taking into account the
time span between education and assessment, we could also compare the pretest
results of the comparison group (1-3 months after education) with the posttest
of the intervention group (1-2 months after education). However, as the
performances of the comparison group on both tests were comparable, this does
not affect our conclusion. Third, we did not examine differences due to
instructors’ or students’ background. We recommend taking both issues into
account in future research.

We present two points for recommendations. First, in this study, the
identified levels of SL by Watson and Callingham (2003, 3004) proved well
applicable for evaluating the effects of the LT. The development of a pre- and
posttest, consisting of Items from validated tests—mainly from Watson and
Callingham—supplemented by equivalent newly designed SI Items, enabled us
to assess students’ SL, and their SI in particular. Both newly designed and
existing test [tems were found appropriate, with a Cronbach’s alpha greater than
.84 on the pre- and posttest. In analyzing the results, the levels of SL appeared
useful to examine students’ proficiency. Furthermore, the findings by
Callingham and Watson (2017) proved useful for interpreting students’ results,
and, with that, the effect of the LT. Therefore, we recommend researchers and
educators who intend to investigate the SL of secondary school students to use
the levels of SL by Watson and Callingham for assessing and evaluating
students’ results.
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Second, for the participating teachers of the intervention group,
implementing the LT required considerable effort. In our study, 11 teachers
from five different schools were willing to invest in the LT. The load for
teachers from the comparison group was limited to administering two tests,
making it easier for teachers to participate. Using a comparison group was of
added value to interpret the intervention group results. Therefore, we
recommend researchers and educators interested in the effects of an LT, who
are for practical reasons confined to an intervention group with considerable
effort for participating teachers, to consider the use of national baseline
achievements from a comparison group. Furthermore, as highlighted by several
researchers, much work remains to be done to obtain a good understanding of
how to assess the practical and substantive effects of educational interventions,
this study contributes by presenting a pre-post research design in which
students’ results were compared with Dutch baseline achievements from a
comparison group and with findings from international studies.

To end with, the LT highly affected students’ performance on SL and SI,
and we also indicated significant positive effects for the AC and GV domains.
Although the LT was not focused on the latter two, the investigative approach
and more complex learning activities for SI as embedded in the LT appeared to
have a positive effect here as well. These findings suggest that current statistics
curricula for grades 6-9, usually with a strong descriptive focus, can be
enriched with an inferential focus—at least for the pre-university level. The
benefit will be that students learn more about inference and not less about the
other domains of statistical literacy, to anticipate subsequent steps in students’
statistics education.
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Chapter 6

Statistical thinking will one day be as necessary for efficient citizenship
as the ability to read and write (attributed to H. G. Wells (1866-1946), in
Watson, 2006, p. vii)

Introduction

The field of statistics (education) is changing rapidly. Over the past decades, the
use of data in society increased tremendously due to technological innovations
that provide opportunities to easily collect, store, analyze and represent data. As
citizens and professionals, we are confronted daily with statistical information,
which requires us to be statistically literate: to be able to interpret, critically
evaluate, and communicate about statistical information and messages (Gal,
2002). These changes in the field of statistics necessitate an educational
emphasis on developing statistical literacy and learning from and with
technology.

Making inferences is the main goal of statistics. As such, the ability to
draw conclusions about processes and populations based on samples is
essential. However, research in statistics education shows how challenging this
is for students (Castro Sotos et al., 2007; Konold & Pollatsek, 2002). In many
countries, including the Netherlands, statistical inference is not taught until
Grade 10 or higher. Most students’ difficulties relate to a limited understanding
of key concepts required for statistical inference—such as sample, variability,
and distribution. A way to overcome these problems involves offering informal
statistical inference, before the transition to more formal inferential statistics
(Makar & Ruben, 2009; Paparistodemou & Meletiou-Mavrotheris, 2008; Van
Dijke-Droogers et al., 2020; Zieffler et al., 2008). In general, this informal
approach focuses on ways in which students without knowledge of formal
statistical procedures, such as hypothesis testing, use their statistical knowledge
to underpin their inferences about an unknown population based on observed
samples. Statistical modeling activities with educational digital tools facilitate—
on an informal level—the exploration of concepts for statistical inference
(Biehler et al., 2013; Manor & Ben-Zvi, 2015). These digital tools offer
opportunities to easily visualize and explore concepts as sampling, variability
and distribution.

In many countries, including the Netherlands, the statistics curriculum is
evolving from descriptive statistics in the early years to more complex
inferential statistics later on. Little is known about how to embed (informal)
statistical inference earlier in current curricula. As such, there is a need for
efficient learning trajectories, and knowledge about crucial steps in such a
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trajectory, that can extend the descriptive curricula in early years with
inferential activities. To address this, the aim of this study was to gain
knowledge about a theoretically and empirically based learning trajectory to
introduce 9th-grade students to statistical inference. We addressed the following
guiding research question:

How can a theoretically and empirically based learning trajectory
introduce 9th-grade students to statistical inference?

The formulated research question involved both the design and evaluation of a
learning trajectory. A design-based research approach seemed suitable to
address this dual question. Three cycles were completed evolving in size of the
trajectory and implementation scope. Furthermore, between cycles 2 and 3, a
domain-specific case study was conducted into learning from and with
technology.

Research Overview and Main Findings

Currently, one of the five Content Standards of the US National Council of
Teachers of Mathematics (NCTM) encompasses the following specific
expectations on statistical inference for grades 9—12:

Each and every student should use simulations to explore the
variability of sample statistics from a known population and to
construct sampling distributions. Furthermore, students should
understand how sample statistics reflect the values of population
parameters and use sampling distributions as the basis for informal
inference (NCTM, n.d.)

In Chapter 2 we discussed the first research cycle concerning the first three
steps of a learning trajectory for introducing statistical inference. In this starting
phase of the research, defining design guidelines for a learning trajectory
appeared challenging. Based on a literature study, personal experience as a
teacher—researcher, and brainstorm sessions with a focus group, design
guidelines were distilled. The focus group consisted of an experienced teacher,
two teacher-researchers, a teacher educator, two experienced researchers, a
statistician, and an educational developer. A hypothetical learning trajectory
was developed, based on the guidelines distilled. The two main ideas
incorporated in the design of the trajectory were repeated sampling with a black
box and the use of simulation software for statistical modeling. The trajectory
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aimed to introduce students to the key concepts for statistical inference. As
such, we addressed the following research question:

RQ1: How can repeated sampling with a black box introduce 9th-
grade students to the concepts of sample, frequency distribution,
and simulated sampling distribution?

To empirically evaluate the hypothetical learning trajectory, we conducted a
teaching experiment with twenty 9th-grade students. Indicators of observable
learning behavior of students that supported the hypotheses were drawn up for
each learning step of the trajectory. The results showed that most indicators
were observed. We assume that the strong coherence and construction between
the three learning steps stimulated the students to go through the steps fluently.
From their concrete black box experiences in step 1, by visualizing the scaling
up of this experiment in step 2, students could easily make the transition to
interpreting the simulated sampling distribution in step 3. Figure 6.1 illustrates
the similarity between steps 1 to 3. These first three steps of the learning
trajectory provided students insight into how a sampling distribution can be
constructed and how it can be used as a model for interpreting variation and
uncertainty. These findings suggested a promising way to introduce students to
(informal) statistical inference.

In Chapter 3, we presented a case study into learning from and with
technology. Earlier studies indicated that the use of digital tools for statistical
modeling offers means for introducing statistical inference, as those tools have
the potential to deepen students’ conceptual understanding of statistics and
probability (Pfannkuch, Ben-Zvi, & Budgett, 2018). Such educational digital
tools, for example TinkerPlots, provide opportunities for statistical reasoning
with data, as students build statistical models and use these models to simulate
sample data (Biehler et al., 2017). As such, the use of statistical modeling
seemed promising. In this study, we focused on how students’ statistical
modeling processes in TinkerPlots fostered their development of statistical
concepts. We particularly examined 9th-grade students’ intertwined
development of learning techniques for using TinkerPlots and their
understanding of statistical concepts, by using the theoretical perspective of
instrumental genesis (Artigue, 2002). In this study, we addressed the following
question:

RQ2: Which instrumentation schemes do 9th-grade students
develop through statistical modeling processes with TinkerPlots
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and how do emerging techniques and conceptual understanding
intertwine in these schemes?

Figure 6.1. Similarity between the digital environment of TinkerPlots in step 3
and the physical black box experiment in steps 1 and 2

A suitable phase to examine students’ instrumental genesis was after the
introduction of the tool and the concepts, when acquired knowledge is applied
in new situations, in step 4 of the learning trajectory. The data for this study
consisted of video and audio recordings of two laboratory sessions with a total
of 28 students. In particular, we analyzed how the development of digital
techniques and the learning of statistical concepts were intertwined in the
instrumentation schemes that students developed. We observed a strong
intertwining between students’ emerging technical and conceptual
understanding. Techniques for using TinkerPlots helped students to explore
context-independent technical patterns that facilitated a conceptual shift from a
model of to a model for (Gravemeijer, 1999). Vice versa, students’ conceptual
understanding led them to explore more advanced digital techniques. These
findings demonstrated that investing in learning digital techniques in the
meantime had a positive effect on the development of statistical concepts.

Chapter 4 considered the third research cycle and reported on the design,
implementation and evaluation of the whole 8-step learning trajectory. Findings
from the first two research cycles and the case study were elaborated in the
(re)design of the trajectory in cycle 3. Research cycle 2—the implementation of
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the trajectory in three classes at different school—is not elaborated in this
thesis; however, the findings were incorporated in cycle 3. The aim of this third
cycle was to empirically substantiate the designed learning trajectory by
analyzing students’ progression during a large-scale intervention. We were
specifically interested in how the eight steps of the trajectory fostered students’
understanding of statistical inference. Our focus was on both students’ learning
processes and on their achievements for statistical inference. As such, the
following research questions were addressed:

RQ3.1: What are the specific effects of the designed Learning
Trajectory (LT) on students’ understanding of statistical inference,
in terms of the intended LT-step related learning goals?

RQ3.2: How do the designed steps of the learning trajectory foster
students’ learning processes?

The designed learning trajectory included eight learning steps, divided into two
similar sequences of four: (1) experimenting with a physical black box, (2)
visualizing distributions, (3) investigating sampling distributions using
simulation software, (4) interpreting sampling distributions for inferences in
real-life contexts. Steps 1 to 4 included only categorical data and steps 5 to 8
regarded numerical data.

Finding participating teachers for the intervention was challenging, as the
curriculum in Grade 9 allowed little time for adding an extensive learning
trajectory like this. However, after some promotional activities, we were able to
implement the learning trajectory in an intervention among 267 students in 13
classes at different schools. A pre- and posttest were developed to evaluate
students’ performance on the intended LT-step related goals for statistical
inference, and a comparison group of 217 students—who attended the regular
9th-grade curriculum—was used to indicate the results found. The analysis of
test results demonstrated that students’ understanding of statistical inference as
addressed in the coupled LT steps—in LT steps 1 and 5 on using samples, in LT
steps 2 and 6 on visualizing distributions, in LT steps 3 and 7 on repeated
sampling and effect of sample size, and in LT steps 4 and 8 on solving real-life
problems—was significantly higher among students who took part in the LT
than among students who followed the regular curriculum. In addition, the
analysis of students’ worksheets, accompanied by teachers’ and researcher’s
notes, showed that the eight steps of the learning trajectory fostered students’
learning processes. As such, the results empirically substantiated the
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theoretically designed learning trajectory. Again, ideas of repeated sampling
with a black box and statistical modeling proved fruitful for introducing
statistical inference. Both ideas also have potential for embedding in more
complex follow-up activities, such as testing hypotheses and comparing groups.
These findings suggested that current statistics curricula with a descriptive focus
can be extended with an introduction to statistical inference.

In Chapter 5 we presented the effects of the learning trajectory on
students’ proficiency on all domains of statistical literacy, and inferences in
particular. Although the trajectory concentrated on statistical inference, we
conjectured that the focus on more complex inferential activities would have a
positive effect on students’ understanding of all domains of statistical literacy.
In this chapter, we addressed the following research question:

RQ4: What are the effects of a learning trajectory for statistical
inference on 9th-grade students’ statistical literacy?

For the evaluation of the effects of the learning trajectory, a pre-post research
design with the intervention group (n = 267) from the third research cycle was
used. To indicate the learning effects, students’ test results were compared with
a national baseline and international findings. For the national baseline, we used
the results of a comparison group (n = 217) that followed the regular 9th-grade
curriculum, and the international comparison was done using an Australian
study with similar test design. The comparison with the national baseline
showed that the intervention group scored significantly higher on statistical
literacy, and in particular on the domain of statistical inference. The comparison
with the international study showed that the posttest results of the intervention
group were similar to the results for Grades 78 of the international study, while
the results of the comparison group were similar to those of Grades 6—7.

Finally, the results indicated that the learning trajectory had a strong
positive effect on students’ statistical literacy, and in particular on the domain of
statistical inference. We also found significant positive effects for the other two
domains of statistical literacy—graphing and variation, and average and chance.
We assumed that the inquiry-based approach and the more complex learning
activities for statistical inference, as embedded in the learning trajectory,
brought about the positive effect on the other domains. These findings suggest
that current statistics curricula for grades 69, usually with a strong descriptive
focus, can be enriched with an inferential focus—at least for preparatory
university education (VWO). The benefit will be that students learn more about
inference and not less about the other domains of statistical literacy, to
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anticipate subsequent steps in students’ statistics education. See Figure 6.2 for
an impression of the intervention(s).

Figure 6.2. Impressions of the intervention

Contributions

This research contributes theoretical insights that are closely related to a
practical educational design. As Lewin (1952) wrote: “There is nothing more
practical than a good theory” (p. 169). Scientific knowledge is gained about
learning and teaching statistical inference, through designing and evaluating a
learning trajectory for O9th-grade students. In addition, methodological
knowledge is gained about how to design and evaluate an innovative learning
trajectory through design-based research, ending with a quantitative analysis in
the last cycle.

Scientific Contribution: Introducing Statistical Inference

As the field of statistics and its education are changing rapidly, knowledge
about efficient learning trajectories is needed for the successful and sustainable
implementation of curriculum changes (Biehler et al., 2018). In this regard,
Ben-Zvi, Gravemeijer, and Ainley (2018) express the need to think about
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learning environments and their design to support sustainable change in
students’ understanding of key statistical ideas.

Engaging in Statistical Inference Impacts on Statistical Literacy

Although statistical inference is considered a more complex domain of
statistical literacy, this study demonstrated that the designed learning trajectory
for statistical inference had a significant positive effect on all domains of
statistical literacy. As such, engaging in (informal) inferential activities also
promoted students’ capacity on other statistical literacy domains. This insight
into a joint development of (informal) statistical inference and literacy, allows
in educational practice for an early introduction of statistical inference. An early
introduction can support a sustainable change in students’ understanding of
statistical concepts required for both making inferences and statistical literacy.

Currently, the Dutch curriculum, as in many other countries, evolves
from descriptive statistics in the earlier years to an inferential focus later on. In
early years—pre-10th grade—the focus is on the statistical literacy domains of
graphing and variation, and average and chance. Later on, the domain of
statistical inference is given attention. The results of this research advocate an
earlier introduction of statistical inference. The positive effects of the learning
trajectory on the other domains of statistical inference are presumably due to the
inquiry-based approach of the learning trajectory, in which all phases of the
statistical investigation cycle are addressed several times—that is, posing a
question, collecting data, analyzing data, to answer the question posed. This is
consistent with previous studies and theories that advocate a holistic approach
(Ainley, Pratt, & Hansen, 2006; Franklin et al., 2007; Lehrer & English, 2017,
Van Dijke-Droogers, Drijvers, & Tolboom, 2017).

Networking Theories

Statistics education has matured into a discipline distinct from mathematics
education, with its own perspectives on teaching and learning (Groth, 2015).
Although statistics education has its own character, in many countries it is part
of the secondary mathematics curriculum, including in the Netherlands.
Coordinating perspectives from statistics and mathematics through boundary
interactions between the two can strengthen both areas of education (Groth,
2015). Given the landscape of strategies for connecting theoretical perspectives
(Prediger, Bikner-Ahsbahs, & Arzarello, 2008), this research contributes by
locally integrating mathematical ideas into statistics education research, that is,
Realistic Mathematics Education theory and the perspective of Instrumental
Genesis.
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Connecting mathematics and statistics education: Realistic Mathematics
Education

As stated by Ben-Zvi et al. (2018), theories of constructivism and Realistic
Mathematics Education (RME) (Freudenthal, 1983) provide a conceptual
foundation to guide the design of learning environments for statistics education.
According to the constructivist theory, new knowledge and understandings are
grounded on students’ prior experiences, understandings, and practices (Cobb,
1994; Piaget, 1978; Vygotsky, 1978). RME provides domain-specific design
heuristics that encompass guided reinvention, didactical phenomenology, and
emergent modeling (Gravemeijer, 2004); guidelines that serve for the design of
mathematical learning experiences and that proved useful in our study.

Based on these theories, repeated learning experiences with statistical
concepts were incorporated in the design of the learning trajectory. Within and
between each sequence of four learning steps, learning experiences with the key
concepts of sample, variability and distributions, were embedded using the
black box paradigm. Starting in learning steps 1 and 2 with the physical black
box experiment, students developed a beginning understanding of the key
concepts. Initially, the distribution was used as a visualization or model of
sample results found, and gradually in steps 3 and 4, students were able to use
the distribution as a model for determining the probability of particular sample
results. The strong similarity between the physical black box activities and the
modeling activities in the digital environment of TinkerPlots facilitated the
connection of the model to the real world (Konold & Kazak, 2008; Patel &
Pfannkuch, 2018). In the following learning steps, the black box served as a
guiding paradigm in students’ reasoning and in the teacher's instruction of key
concepts, particularly during modeling real-life phenomena.

Several studies have indicated that reasoning and interpreting sampling
distributions is difficult (Batanero et al., 1994; Castro Sotos et al., 2007;
Chance, delMas, & Garfield, 2004). From the findings in this research, it
appeared that students could develop the key concepts of statistical inference,
including interpreting sampling distributions, in a short period of time by using
black box sampling as a guiding activity. The design of the black box paradigm
was based on the RME design heuristics for guided reinvention—for example,
exploring sampling variability and using repeated sampling; for didactical
phenomenology—exploring context-independent patterns; and emergent
modeling—the conceptual shift from a model of to a model for. As such, the
RME perspective strengthened the design of the learning trajectory for statistics
education.
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Connecting theories on statistics education and on instrumental genesis

The use of digital tools is a shared problem space (Groth, 2015) between
mathematics and statistics education. It is known from research in mathematics
education that once digital tools are used during the learning process, the
development of conceptual understanding becomes intertwined with the
emergence of techniques for using the digital tool. A theoretical perspective that
is useful to investigate this intertwining is instrumental genesis (Artigue, 2002;
Drijvers, Godino, Font, & Trouche, 2013).

Using the theoretical perspective of instrumental genesis enabled us to
unravel students’ development of instrumentation schemes consisting of digital
TinkerPlots techniques and conceptual understanding. The scheme
developments revealed a strong intertwining in both directions between learning
digital techniques and developing conceptual knowledge. The instrumental
genesis perspective appeared helpful to demonstrate that and how investing in
learning digital techniques simultaneously had a positive effect on the
development of statistical understanding (see Chapter 3). Although we focused
on statistical modeling processes using TinkerPlots, we consider our findings on
the intertwining of emerging digital techniques and conceptual understanding
applicable to the broader field of statistics education, and to other educational
digital tools as well. Digital tools for other areas in statistics education also
structure and guide students’ thinking by providing specific options for entering
parameters and commands and by facilitating explorative options that may
strengthen students’ conceptual understanding. As such, the perspective of
instrumental genesis seems applicable for research into learning from and with
technology in statistics education.

To conclude, this research contributes to insights into the joint
development of statistical inference and statistical literacy by demonstrating that
engaging in (informal) inferential activities simultaneously may promote
students’ capacity in other statistical literacy domains. Furthermore, this
research presents fruitful insights by connecting theories of mathematics
education research, that is, Realistic Mathematics Education and instrumental
genesis, into statistics education research.
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Methodological Contribution: Design-Based Research

A design-based research approach (Bakker, 2018; McKenney & Reeves, 2012)
proved effective for the design and evaluation of the innovative learning
trajectory. Design-based research consists of a cyclical process in which
educational materials are designed, implemented in teaching practice, and
evaluated, for subsequent cycles of redesign and testing. Starting from a
theoretically informed design, the trajectory was empirically tested in several
cycles for further improvement.

Cyclic Scaling Up the Length of the Learning Trajectory

A cyclic scaling up in length of the trajectory allowed for a constructivist
approach in the development of the learning trajectory. This research aimed at
both the design and the evaluation of a learning trajectory. A constructivist
approach enabled us to answer initial questions of: “What do we as educational
designers want students to construct?” and “How do we create learning
trajectories in which students construct what we want them to construct?”
(Cobb, 1994). An initial focus on the first learning steps, allowed for monitoring
students’ changing conceptions that provided insights as starting points for
following steps. Although the design included a complete 8-step learning
trajectory from the start in cycle 1, our focus for analysis and evaluation was
initially on the first three learning steps. These three steps introduced the key
concepts: sample, variability, and distributions, which were fundamental to
subsequent steps in the trajectory. This focus on the initial steps enabled a
specific examination of whether and how the paradigm of the black box and
statistical modeling promoted students’ learning in steps 1 to 3. The results from
these steps informed about the starting point in learning step 4. In cycle 2, the
full learning trajectory was again conducted, with a focus on step 4. From the
results, the need emerged to further investigate learning with and from
technology in the fourth step—more specifically into the application of
statistical modeling with TinkerPlots and students’ development of statistical
concepts. As the construct and coherence in learning steps 1 to 4 were similar to
steps 5 to 8, regarding categorical and numerical data respectively, the first two
cycles and the case study provide knowledge about the whole trajectory.

Cyclic Scaling Up the Number of Participants

As addressed by Arnold et al. (2018), scalability is important in research
regarding learning trajectories. However, experimenting with innovative
learning trajectories in educational practice is complex, in particular on a large
scale. Maass et al. (2019) stated: “Implementing innovations in one classroom
can be a challenging endeavor, and it is even more demanding across a whole
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school. However, it becomes exponentially more challenging when scaling up
an innovation aims to reach many schools” (p. 304). In the initial cycle(s) of
design-based research, a design is still in the experimental phase and it is
unclear whether and how the learning trajectory will work. Teaching time with
students is scarce and teachers want to fill their teaching time efficiently.
Experimental aspects make it hard to ensure the effectiveness of the trajectory.
To reduce this problem, we chose a small-scale start in cycle 1 with subsequent
scaling up in cycles 2 and 3. For this purpose, cycle 1 was conducted in one
class with 20 students, taught by the teacher-researcher. The teacher-researcher
was able to make adjustments during the teaching practice to ensure the
students’ learning efficiency. Based on the results, a (re)design was developed
for scaling up in cycle 2 to three classes with a total of 60 students. The three
participating teachers were not involved in the design of the trajectory and were
aware of the experimental aspect. The researcher was present during each lesson
as an observer and the teacher(s) and researcher discussed extensively before
and after each lesson, to ensure the intended learning goals were addressed.
Cycle 2 was not elaborated as a separate study in this thesis, but the results were
incorporated in the (re)design for cycle 3.

In cycle 3, the learning trajectory was evaluated on a larger scale.
However, scaling up was an intensive process, as it required all educational
materials to be unambiguous, complete, and feasible to minimize discrepancies
in implementation. Also, the participating teachers had to be trained in several
sessions for implementing the trajectory as intended. Despite the fact that
researchers and teachers both strived for an effective learning trajectory, they
aimed for slightly differing goals. On the one hand, the teachers’ goals were
specifically focused on their students’ learning achievements, for which a fully
developed learning trajectory was preferred. The researchers, on the other hand,
wanted to gain new knowledge about crucial elements of the trajectory, which
meant that experimental components—the effectiveness of which was not yet
certain—were also incorporated in the design. To identify possible tension or
misunderstanding due to these differing goals, we kept in close contact with the
participating teachers during the large-scale intervention.

A Quantitative Evaluation in the Final Cycle

The third cycle aimed at quantifying the effects of the learning trajectory on
students’ learning. Measuring students’ performance on pre- and posttests, for
an intervention and comparison group, with the use of statistical methods is a
convincing way to make claims about the effects of a learning trajectory.
However, in design-based research, a quantitative approach is not commonly
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used. In experiments, the focus is typically on the learning product rather than
the process. As indicated by Savelsbergh et al. (2016), a common concern is
that for experimental studies that only report pre-post results, it remains unclear
to the reader how to benefit from the intervention reported. Evaluating the
effects of a learning trajectory requires finding out that the trajectory works and
also how it works; a focus on both process and product. To this end, the
quantitative analysis in cycle 3 focused on both students’ global achievements
on statistical literacy—and inferences in particular—and on specific step-related
goals for statistical inference.

For the evaluation of the trajectory in cycle 3, a pre- and posttest were
developed, inspired by the work of Watson and Callingham (2003, 2004) on
testing statistical literacy at the school level. A total of 267 students in 13
classes at different schools participated in the intervention. Students’
performance on the test were used to verify that the trajectory works. To
indicate students’ learning progress, the results obtained were compared to both
national and international findings. Both comparisons confirmed that
participating in the designed trajectory had a significant positive effect on
students’ statistical literacy, and in particular on the domain of statistical
inference (see Chapter 5). To analyze how the trajectory works, we specifically
examined the effects of the 8-step learning trajectory on students’ understanding
of step-related goals for statistical inference. As such, we analyzed students’
progression during the large-scale intervention, using students’ worksheets and
their test scores on learning step-related test Items (see Chapter 4).

To conclude, this research contributes to methods of educational research
by presenting how complexities involved in experimenting with innovative
educational materials can be overcome by using design-based research with
cyclic scaling up—in number of participants and length of the learning
trajectory. Evolving from a small-scale qualitative focus in cycles 1 and 2 to a
more quantitative large-scale approach in cycle 3 enabled us to develop an
empirically based learning trajectory—that is, to design a learning trajectory
and to evaluate that and also how it works.

Limitations

This thesis presents a learning trajectory for introducing statistical inference that
proved to be effective for Dutch 9th-grade students in the pre-university stream.
In designing this trajectory, we opted for an approach with a black box
experiment combined with statistical modeling. This was an approach that
proved beneficial. However, one might wonder whether other approaches for
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(informal) statistical inference may also provide positive results, such as starting
from meaningful data contexts (Franklin et al., 2007; Pfannkuch, 2011) or
expanding the growing samples principle (Bakker, 2004). Our research did not
look at this question. However, we demonstrated that it is possible to introduce
a complex domain of statistical literacy, such as inferences, at a younger age.

Evaluating the effect of the trajectory by using pre- and posttests for an
intervention and comparison group, raises issues of generalization and causality.
The use of evidence-based randomized controlled trials on the effectiveness of
educational materials has its limitations (Olsen, 2004). Although no strict
statistical claims from sample to population and causal effects can be derived,
the quantitative analysis in research cycle 3 does provide insight into the effects
of the learning trajectory on the achievements of the students we worked with.
For the intervention group, we worked with teachers who volunteered to
participate. These teachers were willing to invest time and effort in the
implementation of an innovative statistics project, and as such were above
average motivated. These teachers were inexperienced in teaching statistical
inference, as this is not offered in the current pre-10th curriculum, and
inexperienced in teaching from and with technology. They implemented the
learning trajectory for the first time, which made them inexperienced and
unfamiliar with the learning materials. When repeated in a following year, with
the same teachers, it will probably be easier for them to implement. The effect
of a learning trajectory strongly depends on the way it is implemented by the
teachers. We consider the positive effects found, for 267 students with thirteen
teachers at different school, as a strong indication that the learning trajectory
works—when implemented as intended. To investigate the effect of the learning
trajectory, we focused on students’ cognitive achievements. We did not address
the effects of the trajectory on other aspects related to students’ learning, such
as involvement, autonomy, relevance, commitment, engagement, motivation
and expectations.

Implications for future research and educational design

Based on the findings in this study, we suggest the following directions for
future research and educational design.

Joint Development of Statistical Inference and Statistical Literacy

The results in this research demonstrated a joint development of statistical
inference and statistical literacy, for the group of students we worked with—that
is, for 9th-grade students in pre-university education. These students had basic
statistical knowledge from their descriptive statistics lessons in Grades 7 and 8§,
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such as using graphs and calculating measures of center and spread. Engaging
in (informal) inferential activities in earlier years or in other educational levels
may also promote a joint development. However, our research was focused on a
specific educational level and age. More research is needed to investigate this
joint development for students with less prior knowledge and on other
educational levels.

Networking Theories for Mathematics and Statistics Education

This research presented fruitful insights by connecting theories of mathematics
education research—that is, Realistic Mathematics Education and instrumental
genesis—into statistics education. When integrating perspectives from two
educational areas, insights into both areas can be strengthened. Networking
theories is especially urgent for mathematics and statistics education, where
there are several shared problem spaces (Groth, 2015). On top of that, in
educational practice, mathematics and statistics lessons are often taught by the
same mathematics teacher, for whom integrating knowledge from both areas
can be beneficial. We therefore recommend more research with networking
theories to strengthen insights for both mathematics and statistics education.

The Lens of Instrumental Genesis on Using Technology in Statistics
Education

In this research, we focused on students’ statistical modeling processes using
TinkerPlots. The perspective of instrumental genesis helped to gain insight into
students’ learning from and with technology. Revealing students’
instrumentation schemes provided insight into how the learning of the tool
related to the development of statistical concepts. We consider our findings on
the intertwined development of digital techniques and conceptual
understanding, to be applicable to the broader field of statistics education, and
perhaps also when using other digital tools. More research is needed to explore
the applicability of instrumental genesis for other topics, other educational
levels, and with other digital tools.

Recommendations for Educational Practice

In this section we highlight recommendations for educational practice that
appeared from our findings.

Addressing Statistical Inference in Early-grade Curricula

This research presents a learning trajectory for statistical inference in
descriptive-oriented pre-grade 10 curricula. The findings suggest that current
statistics curricula for grades 6-9, usually with a strong descriptive focus, can
be enriched with an inferential focus—at least for preparatory university
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education (VWO). The benefit will be that students learn more about inference,
and not less about the other domains of statistical literacy, to anticipate
subsequent steps in students’ statistics education. Introducing (informal)
statistical inference in these early years of secondary school seems feasible,
effective, and beneficial for students’ follow-up statistics education. However,
implementing innovations within educational curricula is complex. A combined
approach of top-down and bottom-up seems most effective (Fullan, 1994).
More research is needed into how innovations can be successfully addressed in
current statistics curricula with a descriptive focus.

Broadening of the Black Box Paradigm

The black box activities, combined with statistical modeling, proved engaging
and promoted students to achieve the intended learning goals. We assume that
these activities can also be applicable for younger students or students in other
streams of secondary education—that is, not pre-university level. Furthermore,
the ideas of the black box and modeling also seem applicable to more complex
statistical concepts, such as comparing groups or hypotheses testing—which are
difficult for many students (Stalvey et al., 2019). For example, providing a
physical black box filled with marbles and having students test whether the
given ratio is likely to be true, can be an informal approach to hypotheses
testing. We recommend teachers and educators involved in the design of
teaching materials for introducing statistical inference to consider these ideas.

Preparing Mathematics Teachers for Innovations in Statistics Education
To successfully implement learning trajectories for statistics, we recommend to
carefully prepare participating mathematics teachers. In many countries,
including the Netherlands, secondary statistics education is part of the
mathematics curriculum. The differing nature of statistics—more contextual and
less deterministic—makes it less popular among many mathematics teachers. In
addition, many mathematics teachers in the early years of secondary education
are inexperienced and not trained to teach inferential statistics. On top of that,
most mathematics teachers are not used to work with technology in class, and
they are not accustomed to an inquiry-based teaching approach that differs from
the often instruction-based regular lessons.

Using Technology in Statistics Education

Technology is indispensable for doing and learning statistics. However, many
mathematics teachers are insufficiently trained to teach statistics by digital
means. For the participating teachers in our research, learning how to use a new
digital tool themselves, as well as learning how to teach with a digital tool and
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how to teach students to use a digital tool, appeared challenging. In daily
educational practice, teachers typically lack time and opportunities to develop
their proficiency for teaching and learning from and with digital tools. More
research is needed into how teachers can be adequately prepared for using
technology in statistics education.

In many schools, teaching with digital tools is also limited due to
practical issues. During the implementation of our learning trajectory, we were
confronted with several practical problems, such as computer shortage,
difficulties with scheduling in computer rooms, problems with installing new
software on a school network and poor internet facilities. More research is
needed into how schools can be sufficiently facilitated in both materials and
knowledge for effective deployment of technology, especially within statistics
education.

The use of technology in education increased tremendously in the past
year, due to the COVID pandemic. The abrupt school closure in many
countries, including the Netherlands, resulted in a disorderly explosion of using
all kinds of digital learning environments. The vast body of experiences gained
provided a new impulse to teaching and learning with technology. These
developments call for research into sustainable educational innovations in
which the use of technology can be integrated into the regular educational
system.

Personal Reflection as a Teacher-researcher

Starting this research project involved transitioning from a familiar educational
world into an unfamiliar scientific world. Combining both worlds, in the role of
a teacher-researcher, is identified by Bakx et al. (2016) as boundary crossing. In
this regard, boundaries encompass socio-cultural differences, which lead to
discontinuity in action or interaction (Akkerman & Bakker, 2011). Boundary
crossing is defined by Bakker and Akkerman (2014) as efforts made by
individuals or groups at boundaries to establish or restore continuity in action or
interaction across practices. As a beginning researcher, the assimilation into the
scientific culture, the novelty of academic knowledge and skills, and the
unfamiliarity with fellow researchers, were challenging aspects. Balancing time
and flexible switching between the two worlds remained a concern throughout
the project. When implementing and coordinating the intervention(s), both
worlds—and with that both roles—intersect. On the one hand, it was
challenging to observe and analyze intervention data as a researcher, and not as
a teacher. On the other hand, teacher experiences were beneficial in designing
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the intervention, organizing it practically, and guiding participating teachers.
Research by Bakx et al. (2016) indicates that more teacher-researchers
recognize the challenges described in boundary crossing. However, they did not
mention the ambiguity in roles that might occur when both worlds intersect, as
is the case with intervention studies—research in educational practice.

This research project made a rich contribution to my professional
development as a teacher at a micro, meso and macro level (Akkerman &
Bruining, 2016). At the micro level in my own teaching practice, this research
project provided insight into students’ learning processes and how to promote
these. For example, the designed learning trajectory was implemented in my
classes and knowledge gained was also integrated into the teaching of other
mathematics topics. At the meso level as a teacher in the school, this research
provided an advanced analytical view on the school as educational system. For
example, this research provided insight into integrating (inter)national
educational theories, materials and approaches at the school level, and also
insight into the coherence between groups within the school and the educational
system, with varying goals and perspectives—for example teachers, students,
authors of textbooks and educational designers. At the macro level of the
(regional and national) mathematics education community, the research findings
were disseminated to mathematics teachers by arranging workshops, and by
publishing findings in journals for mathematics teachers. As a result, several
teachers implemented the designed learning trajectory in their classrooms, in a
variety of educational levels and grades—for example in Grades 10-12 and
higher education. The informal exchange of their experiences was a valuable
continuation and addition to this research project.

As a researcher, this project enabled me to develop and increase my
competencies and passion for conducting research. Functioning within the
scientific community deepened my perspective on teaching and research.
Working with experts at the Freudenthal Institute was a unique learning
experience. Also, collaboration with international colleagues broadened my
view on education in many ways. In summary, this research project
strengthened my professional development in a broad scope—as a professional
in the classroom, within the school, and within the (inter)national world of
education and research.
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Supplementary Material A: Overview of the Eight-step LT

Step 1 starts with a physical black box experiment. Students examine the
content of a black box filled with 1,000 marbles in the colors yellow and
orange. By counting the number of yellow marbles in a viewing window with
20 visible marbles—and later using a larger window with 40 visible marbles—
they examine how many yellow marbles there are in the whole box. By
repeatedly shaking the black box and counting the visible yellow marbles,
students become aware of sampling variability.

In this physical experiment of step 1, students collect sample data to
estimate the population—here the content of the black box. By taking repeated
measurements, i.e., samples, and exchanging them within the classroom, they
are confronted with sampling variability. Students experience that an estimate
can be made based on a sample, but that the content cannot be determined with
absolute certainty. By repeating this experiment using a larger viewing window,
students experience that the corresponding estimates vary less and provide a
better picture of the population. The hypothesis for step 1 is that students get an
idea of the concept of a sample with associated uncertainty. This activity
incorporates theories of repeated and growing samples (Bakker, 2004; Saldanha
& Thompson, 2002; Wild & Pfannkuch, 1999) and informal statistical inference
(Makar & Rubin, 2009), combined with design principles of Realistic
Mathematics Education (Freudenthal, 1983) and ideas of using meaningful
contexts (Ainly et al., 2006). From step 1, in which students experience the
variability and uncertainty of samples and the added value of using repeated and
larger samples, raises the question of what happens when we further increase
the size and number of repeated samples. Students experienced in this step that
conducting more repetitions and using larger sample sizes requires more time
and effort. As a follow-up, in step 2 they use a thought experiment to explore
possible sample results for a large number of repetitions.

In step 2, students make a sketch of the sample results they expect when
the black box experiment of step 1 is repeated many times. They sketch the
expected frequency distribution for 100,000 repeated samples of size 40 from a
black box filled with 750 yellow and 250 orange marbles. Sketched
distributions are exchanged and discussed in classroom. As a follow-up within
step 2, students determine the probability of a certain range of sample results
from a given distribution for 1,500 repeated samples.
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In sketching the frequency distribution in step 2, students visualize the
sampling variability they expect for a large number of repetitions, based on their
experiences with the black box in step 1. Furthermore, students use their
experience in sketching the frequency distribution from repeated samples, for
interpreting a given distribution to determine the probability of a certain range
of sample results. The hypothesis for step 2 is that students get to understand the
concept of frequency distribution for repeated samples by sketching one and,
subsequently, that they understand that the distribution facilitates them to
determine the probability of a certain range of sample results. In this step,
theories on making predictions—or using “What if” questions—and reasoning
with the frequency distribution from repeated sampling (Rossman, 2008;
Watson & Chance, 2012) are incorporated. From step 2 emerges the question of
how to get a distribution of repeated samples to determine the probability of
certain sample results, in a quick and easy way. Therefore, in step 3, students
are introduced to the digital environment of TinkerPlots.

Figure 1. Similarity between the digital environment of TinkerPlots in LT
step 3 and the black box experiment in LT steps 1 and 2

In step 3, students use statistical modeling within the digital environment of
TinkerPlots to examine the probability of certain sample results by interpreting
the simulated sampling distribution of repeated samples, within the context of a
black box. Statistical modeling includes building a model (i.e., of a black box
filled with marbles), simulating repeated samples, visualizing the sampling
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distribution and interpreting the results. Subsequently, students experiment with
varying sample sizes and number of repeated samples to investigate the effects
of size and repetitions on the estimate of the population.

The digital environment of TinkerPlots has strong similarities with
students’ experiences from step 1—the viewing window with marbles—and
step 2—their sketched visualizations of the frequency distribution of repeated
samples (see Figure 1). The hypothesis in step 3 is that students recognize the
digital environment of TinkerPlots from their physical black box experiments
and visualizations, and that these experiences facilitate them to deploy statistical
modeling and to interpret the simulated sampling distribution. According to
Chance et al. (2004), ways to improve the understanding of sampling
distributions include exploring samples, comparing how sample behavior
mimics population behavior, and conducting both structured and unstructured
explorations with the digital tool. Step 3 constitutes on theories about working
with a computer model for simulations that has a strong connection with a
concrete experiment (Chance et al., 2007; Konold & Kazak, 2008; Manor &
Ben-Zvi, 2015)—here the black box experiment— and about working with
simulations of many repeated samples to determine whether a sample result is
likely (Garfield, et al., 2015; Manor & Ben-Zvi, 2015; Watson & Chance,
2012). These theories are combined with ideas about experimenting with
various sample results from a given population to explore the effects of sample
size and number of repetitions on sampling variability (Wild et al., 2011), and
accordingly, on the probability of the inference about the population. From
steps 1-3, students get to understand that statistical modeling can be helpful to
determine the probability of certain sample results, within the context of the
black box. However, statistical modeling with a black box is context-specific
and therefore, in step 4 students examine how statistical modeling can be used
more generally in other situations and contexts.

In step 4, students use their statistical modeling experiences from the
black box context in new real-life situations and contexts. As such, students use
statistical modeling with TinkerPlots to solve a given problem. For example,
within the context of social media and in particular the use of WhatsApp,
students investigate whether the use of WhatsApp within their class deviates
from the national standard—according to research by Newcom: 90% of Dutch
students aged 15-19 years uses WhatsApp on a daily basis. By collecting data
from each student in class, for example 21 out of 25 students use WhatsApp on
a daily basis, students investigate whether a sample result of 21 in a sample of
25 from a population proportion of 90% is (un)likely.
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The application in several new contexts, using the same digital techniques
for statistical modeling in TinkerPlots, enables students to identify general
patterns and to develop a context-independent use of statistical modeling,
known as emergent modeling (Gravemeijer, 2008). Using statistical modeling
for solving real-life problems includes the process of abstracting the real world
into a model and then using this model for understanding the real world. Patel
and Pfannkuch (2018) elaborated this relationship between the real and model
world in a framework that displays students’ cognitive activities about
understanding the problem (real world), seeing and applying structure (real
world—model world), modeling (model world—real world), analyzing simulated
data (model world) and communicating findings (model world—real world). In
this regard, Manor and Ben-Zvi (2017) identified several dimensions: reasoning
with phenomenon simplification, with sample representativeness, and with
sampling distribution. These theories on statistical modeling were elaborated in
step 4, where students build and run a model of a real-world situation in the
model world of TinkerPlots and use this model—by simulating and interpreting
the sampling distribution of repeated samples—to understand the real world
situation.

In steps 1 to 4, students are introduced to the key concepts of statistical
inference: sample, sampling variability, sample size, repeated sampling,
frequency and sampling distributions, probability and uncertainty. During these
four LT steps, students only use categorical data. From these steps emerges the
question of how to use statistical modeling with other data. Therefore, in steps 5
to 8, students go through similar learning steps to steps 1 to 4, but now using
numerical data. The hypothesis is that this iterative approach facilitates students
to anchor, expand and deepen their understanding of the key concepts. Step 5 to
8 mainly constitute on theories mentioned in step 1 to 4; in the following we
focus on the new elements.

In step 5, as in step 1, students conduct a physical experiment, but this
time using a black box filled with 4,000 notes. Each note contains information
on gender and height for a 14-years-old Dutch student, for example: boy — 155
cm. In couples of two, students randomly draw a sample of 40 from the black
box. They summarize their sample data by calculating measures of center and
spread, and visualizing their findings. The sample results are exchanged and
discussed within the classroom, focusing on sampling variability and drawing
inferences about the population.
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Students compare and discuss the sample results found—both the
visualizations and measures of center and spread—focusing on similarities and
differences between samples and on what these varying sample data say about
the population. Finding similarities between samples with numerical data, in
particular for a small sample size, is more difficult than for the categorical data
in steps 1 to 4—for example, the comparison of categorical data in step 1 only
considered the number of yellow marbles. Drawing inferences about the
population based on several samples requires merging the information found.
Students experience that the use of a sample characteristic—such as the sample
mean—is helpful to merge information found in repeated samples with
numerical data. The hypothesis in step 5 is that students understand that a
sample characteristic, for example the sample mean, combined with the sample
distribution, can be used to obtain a picture of the population distribution. From
step 5, in which students discussed how to use numerical data from repeated
samples to draw inferences about the population, raises the question of how the
population distribution at stake—the content of the black box filled with 4,000
notes on students’ gender and height—can be pictured based on the sample
results found. As a next step, students are asked to visualize the population
distribution they expect based on the numerical data from the samples found.

In step 6, students draw a sketch of the population distribution—that is,
the height of the 4,000 students in the black box—they expect based on the
exchanged and discussed sample results from step 5. The hypothesis in step 6 is
that students use the sample mean and distributions found in step 5 to visualize
the expected population distribution. During a whole class discussion, the
expected population distributions are exchanged and discussed, and also
compared with the real population distribution. From steps 1 to 4, students
explored through statistical modeling that for categorical data, using larger
sample sizes and more repetitions lead to better estimates of the population.
From step 5 and 6 emerges the need for better estimates when working with
numerical data. As a follow-up in step 7, students use statistical modeling with
numerical data to explore the effects of larger samples on the sample mean and
sample distribution, and accordingly, on the probability of the inference about
the population distribution.

In step 7, students use statistical modeling in TinkerPlots with a given
model of the population. The population model consists of the numerical data
from the 4,000 students in the black box with notes, considering gender and
height. Entering the exact population model in TinkerPlots for statistical
modeling is complex and time-consuming, and therefore students use a given
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model. Students use repeated sampling to explore the effects of sample size on
the sample mean and sample distribution. The hypothesis is that students
understand that—for numerical data—Iarger sample sizes better reflect the
population distribution. They also experience that the sample mean for larger
sample sizes varies less and better resembles the population mean. From step 7
emerges the question of how to apply statistical modeling with numerical data
in other contexts and situations.

In step 8, students use statistical modeling in TinkerPlots to solve a real-
life problem, by working with a given or a hidden model of the population. For
example, students investigate whether the time on sports per week within their
class deviates from that of 4,000 Dutch students in a given population model.
By collecting data from each student in class, for example the mean sporting
time for 25 students is six hours a week, students investigate whether a sample
mean of six hours from the given population is (un)likely. When working with a
hidden population model, students are unable to see the model. By simulating
and visualizing (repeated) samples they make inferences about the population
mean and distribution. The hypothesis is that the iterative process of statistical
modeling, with both categorical and numerical data within varying contexts,
facilitates students to make the conceptual transition to emergent modeling.
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Supplementary Material C

Pre-test ‘Statistical Literacy’ Vwo 3 (Grade 9)
English Version

NOTE: Do not turn the page yet. Write down the information
requested and read the instruction below carefully.

NaAMe: oo,
L0 ] 11 o
School: e

Date of test: ....oovviiiii

This test is designed to examine the level of statistical reasoning among Vwo 3 students.
The test consists of 10 open-ended questions. For the usability of these test results, it is
strongly requested to explain your answers as clearly and completely as possible.

You will have 40 minutes to complete this test. The answers can be written down in this
booklet. It is not a problem if not all questions are answered.

Questions may be completed with pen or pencil. A calculator is not required.

Wait for your teacher to indicate that you can start the test.
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Item 1

To study the breakfast habits of the 600 students at a school, the researchers decide to
question a part of the students. These students are asked whether they eat breakfast
every day. The question a sample consisting of 30 random students.

a. What/which number(s) of students do you expect to answer the question positively?
................. students.

b. Explain your answer to la.

c. Marieke claims that a sample of 30 students is too small and that it’s better to ask 100
students. Do you agree with Marieke?

e. The researchers decide to question two samples of students. The first sample,
consisting of 30 students, has 20 students that eat breakfast on a daily basis. The second
sample, consisting of 100 students, has 85 students that eat breakfast on a daily basis.
Estimate how many students at the school eat breakfast on a daily basis.

............................................................ students

Item 2
You toss a fair coin five times in a row and each of those five tosses results in heads.

a. What is the probability that the next toss will also result in heads?




Item 3
The following graphs describe some data collected about Grade 7 students’ heights in
two different schools.

a. How many students are 156 cm tall in each school?

School A .....coovvvveien. students and school B ........................ students.
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Item 4
This pie chart was made after a questionnaire in the exam classes.

a. What information does this chart show?

Item 5

Research centre Newcom found that 58% of Dutch adolescents between 15 and 19 years
old uses Instagram on a daily basis (January 2019). A study is held with 50 of these
adolescents. They are asked whether they use Instagram on a daily basis.

a. What are the results you expect from this study?

Texpectthat ... of these adolescents use
Instagram on a daily basis.

b. Explain your answer to 5a.




c. To get a bigger picture, the study is repeated in 100 large cities. In each of these
cities, the researchers ask a random group of 50 adolescents whether they use Instagram
on a daily basis. Sketch a bar graph of the results you expect to receive from these
samples.

Expected results from 100 samples

Frequency (number

0 5 10 15 20 25 30 35 40 45 50
Result of the sample

d. Explain your bar graph.

e. At one school, it turns out that 33 out of 50 VWO-3 students use Instagram on a daily
basis. Compare this result to the national results. What do you notice?
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Item 6
a. Explain what we mean when we talk about a probability of 2%.

At a middle school, 181 students are assigned to study the growth of mustard plant.
Each of them receives 10 seeds and after a week they all measure the height of each of
their plants in mm. Their results are shown in the graph below.

b. Explain how likely you think it is for a set of plants to have an average height below
4 cm.

Average height of 10 mustard plants after one week in mm

Yob, Xander and Marit missed the class and have to do the assignment later. They
receive the same assignment, but each get a different type of potting soil for the seeds to
grow in. Marit receives soil M, Xander soil X and Yob soil Y.

c. After a week, Marit’s plants have an average height of 57 mm. Explain whether you
can now conclude that mustard plants have better growth in soil M.




d. After a week, Xander’s plants have an average height of 64 mm. Explain whether you
can now conclude that mustard plants have better growth in soil X.

e. After a week, Yob’s plants have an average height of 70 mm. Explain whether you
can now conclude that mustard plants have better growth in soil Y.

Item 7
To analyze the number of candies with strawberry taste in a roll of ‘Minitos’, 700 rolls

were checked. Each roll contained 20 candies. From each roll the number of candies
with strawberry flavour was counted. The results of these counts are shown in the graph.

Results for 700 candy rolls

Number of strawberry candies in one roll

a. What was the most common result?

b. Explain your answer to 7a.
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c. Pieter claims that he had a roll in which half the candies were strawberry-flavoured
last week. Explain what you think of his claim.

Item 8

Nine students in a science class weighed a small object separately on the same scales.
The weights (in grams) recorded by each student are shown below.

6.3 6.0 6.0 15.3 6.1 6.3 6.2 6.15 6.3

The students had to decide on the best way to summarise these values.

a. Ben said, “I’d use the most common value to get the mode. That’s 6.3.” Is Ben’s way
a good way to summarise the information? Explain your answer.

b. Jane said, “I’d put them in order and use the middle value to get the median. That’s
6.2.” Is Jane’s way a good way to summarise the information? Explain your answer.

c. Ron said, “I’d add them all up and divide by 9 to get the mean. That’s 7.18.” Is Ron’s
way a good way to summarise the information? Explain your answer.

d. May said, “T’d leave out the 15.3 and use the mean of the others. That’s 6.17.” Is
May’s way a good way to summarise the information? Explain your answer.




e. Which of the ways described above would you use? Why?

Item 9

A class wants to raise money for their school trip to Movieworld. They could raise
money by selling raffle tickets for a game system. Before they decide to have a raftle,
they wanted to estimate how many students in the whole school would buy a ticket.
They decide to do a survey to find out first.

The school has 600 students in grades 1-6 with 100 students in each grade.

a. How many students would you survey? How would you choose them? Explain your
answers.

b. Shannon got the names of all 600 students in the school and put them in a hat. Then
she pulled out 60 names, of which 22 would want to participate. What do you think of
Shannon’s survey? Explain your answer.

c. Jake asked 10 students at an after-school computer games club, of which 5 would
want to participate. What do you think of Jake’s survey? Explain your answer.

d. Claire set up a booth at the exit of the school. Anyone who wanted to stop and fill out
a survey could. She stopped collecting surveys when she got 60 kids to complete them,
of which 37 would want to participate. What do you think of Claire’s survey? Explain
your answer.
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e. How many students of the 600 students in the entire school do you think would want
to participate in the raffle? You can use the results from Shannon, Jake and/or Claire.
Explain your answer and which results you used.

Item 10

A primary school had a sports day where every student could choose a sport to play.

Here is what they chose.

Netball Football Tennis Swimming Total
Boys 0 20 20 10 50
Girls 40 10 15 10 75

a. What was the most popular sport for boys?

b. How many children were at the sports day?

........................................ children
c. One of the tennis players was late.
Was this player a boy or a girl. Explain your answer.

End of the test

Thank you for filling it out!

Please write down your end time ............cooeiiiiiiiiiiiiii




Supplementary Material D

Post-test ‘Statistical Literacy’ Vwo 3 (Grade 9)

English Version

NOTE: Do not turn the page yet. Write down the requested information and
carefully read the instruction below.

Name: ...
GIOUP: et
School: ..o
Date of test: ......ovvvveiiniiiiiiiii

This test is designed to examine the level of statistical reasoning among Vwo 3
students. The test consists of 10 open-ended tasks. For the usability of these test
results, it is strongly requested to explain your answers as clearly and
completely as possible.

You will have 40 minutes to complete this test. The answers can be written
down in this booklet. It is not a problem if not all questions are answered.

Questions may be completed with pen or pencil. A calculator is not required.

Wait for your teacher to indicate that you can start the test.
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Item 1

Mrs. Jones wants to buy a new car, either a Honda or Toyota. She wants whichever car
will break down the least. She read in Consumer Reports that for 400 cars of each type,
the Toyota had more breakdowns than the Honda. She talked to three friends. Two were
Toyota owners, who had no major breakdowns. The other friend used to own a Honda,
but it had lots of breakdowns, so he sold it. He said he would never buy another Honda.

Which car should Mrs. Jones buy? Explain your answer

Item 2

To get the average number of children per family in a town, a teacher counted the total
number of children in a town. She then divided by 50, the total number of families. The
average number of children per family was 2.2.

For each of the following five statements, write down whether or not that statement is
true and explain your answer.

a. Half of the families in the town have more than two children.

d. The most common number of children in a family is 2.




Item 3

According to jam manufacturer Heros, the large jars they produce contain on average
510 grams of jam. Since the filling machine cannot fill to the gram accurately, some jars
contain more and others less jam. The filling weight of each jar is registered in the
factory. According to the manufacturer, a printout of the filling weight of 100,000 jars

looks like the chart below.

Registered filling weight of 100,000 jars of

Filling weight per jar in grams

The customer who bought this batch of 100,000 jars decides to test with a sample
whether the filling weight of the jars is in line with the manufacturer's registration. The

customer takes a sample of 100 jars.

a. Which sample average(s) do you expect for a sample of 100 jars?

c. The result of the customer's sample is visualized in the graph below.
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Filling weight for sample of 100 jam jars

Filling weight per jar in grams

The average in this sample is 507 grams, which is less than the promised 510 grams.
Based on this sample, can the customer conclude that the manufacturer’s registration is
incorrect and that the manufacturer lied about the filling weight in the large batch of
100,000 jars? Explain your answer.

Item 4
A class of students recorded the number of years their families had lived in their town.
Here are two graphs that students drew to tell the story.

a. What can you tell by looking at Graph 1?




b. What can you tell by looking at Graph 2?

c. Which Graph is better at presenting the information and “telling the story”? Explain
your answer.

Item 5

A mathematics class has 13 boys and 16 girls in it. Each student’s name is written on a
piece of paper. All the names are put in a hat. The teacher picks out one name without
looking.

Will he pick a boy or a girl? Explain your answer.

Item 6

To investigate the game time of 1500 students at a secondary school, a sample is taken.
The students in the sample are asked how much time in hours per week they spend on
gaming. They decide to randomly question 30 students at the entrance of the school.




Supplementary Materials

a. Describe in the graph below the sample result that you expect. Choose suitable units
along the horizontal axis.

Expected game time of secondary school students in sample of
30

Number of students

Game time in hours per week

b. What average game time(s) do you expect for a sample of 30 students?

d. According to Patrick, a sample of 30 students is not enough and they have to ask at
least 150 students to get a good picture of the gaming behaviour of the 1500 students.




Do you agree with Patrick? Explain your answer.

e. According to Mayke, there is a big difference between the game times of boys and
girls. According to her, it is therefore better to examine the results of boys and girls
separately. There are 10 boys in her class. Their game time in hours per week is
described in the table below.

Game time per week

in hours

Number of boys

From Mayke’s class

The result from a sample of 100 boys at the school is described in the table below.

Game time
per week 0-4 | 59 | 10-14 | 15-19 | 20-24 | 25-29 | 30-34 | 35-39
in hours
Number of
boys
4 15 20 25 15 10 8 3
From the
sample (100)

The school has 729 boys. What do you expect from the game time of the 729 boys in
percentages? Describe your expectation in the table below.

Game time per week
0-9 10-19 20-29 | 30-39 =40
in hours

Percentage of boys
% % | % ] % | e %
in school




f. Explain your values for the table of 6e.

Supplementary Materials

Item 7
The following information is from a survey about smoking and lung disease among 250
people.
Lung disease No lung disease Total
Smoking 90 60 150
No smoking 60 40 100
Total 150 100 250

a. Using this information, do you think that for this sample of people lung disease
depended on smoking?

Item 8

b. You intend to throw the die until you get a 6. What is the minimum number of times
you have to throw the die? And the maximum number of times?

Minimum: ........c.ooevviiniiinnnnnn. AV B0 414101 o o L

c. Explain your answers to 8b.




You now throw the die 60 times.

d. In the table below, fill in how many times you think each number came up.

Number on die Times thrown

1

2

5

6

Total

e. Explain why you think these numbers are reasonable.

Michael did the same thing with four different dice. The results can be seen in the table
below.

Times thrown

Number on die Diel | Die2 | Die3 | Die4
1 10 12 9 55

2 10 13 7 1

3 10 11 12 1

4 10 15 13 1

5 10 8 9 1

6 10 1 10 1
Total 60 60 60 60
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f. Do you think these are all “fair” dice? If not, which ones do you think aren’t “fair”?

Die 1: Fair / Unfair , because

Item 9

Do-it-yourself shop Prakkus is getting a lot of complaints about broken LED lights in
the boxes of 20 lights. However, the supplier guarantees that at least 90% of the lights
are in order. Prakkus decides to check the large stock of 10,000 boxes. They take a
sample of 100 boxes with 20 lights each. Below you can see the number of good lights
per box of 20 for a sample of 100.




Result from a sample of 100 boxes

Number of good lights per box of 20

b. What is your estimate of the probability that a random box from the large stock
contains exactly 15 good lights? Explain your answer.

c. What is your estimate of the probability that a random box from the large stock
contains less than 15 good lights? Explain your answer.

d. Do you think that the supplier's claim is correct and that indeed 90% of the lights
from the large stock are good? Explain your answer.
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e. Prakkus decides to
take another sample of
50. The result is
described in the graph
on the right.

The average in this sample is 16.4, the median is 17 and the mode is 18. Which centre
size (average, median or mode) gives a clear description of the sample result? Explain
your answer.

Item 10
The graph below shows how children came to school on one day.

a. How many children walked to school?
......................... children

b. A new student came to school by car.
Is the new student a boy or girl? Explain your answer.




c. Tom is not at school today.
How do you think he will come to school tomorrow? Explain your answer.

End of the test

Thank you for filling it out!

Please note your end time ............c.oveiriiiiiiiiiiiiiiiei e,




Samenvatting
(Summary in Dutch)

De overweldigende hoeveelheid data, grafieken en voorspellingen met
betrekking tot de COVID-pandemie in de media het afgelopen jaar, illustreert
het essenti€le belang van statistiek. De afgelopen decennia is het gebruik van
data enorm toegenomen vanwege technologische vernieuwingen die het
mogelijk maken om eenvoudig data te verzamelen, op te slaan, te analyseren en
representeren. Op basis van data worden ingrijpende beslissingen genomen en
uitspraken gedaan, zowel door burgers als professionals. Het is daarom van
belang om de statistische geletterdheid van onze leerlingen te ontwikkelen. Dit
houdt in dat leerlingen toegerust worden om statistische informatie te
interpreteren, kritisch te beoordelen en hier conclusies uit te trekken (Gal,
2002).

Een belangrijk onderdeel van statistische geletterdheid is het werken met
inferenties, oftewel met steekproeven en populaties. Bij inferenties worden op
basis van steekproefdata conclusies getrokken over een groter geheel of proces.
Deze conclusies gaan vergezeld van onzekerheid omdat niet alles of iedereen is
onderzocht. Het interpreteren van deze onzekerheid en het duiden van de
waarschijnlijkheid van de conclusie is veelzijdig en complex.

In veel landen, waaronder Nederland, wordt statistische inferentie daarom
pas behandeld in de bovenbouw van het voortgezet onderwijs of in het hoger
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onderwijs®. Uit onderzoek blijkt dat inferentiéle statistiek hier een struikelblok
is voor veel leerlingen en studenten. De moeilijkheden van leerlingen worden
met name veroorzaakt door een beperkt begrip van kernconcepten die nodig zijn
voor inferenties (Castro Soto et al., 2007; Konold & Pollatsek, 2002) zoals
steekproef, variatie en verdelingen. Deze conceptuele problemen worden
verergerd door een sterke onderwijsfocus op het aanleren van complexe,
formele procedures.

Om de moeilijkheden van leerlingen te overbruggen is in de afgelopen
decennia gezocht naar informele onderwijsbenaderingen om conceptueel begrip
te promoten. Het aanbieden van informele inferenti€le activiteiten op jongere
leeftijd zou het leren van de complexere inferenti€le statistick op latere leeftijd
kunnen vereenvoudigen (Zieffler et al., 2008). Het gaat hierbij om het trekken
van conclusies vanuit informele statistische kennis, dus niet vanuit formele
procedures zoals hypothese toetsen of berekeningen met de normale verdeling.
Makar en Rubin (2009) definiéren informele statistische inferentie in de
volgende principes: het generaliseren van steekproefdata naar een groter geheel,
data als bewijs van deze generalisatie; redeneren over de waarschijnlijkheid van
deze generalisatie. Nieuwe digitale middelen bieden mogelijkheden voor het
simuleren van steekproeven, waarmee leerlingen op informeel niveau de
kernconcepten voor statistische inferentie kunnen onderzoeken.

Het gebruik van technologie is onmisbaar voor het doen en leren van
statistieck (Gal, 2002; Thijs, Fisser, & Van der Hoeven, 2014). De inzet van
recente digitale leeromgevingen met opties voor statistisch modelleren, zoals
VUstat en TinkerPlots, biedt een informele aanpak om het begrip van
statistische concepten en modellen te verdiepen (Biechler, Frischemeier, &
Podworny, 2017). Inzicht in statistische modellen is van fundamenteel belang
voor het interpreteren van statistische inferenties (Manor & Ben-Zvi, 2017).
Statistische modellen helpen om de waarschijnlijkheid van op steekproefdata
gebaseerde conclusies te duiden. Digitale middelen voor het simuleren van
steekproefdata uit populatiemodellen maken concepten visueel en toegankelijk.
Het modelleren met zulke digitale middelen is veelbelovend voor het
statistiekonderwijs nu en in de toekomst.

2 Tevens geldt voor ons land dat de leerlingen met een technisch profiel in de
bovenbouw—rvanaf vwo 4—helemaal geen inferentiéle statistiek krijgen, tenzij ze
wiskunde D kiezen.
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Kortom: het onderwijzen van statistische inferentie is belangrijk maar
ook moeilijk. Het inbedden van informele statistische inferentie in eerdere
leerjaren lijkt veelbelovend, met name in combinatie met het gebruik van
digitale leermiddelen. Er is echter nog weinig bekend over hoe we ons huidige
onderbouwcurriculum kunnen uitbreiden met een goed onderbouwd leertraject.
Dit onderzoeksproject beoogt kennis te verwerven over een theoretisch en
empirisch gefundeerd leertraject om statistische inferentie te introduceren bij
vwo 3-leerlingen (Grade 9).

Hoofdstuk 1: Introductie

Dit onderzoeksproject volgde een ontwerpgerichte aanpak (Bakker, 2018). Deze
aanpak kenmerkt zich door een cyclisch proces waarin onderwijsmateriaal voor
leeromgevingen wordt ontworpen, geimplementeerd en geévalueerd, voor
vervolgcycli van (her)ontwerp en testen (McKenney & Reeves, 2012). In de
beginfase richtten we ons vooral op de ontwikkeling van een theoretisch
gefundeerd ontwerp, met daarin een specificatie van beoogde leerdoelen en de
uitwerking hiervan in een—op dat moment nog hypothetisch—Ieertraject.
Naarmate het onderzoek vorderde, werden meerdere interventies met het
leertraject uitgevoerd in de lespraktijk en geévalueerd. Deze interventies werden
in iedere cyclus opgeschaald in zowel de lengte van het leertraject als in het
aantal deelnemers. In dit onderzoek zijn drie cycli doorlopen: beginnend met
een onderwijsexperiment in één klas, via een interventie in drie klassen, naar
een interventie in 13 klassen op verschillende scholen. Daarnaast is tussen
cyclus 2 en 3 een verdiepende casestudie uitgevoerd naar het leren van en met
technologie. Deze verdiepende casestudie richtte zich op de samenhang tussen
het leren van gebruikstechnieken voor een digitale tool en het ontwikkelen van
conceptueel statistisch begrip.

Hoofdstuk 2. Herhaalde steekproeven met een black
box als opstap naar statistische inferentie

Dit hoofdstuk presenteert de resultaten uit de eerste
cyclus—en daarmee de eerste studie—van dit
ontwerponderzoek. Succesvolle implementatie van
theorie in de onderwijspraktijk impliceert het
stapsgewijze ontwerp en de evaluatie in echte
klaslokalen van krachtige leertrajecten die ons
huidige begrip van effectief leren belichamen (De
Corte, 2000). De eerste cyclus richtte zich daarom op
het ontwerp, de implementatie en de evaluatie van het
eerste deel van het leertraject: leerstap 1 tot en met 3.

Figuur 1. Afbeelding
fysieke black box
gevuld met balletjes
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Allereerst werd op basis van literatuurstudie een hypothetisch leertraject
(Simon, 1995) ontwikkeld voor het introduceren van drie kernbegrippen voor
statistische inferentie: steekproef, frequentieverdeling en gesimuleerde
steekproevenverdeling (ICT). Figuur 2 toont een overzicht van de drie
kernbegrippen.

Een hypothetisch leertraject bestaat uit leerdoelen voor de leerlingen, een
beschrijving van leeractiviteiten met bijbehorende hulpmiddelen, materialen en
taakstructuren, leerlingkenmerken, en onderwijsmethoden die leiden tot het
vereiste leerproces en de beoogde leerdoelen (Sandoval, 2014; Simon, 1995).
Het door ons ontworpen hypothetische leertraject werd vervolgens
geimplementeerd in één klas met 20 vwo 3-leerlingen. Voor de evaluatie van
het traject werden bij elke leerstap indicatoren opgesteld over observeerbaar
leergedrag van leerlingen die de hypothese van iedere stap ondersteunen.

De hypothese in leerstap 1 was dat leerlingen zich bewust zouden worden
van steekproefvariatie door het uitvoeren van experimenten met een fysieke
black box gevuld met balletjes. Door het uitvoeren van herhaalde experimenten
met een klein en groot kijkvenster, konden ze het effect van herhaalde
steekproeven en steekproefomvang op de schatting van de populatie (inhoud
black box) exploreren. De resultaten toonden aan dat de met de hypothese
verbonden indicatoren werden waargenomen. De eerste leerstap stelde de
leerlingen in staat om in korte tijd te redeneren met steekproefdata, inclusief het
(informeel) interpreteren van variatie en onzekerheid. Zie Figuur 3 voor een
impressie van leerstappen 1 tot en met 3.

Figuur 2. Overzicht van de drie kernbegrippen voor statistische inferentie, zoals
ingebed in stappen 1 tot en met 3 van het leertraject
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Figuur 3. Impressies van leerstappen 1 tot en met 3. Links twee foto’s van
leerstap 1, rechtsboven leerstap 2 en rechtsonder leerstap 3

Leerstap 2 van het leertraject was gericht op het concept van de
frequentieverdeling bij herhaalde steekproeven. De hypothese was dat
leerlingen deze frequentieverdeling allereerst zouden interpreteren als een
(visualisatie) model van de verkregen resultaten bij een bepaalde black box en
dat de ontworpen leeractiviteiten hen zouden stimuleren om de conceptuele
overstap te maken naar het gebruik hiervan als model voor het interpreteren van
variatie en onzekerheid—deze conceptuele overstap van een model van een
specificke wiskundige situatie naar een model voor een netwerk aan
gerelateerde wiskundige situaties is bekend als emergent modeling
(Gravemeijer, 1999). In deze leerstap stonden twee activiteiten centraal. Ten
eerste het schetsen van de verwachte frequentieverdeling bij 100.000 herhaalde
steekproeven met de fysieke black box uit de eerste leerstap, en ten tweede het
gebruik van een dergelijke frequentieverdeling om de waarschijnlijkheid van
specifieke steekproefresultaten te bepalen. Uit de resultaten van deze leerstap
bleek dat de meeste indicatoren werden waargenomen. Leerlingen waren in
staat om een correcte schets te maken en de kans op specificke
steekproefresultaten te bepalen in de context van de black box—bijvoorbeeld
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het bepalen van de kans op een steekproefresultaat van meer dan 35 gele
balletjes bij een steekproef van 40 uit een populatie met een proportie van 75%.

In leerstap 3 lag de focus op het conceptualiseren van de gesimuleerde
steekproevenverdeling. Hiervoor gebruikten leerlingen statistisch modelleren in
een digitale omgeving om herhaalde steekproeven met de bijbehorende
steekproevenverdeling te simuleren. De hypothese was dat leerlingen zouden
begrijpen dat deze gesimuleerde verdeling kan worden gebruikt als een model
voor het interpreteren van variatie en onzekerheid. In deze leerstap neemt de
computer als het ware hun handwerk uit de eerste twee leerstappen over. De
resultaten van leerstap 3 toonden aan dat ook hier de indicatoren die de
hypothese ondersteunen, werden waargenomen.

Figuur 4. De samenhang tussen het werken in de digitale omgeving van
TinkerPlots in leerstap 3, en de fysieke black box-activiteiten in leerstappen 1
en 2

Op basis van de bevindingen in deze studie vermoedden we dat de sterke
samenhang en opbouw tussen de drie leerstappen het voor leerlingen mogelijk
maakte om deze probleemloos te doorlopen. Vanuit hun concrete ervaringen
met steekproefvariatie in leerstap 1, gevolgd door het visualiseren van de
opschaling van dit experiment in leerstap 2, konden leerlingen gemakkelijk de
overgang maken naar het modelleren en interpreteren van de gesimuleerde
steekproevenverdeling in leerstap 3. Zie figuur 4 voor een illustratie van deze
samenhang tussen leerstap 1 tot en met 3. Deze eerste drie stappen van het
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leertraject gaven leerlingen het benodigde inzicht in hoe een
steekproevenverdeling ontstaat en hoe deze kan worden gebruikt als model voor
het interpreteren van variatie en onzekerheid. Deze bevindingen suggereerden
een veelbelovende manier om leerlingen te laten kennismaken met (informele)
statistische inferentie.

Hoofdstuk 3. Statistische modelleerprocessen bekeken door de lens van
instrumentele genese

Om meer inzicht te krijgen in het leren van en met technologie in leerstap 3 en
verder werd een verdiepende casestudie uitgevoerd. Inzicht in leren met digitale
middelen is voorwaardelijk om deze effectief te kunnen inzetten voor het
bereiken van beoogde leerdoelen. Digitale leermiddelen voor statistiek, zoals
TinkerPlots, bieden mogelijkheden voor statistisch modelleren via een
informele aanpak. Deze digitale middelen faciliteren leerlingen om
populatiemodellen te bouwen en deze modellen te gebruiken om steekproefdata
te simuleren. Dit statistisch modelleren bevordert het inzicht in concepten en
modellen die fundamenteel zijn voor statistische inferentie (Biehler et al., 2017;
Manor & Ben-Zvi, 2017).

Vanuit wiskundeonderwijs is bekend dat het aanleren van
gebruikstechnieken voor een digitale tool en het ontwikkelen van conceptueel
begrip met elkaar verweven zijn. Tot nu toe heeft deze verwevenheid van
gebruikstechnisch en conceptueel begrip, bekend als instrumentele genese
(Artigue, 2002), weinig aandacht gekregen in onderzoek naar
statistickonderwijs met digitale middelen. Deze verdiepende casestudie richtte
zich daarom op de toepasbaarheid van het theoretisch perspectief van
instrumentele genese binnen statistickonderwijs, en meer specifiek bij het
statistisch modelleren in de digitale omgeving van TinkerPlots.

Een geschikte fase om de instrumentele genese van leerlingen te
onderzoeken is na de introductie van de tool en de concepten, bij het toepassen
van de verworven kennis in nieuwe situaties. Deze fase vindt plaats in leerstap 4
van het leertraject. De data voor dit onderzoek bestonden uit video- en audio-
opnames van twee laboratoriumsessies met in totaal 28 leerlingen uit vwo 3 bij
het uitvoeren van leeractiviteiten in stap 4 van het traject. In het bijzonder
analyseerden we hoe de ontwikkeling van (gebruiks)technieken en conceptueel
begrip verweven waren in de instrumentatieschema's die leerlingen
ontwikkelden. We identificeerden zes instrumentatieschema’s, A tot en met F,
voor statistisch modelleren met TinkerPlots. Figuur 5 illustreert als voorbeeld
instrumentatieschema C. De linkerzijde van het figuur bevat een beknopte
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beschrijving van het schema, in het midden is een schermafbeelding vanuit
TinkerPlots weergegeven met een duiding van de gebruikte technieken, en de
rechterzijde beschrijft het conceptueel begrip dat in dit schema aan de orde is.

Instrumentaties Schema C: Visualiseer herhaalde steekproeven
Simuleer herhaalde steekproeven en visualiseer deze in een steekproeven-
verdeling; Onderzoek het gedrag van het model

TinkerPlots technieken

Conceptueel begrip

Bij het oplossen van een
realistisch probleem kan het
modelleren hiervan inzicht
bieden. Door het invoeren van een
(verwacht) populatiemodel, het
simuleren van herhaalde
steekproeven en het visualiseren
hiervan in een steekproeven-
verdeling, kan het gedrag van het
model worden onderzocht—
bijvoorbeeld het verkennen van
veel voorkomende, uitzonderlijke
hoge en lage steekproefresultaten.
Een steekproevenverdeling is een
weergave van de resultaten bij
veel herhaalde (gesimuleerde)
steekproeven in een frequentie-
verdeling. Langs de horizontale as
staan de mogelijke steekproef-
resultaten en de verticale as geeft
aan hoe vaak bepaalde resultaten
voorkomen. Steekproefresultaten
van eenzelfde populatie vari€ren
op basis van toeval, waarbij
resultaten die dichtbij het
(populatie)model liggen vaker
zullen voorkomen dan sterk
afwijkende resultaten.

Figuur 5. Voorbeeld van instrumentatieschema C voor statistische

modelleerprocessen met TinkerPlots

226



Samenvatting

We observeerden een sterke verwevenheid tussen het aanleren van
technieken en het ontwikkelen van conceptueel begrip. Technieken voor het
gebruik van TinkerPlots hielpen de leerlingen om contextonathankelijke
technische patronen te ontdekken, die de belangrijke conceptuele overstap van
een model van naar een model voor (Gravemeijer, 1999) bevorderden. Meer
concreet betekende dit dat leerlingen ontdekten dat gebruikstechnieken in
specifieke contexten meer algemeen, dus contextonathankelijk, toegepast
konden worden. Dit ging gepaard met meer abstracte statistische terminologie—
bijvoorbeeld het invoeren van de steekproefomvang in plaats van het aantal
bevraagde leerlingen. Omgekeerd leidde het conceptuele begrip van de
leerlingen tot de verkenning van meer geavanceerde digitale technieken. Deze
bevindingen toonden aan dat investeren in het aanleren van digitale technieken
tegelijkertijd een positief effect heeft op het ontwikkelen van statistisch begrip.

Hoofdstuk 4. Introductie in statistische inferentie: Ontwerp van een theoretisch
en empirisch onderbouwd leertraject

In dit hoofdstuk worden de resultaten van de derde studie—gebaseerd op
onderzoekcyclus 3—gepresenteerd. Op basis van de eerste twee onderzoekcycli,
de verdiepende casestudie en aanvullend literatuuronderzoek werd het
(hypothetische) leertraject (her)ontworpen voor de derde cyclus. Deze cyclus
omvatte het gehele traject van acht leerstappen, opgesplitst in twee
vergelijkbare delen van vier: (1) experimenteren met een fysieke black box, (2)
visualiseren van verdelingen, (3) onderzoeken van steekproevenverdelingen met
behulp van simulatiesoftware, (4) interpreteren van steekproevenverdelingen
voor inferenties in realistische contexten. De stappen 1 tot en met 4 zijn alleen
gericht op categoriale data en in de stappen 5 tot en met 8 wordt gewerkt met
numerieke data. Een overzicht van het gehele leertraject is weergegeven in
tabel 1.

De focus van deze studie was gericht op empirisch onderzoeken of en hoe
het (vanuit bestaande theorieén) ontworpen leertraject het inzicht van leerlingen
in statistische inferentie stimuleert. Hiervoor werd het leertraject
geimplementeerd in een interventie onder 267 leerlingen in 13 klassen op
verschillende scholen. De tijdsomvang van het leertraject bestond uit zes
lesuren per deel, met een totaal van 12 lesuren. We analyseerden de
posttestresultaten van de leerlingen na de interventie om te onderzoeken of het
traject inderdaad de beoogde leerstapgerelateerde doelen voor statistische
inferentie stimuleerde. Om de posttestresultaten te kunnen interpreteren werden
deze vergeleken met die van een vergelijkingsgroep (n = 217) die het reguliere
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vwo 3-curriculum gevolgd had. De reguliere aanpak bestond uit 10—12 lessen
gericht op beschrijvende statistiek. Tevens analyseerden we de werkbladen van
de leerlingen tijdens elke leerstap om te onderzoeken hoe het stapsgewijze
traject het leerproces bevorderde.

De posttestresultaten toonden aan dat leerlingen die les kregen vanuit het
leertraject significant hoger scoorden op alle specifiek leerstapgerelateerde
doelen uit het leertraject dan leerlingen van een vergelijkingsgroep (n =217) die
het reguliere curriculum volgden. Deze leerdoelen omvatten in leerstap 1 en 5
het gebruik van steekproeven, in leerstap 2 en 6 het visualiseren van
verdelingen, in leerstap 3 en 7 het effect van herhaalde steekproeven en
steekproefomvang, en in leerstap 4 en 8 het interpreteren van inferenties in
realistische contexten. Dit betekent dat elk onderdeel uit de opbouw in
leerstappen, zoals gepresenteerd in de laatste kolom van tabel 1, van essentieel
belang is voor het totale leertraject.

De analyse van werkbladen en notities van docenten en onderzoeker
bevestigden het belang van elk onderdeel en de sterke samenhang in opbouw
tussen elke leerstap uit het traject. Met name de koppeling tussen het fysieke
experiment met de black box en de digitale leeromgeving (zoals weergegeven in
figuur 4) bevorderde het inzicht van leerlingen in statistische modellen en
modelleren. Dit inzicht maakte het voor leerlingen mogelijk om vervolgens in
leerstap 4 en 8 inferenties te interpreteren in realistische contexten.

De bevindingen in deze studie toonden aan dat en hoe het ontworpen
leertraject werkt. Een aanpak gebaseerd op herhaalde steekproeven met een
black box gecombineerd met statistisch modelleren in de digitale omgeving van
TinkerPlots, bleek vruchtbaar voor het introduceren van statistische inferentie.
Beide ideeén hebben tevens potentieel voor inbedding in meer complexe
vervolgactiviteiten, zoals het toetsen van hypotheses en het vergelijken van
groepen. Deze bevindingen suggereren dat informele inferenti€le activiteiten al
in de onderbouw van het voortgezet onderwijs geintroduceerd kunnen worden,
zodat beter kan worden geanticipeerd op vervolgstappen van leerlingen in
statistiekonderwijs.
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Hoofdstuk 5. De effecten van het leertraject voor statistische inferentie op de
statistische geletterdheid van leerlingen

Als laatste studie in dit onderzoeksproject, werden de effecten van het
leertraject op de algehele statistische geletterdheid van leerlingen onderzocht.
Statistische geletterdheid kan onderverdeeld worden in drie domeinen: (1)
Statistische inferentie, (2) Grafieken en variatie, (3) Kans en gemiddelde. Het
ontworpen leertraject was vooral gericht op statistische inferentie, het eerste
domein. We vermoedden echter dat het leertraject ook positieve invlioed zou
hebben op de andere twee domeinen. Het reguliere vwo 3-curriculum was enkel
gericht op domein twee en drie. Voor de evaluatie werd gebruik gemaakt van
een pre-post onderzoeksopzet met de interventiegroep (n = 267) uit de vorige
studie—de derde onderzoekcyclus. De pre- en posttest werden ontwikkeld op
basis van reeds bestaande tests om de statistische geletterdheid—op alle drie
domeinen, maar met name op statistische inferentie—van leerlingen te
onderzoeken (uit onderzoek van Watson & Callingham, 2003; Watson &
Callingham 2004; Callingham & Watson, 2017; delMas et al., 2007). Om de
significante leerwinst van leerlingen uit de interventiegroep te interpreteren,
hebben we de resultaten van deze leerlingen vergeleken met een nationale
baseline en internationale prestaties. Voor de nationale baseline gebruikten we
de pre- en posttestresultaten van de vergelijkingsgroep (n = 217) uit de vorige
studie die het reguliere leerplan van vwo 3 volgde, en de internationale
vergelijking werd gedaan aan de hand van een Australische studie met
vergelijkbare testopzet.

De nationale vergelijking van testresultaten toonde aan dat de
interventiegroep significant hoger scoorde op statistische geletterdheid, en in het
bijzonder op het domein van statistische inferentie. Tevens vonden we
aanzienlijk positieve effecten voor de andere twee domeinen. Hoewel het
leertraject niet gericht was op de andere domeinen, bleek het leertraject—
bestaande uit een onderzoekgerichte aanpak met digitale middelen en meer
complexe leeractiviteiten voor statistische inferentie—ook hier een positief
effect te hebben. Tabel 2 toont een overzicht van de resultaten voor de
interventie- en vergelijkingsgroep. De laatste kolom in het vak ‘Posttest’ geeft
het verschil weer tussen de resultaten van de interventie- en vergelijkingsgroep
op de posttest. De eerste kolom in het vak ‘Pre naar post’ geeft de vooruitgang
weer van de interventiegroep. Bij de pretestresultaten van de vergelijkingsgroep
moet vermeld worden dat deze leerlingen de reguliere statistieklessen
voorafgaand aan de pretest gevolgd hadden, waardoor hun pretestresultaten
hoger zijn dan die van de interventiegroep. Tussen de pre- en posttest volgde
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deze vergelijkingsgroep geen statisticklessen, wat zichtbaar is in de
gelijkwaardige resultaten op beide tests voor deze groep”.

Tabel 2. Gemiddelde leerlingscore op de domeinen van statistische
geletterdheid bij de pre- en posttest voor de interventie- en vergelijkingsgroep,
inclusief vooruitgang van pre naar post

;r;(t)(zg/entie- ;/reorgslijkings- Interventie —
(n =267) (n=217) Vergelijking
M (SD) M (SD) M(I) — M(C)
SG  2.60(0.61) 2.97 (0.68) —0.37%%*
SI 2.45 (0.65) 2.72 (0.71) —0. 27
Pretest
GV 2.07(0.63) 2.29 (0.58) —0.22%**
KG  3.29(1.38) 3.92 (1.31) —0.63%**
SG 3.28 (0.69) 2.95(0.78) + 0.33%**
SI 3.34 (0.84) 2.67 (0.84) + 0.67***
Posttest
GV 2.59(0.81) 2.38 (0.88) +0.21%
KG  3.92(0.88) 3.80 (1.06) +0.12
SG  +0.68 (0.86)*** —0.02 (0.73) 0.70%*%*
Pre naar ST +0.89(0.92)*** —0.04 (0.71) 0.93%**
post GV +0.52 (0.98)*** +0.09 (0.94) 0.43%**
KG +0.63 (1.53)* —0.11 (1.45) 0.74%%*%*

*p<.05, ** p <.005, en ***p < .0005

Noot. SG = statistische geletterdheid; SI, GV, KG zijn de drie domeinen binnen
SG; SI = statistische inferentie; GV = grafieken en variatie; KG = kans en
gemiddelde.

De vergelijking met de internationale studie toonde aan dat de posttestresultaten
van de interventiegroep met 14—15-jarigen op statistische geletterdheid het
meest overeenkwamen met die van Australische leerlingen in Grade 7-8 met
een leeftijd van ongeveer 13 jaar. De resultaten van de vergelijkingsgroep met
14—15-jarigen waren het meest vergelijkbaar met die van Australische
leerlingen in Grade 6—7 met een leeftijd van ongeveer 12 jaar. Uit deze
internationale vergelijking kunnen we opnieuw concluderen dat de
interventiegroep aanzienlijk hoger scoorde, met ongeveer één leerjaar verschil,
dan de vergelijkingsgroep. Opvallend is dat de resultaten van beide groepen met
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Samenvatting

leerlingen in de leeftijd van 1415 jaar overeenkwamen met die van aanzienlijk
jongere Australische leerlingen. Vermoedelijk komt dit doordat het
statistickaanbod in Australi€ uitgebreider is dan in Nederland.

De bevindingen vanuit zowel de nationale als internationale vergelijking
toonden aan dat het leertraject een significant positief effect had op de
statistische geletterdheid van de leerlingen, en in het bijzonder op het domein
van statistische inferenties. Tevens signaleerden we positieve effecten voor de
andere domeinen. Op basis hiervan kunnen we constateren dat huidige
statistiekcurricula met een sterk beschrijvende focus verrijkt kunnen worden
met een inferenti€le focus—in ieder geval voor de onderbouw van het vwo. Het
voordeel hiervan is dat leerlingen meer leren over statistische inferenties en niet
minder over de andere domeinen van statistische geletterdheid, om zo beter te
anticiperen op vervolgstappen van de leerling binnen statistiekonderwijs.

Hoofdstuk 6. Algemene discussie

Dit onderzoeksproject heeft kennis opgeleverd over essenti€le vernieuwingen in
statistickonderwijs. Theoretische inzichten werden ontwikkeld in nauwe
samenhang met een praktisch onderwijsontwerp. Deze inzichten waren zowel
inhoudelijk als methodologisch van aard.

Inhoudelijke bijdrage

Op inhoudelijk gebied draagt dit onderzoek bij aan inzicht in de samenhang
tussen de ontwikkeling van statistische inferentie en statistische geletterdheid.
Statistische inferentie wordt beschouwd als een complex domein van
statistische geletterdheid, wat vaak pas op latere leeftijd wordt aangeboden. De
resultaten in dit onderzoek toonden aan dat het ontworpen leertraject met
(informele) inferenti€le activiteiten een significant positief effect had op het
domein van statistische inferentie, en eveneens op de andere twee domeinen van
statistische geletterdheid—de domeinen grafieken en variatie, en gemiddelde en
kans, beiden met een beschrijvende focus. Dit positieve effect van (informele)
inferenti€le activiteiten op de andere domeinen van statistische geletterdheid
pleit voor het eerder introduceren hiervan. Leerlingen ontwikkelen dan al op
vroege leeftijd statistische concepten die noodzakelijk zijn voor statistische
inferentie en voor statistische geletterdheid. Het integreren van (informele)
statistische inferentie bij de huidige aanpak voor statistische geletterdheid kan
zo leiden tot een duurzame verandering in het leren van leerlingen. Het grote
voordeel hiervan is dat leerlingen meer leren over inferenties, en hierdoor beter
worden voorbereid op hun vervolgstappen in statistickonderwijs.
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Een tweede inhoudelijke bijdrage van het onderzoek betreft het
netwerken van theorieén. Het statistickonderwijs wordt steeds meer gezien als
onderscheidend van het wiskundeonderwijs, met eigen perspectieven op
onderwijzen en leren (Groth, 2015). Het integreren van onderwijsperspectieven
vanuit verschillende disciplines is wenselijk om tot nieuwe kennis en inzichten
te komen. Dit onderzoek draagt bij door theoretische perspectieven uit
onderzoek naar wiskundeonderwijs te integreren in onderzoek naar
statistickonderwijs.  Het  theoretisch  perspectief ~ van  Realistisch
Wiskundeonderwijs (Freudenthal, 1983) werd gebruikt bij het ontwerp van dit
leertraject voor statistick. Op basis van de ontwerpheuristicken vanuit deze
theorie werd het black box-paradigma uitgewerkt in concrete leeractiviteiten.
Het black box-paradigma bleek effectief als leidende activiteit binnen de
leerstappen van het traject. Het theoretisch perspectief van Instrumentele
Genese werd gebruikt voor onderzoek naar het leren van en met technologie.
Het toepassen van dit perspectief leidde tot inzicht in hoe leerlingen uit vwo 3
concepten ontwikkelen bij het statistisch modelleren in TinkerPlots. Vanuit
deze bevindingen lijkt het theoretisch perspectief van instrumentele genese
breder inzetbaar binnen onderzoek naar statistickonderwijs, zoals bij de inzet
van andere digitale middelen en in andere onderwijsleerjaren en niveaus.

Methodologische bijdrage

Op methodologisch gebied draag dit onderzoek bij door te laten zien hoe de
complexiteit die gepaard gaat bij het experimenteren met innovatief
onderwijsmateriaal, overwonnen kan worden door gebruik te maken van
ontwerpgericht onderzoek (Bakker, 2018). Een ontwerpgerichte aanpak met een
cyclische opschaling in zowel het aantal deelnemers als in de lengte van het
leertraject bleek effectief voor het ontwerp en de evaluatie van het innovatieve
leertraject. De start met een kleinschalige interventie in de eigen klas van de
docent-onderzoeker maakte het mogelijk om de leerdoelen voor het traject te
expliciteren en de haalbaarheid ervan te beproeven. De evaluatie was hier
vooral gericht op de eerste drie stappen van het leertraject. In deze stappen werd
het fundament gelegd van het leertraject en de resultaten uit deze cyclus werden
dan ook als uitgangspunt gebruikt voor het ontwerp van de vervolgstappen. In
cyclus 2 werd opgeschaald naar drie klassen met 60 leerlingen. De evaluatie
was hier voornamelijk gericht op leerstap 4. Aangezien leerstap 5 tot en met 8
een vergelijkbare aanpak en benadering hadden als leerstap 1 tot en met 4,
konden we door deze stapsgewijze opschaling een constructief ontwerp
realiseren.
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In cyclus 3 werd een kwantitatieve benadering gebruikt om de effecten
van het leertraject te onderzoeken. Een kwantitatieve aanpak wordt zelden
gecombineerd met ontwerpgericht onderzoek. Het kwantificeren, en daarmee
samenhangend het opschalen naar een grote groep deelnemers, is een intensief
proces. Bij het kwantificeren van de effecten van een leertraject is het van
belang dat alle materialen eenduidig, compleet en haalbaar zijn, zodat het traject
op de beoogde wijze door docenten kan worden uitgevoerd. Voor de evaluatie
van het traject werd een pre-posttestaanpak met een interventie- en
vergelijkingsgroep gebruikt. Bij de analyse van de testresultaten werd gekeken
naar de prestaties van de leerlingen voor statistische geletterdheid, en tevens
naar hun score op leerstapgerichte items. Daarnaast werden in cyclus 3 de
werkbladen van leerlingen uit de interventiegroep geanalyseerd. Deze aanpak
maakte het mogelijk om empirisch aan te tonen dat het leertraject werkt, en
tevens hoe het leertraject werkt. Dit onderzoek toont aan hoe het werken met
simulaties in een digitale omgeving van meerwaarde kan zijn op een zuiver
fysieke onderwijsaanpak

Beperkingen van het onderzoek

Zoals elke studie heeft ook dit onderzoek uiteraard beperkingen. In dit
onderzoek hebben we aangetoond dat het leertraject voor het introduceren van
statistische geletterdheid een positief effect heeft op het leren van statistische
inferentie bij vwo 3-leerlingen. Het is echter mogelijk dat andere aanpakken ook
werken, waardoor niet zeker is of dit leertraject ook de meest effectieve manier
is. Het onderzoek toont echter wel aan dat het ontworpen leertraject werkt. Bij
het evalueren van de effecten van het leertraject is het moeilijk om de
generaliseerbaarheid en causaliteit te waarborgen. Door te werken met een grote
groep leerlingen met verschillende docenten op diverse scholen- bieden de
resultaten een sterke indicatie dat het doorlopen van het leertraject (bij
uitvoering zoals beoogd) een positief effect heeft op het leren van leerlingen.

Aanbevelingen voor vervolgonderzoek en de onderwijspraktijk

Vanuit deze studie doen we een aantal aanbevelingen voor vervolgonderzoek en
de lespraktijk. Het aanvullen van bestaande statistiekcurricula met (informele)
statistische inferentie lijkt haalbaar en wenselijk. Het veranderen van bestaande
curricula is echter complex. Meer onderzoek is nodig voor succesvolle
implementatie. Het paradigma van de black box lijkt tevens toepasbaar voor
andere onderwijsniveaus en ook voor meer complexe vervolgactiviteiten zoals
hypothese toetsen. Het ontwikkelen van efficiénte leertrajecten hiervoor vereist
nader onderzoek. De inzet van technologie is onmisbaar voor statistiek
(onderwijs), en voor statistische inferentie in het bijzonder. Wiskundedocenten
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zijn vaak onervaren in het gebruik van digitale leermiddelen in de les. Tevens
worden statisticklessen in de onderbouw van het voortgezet onderwijs vaak
verzorgd door tweedegraads wiskundedocenten die onervaren zijn in het
doceren van inferenti€le statistiek. Onderzoek naar hoe docenten toegerust
kunnen worden voor het doceren van inferenti€le statistiek met behulp van
technologie is wenselijk. Daarnaast kampen veel scholen nog met praktische
beperkingen bij de inzet van computers en het installeren van software.
Onderzoek naar mogelijkheden om deze praktische obstakels te beperken kan
het gebruik van technologie in (statistick)onderwijs bevorderen. Tot slot
veroorzaakte de COVID-pandemie en bijbehorende schoolsluiting een
overweldigende toename van technologie in de onderwijspraktijk. Deze actuele
ontwikkeling vraagt om onderzoek naar duurzame onderwijsvernieuwingen
waarin het gebruik van technologie geintegreerd kan worden in het reguliere
onderwijssysteem.

Persoonlijke reflectie als docent-onderzoeker

Dit onderzoeksproject heeft een rijke bijdrage geleverd aan mijn professionele
ontwikkeling als docent en als onderzoeker. Dit onderzoek heeft mijn
docentschap op zowel micro-, meso- als macroniveau (Akkerman & Bruining,
2016) versterkt. Op microniveau in mijn eigen lespraktijk als docent heeft dit
traject inzicht gegeven in leerprocessen van leerlingen en hoe deze bij het
lesgeven gepromoot kunnen worden. Op mesoniveau als docent in de school
heeft dit traject geleid tot een meer analytische blik op het schoolsysteem, en op
vernieuwende (inter)nationale onderwijsaanpakken en methoden. Op
macroniveau van de (regionale en landelijke) onderwijswereld zijn de
onderzoeksresultaten via verschillende docentworkshops en artikelen in
vaktijdschriften voor wiskundedocenten gedeeld. Diverse docenten zijn
vervolgens zelf aan de slag gegaan met het ontworpen leertraject in allerlei
onderwijsniveaus—zoals in de vwo-bovenbouw en in het hbo. Deze ervaringen
vormden een waardevol vervolg en aanvulling op dit onderzoeksproject. Als
onderzoeker heb ik mijn competenties in het doen van onderzoek kunnen
ontwikkelen. Het functioneren in een wetenschappelijke omgeving heeft mijn
kijk op onderwijsonderzoek verdiept en verbreed. Tevens heeft de intensieve
samenwerking met internationale collega’s mijn visie op onderzoek in allerlei
opzichten verruimd. Samenvattend heeft dit traject mijn brede professionele
functioneren versterkt—zowel in de klas, binnen de school als binnen de
(inter)nationale onderwijs- en onderzoekswereld.
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Dankwoord

Dit onderzoek was in veel opzichten een intensief project. Hierbij was de steun
van anderen onmisbaar om het traject te doorlopen. De eerste fase was voor mij,
als ervaren wiskundedocente, een onzekere zoektocht in een onbekende
wetenschappelijke wereld. Het vinden van een passende onderzoeksrichting, het
verwerven van benodigde kennis en onderzoeksvaardigheden, en het balanceren
tussen onderwijs en onderzoek, vergden in het begin veel tijd, inspanning en
doorzettingsvermogen. Mede door de betrokkenheid en begeleiding van directe
collega’s op het Freudenthal Instituut voelde ik me gaandeweg steeds bekwamer
als onderzoeker en werd mijn passie voor het doen van onderzoek vergroot. Het
lesgeven in de onderwijspraktijk gecombineerd met onderzoeken hoe leerlingen
leren heeft geleid tot een prachtige verbinding tussen mijn affiniteit voor
onderwijs, onderzoek en wiskunde.

Allereerst wil ik Paul en Arthur bedanken. Jullie intensieve, deskundige
en betrokken begeleiding was voor mij essentieel. Bij de start van dit project
kenden we elkaar nauwelijks, maar al snel was er een vertrouwd contact. Paul,
jij bent vanaf het begin mijn houvast en tevens motor geweest. Vrijwel
wekelijks hadden we contact, waarbij je heel gericht steeds nieuwe impulsen of
andere invalshoeken aangaf. Je was enorm betrokken bij de inhoud, maar had
tevens oog voor de persoonlijke kant. Zo was je standaard openingsvraag “Hoe
gaat het met je?”, en was jouw doel tijdens een overleg om mij “nog meer en
dieper te laten nadenken”. Dat laatste wist je iedere keer weer voor elkaar te
krijgen. Tevens was er ruimte om te sparren over andere zijdelings gerelateerde
ontwikkelingen, zoals opgedane ervaringen in de onderwijspraktijk of binnen
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het FI, en de gedeelde liefde voor muziek. Deze balans tussen persoonlijke en
inhoudelijke begeleiding maakte de samenwerking vertrouwd en effectief.
Arthur, jouw gedrevenheid en waardevolle feedback, met name op het gebied
van methodologie, heeft mij veel geleerd. Vanuit jouw analytisch perspectief
gaf je steeds gerichte feedback over welke onderdelen in het geheel verder
uitgediept konden worden. Naast detailopmerkingen, over bijvoorbeeld het
gebruik van de En Dash, raakte jouw feedback de essentie van het onderzoek.
Dit maakte dat deze vaak verregaande gevolgen had voor de hele
onderzoeksopzet. Je zette dan als het ware het fundament recht, waardoor een
betere cohesie en structuur ontstond. Dit leidde regelmatig tot waardevolle,
inhoudelijke discussies, waarin je met weinig woorden een convergerende
oplossingsrichting wist aan te geven. Arthur en Paul, de combinatie van jullie
als begeleiders is een sterk concept. Jullie eigen professionele perspectieven die
elkaar mooi aanvullen, gecombineerd met een sterke onderlinge relatie,
resulteerden in een ijzersterke begeleiding.

Als inspirator voor het doen van onderzoek wil ik Jos Tolboom
bedanken. Jos, jij bent degene die mij jaren geleden aanspoorde om
wetenschappelijk onderzoek te gaan doen. Dit was nog tijdens mijn
masteronderzoek en resulteerde in een eenjarig NRO-onderzoekstraject.
Gedurende dit kortlopende traject maakte jij mij wegwijs in de
onderzoekswereld en deelde je tal van inspirerende en vernieuwende ideeén.
Vanuit dit kortlopende traject ontkiemde mijn passie voor het doen van
onderzoek, met als vervolg de uitvoering van dit promotieonderzoek. Tijdens dit
promotietraject was jij ook degene die de klankbordgroep aanstuurde. Met name
in de eerste jaren was het waardevol om met de personen in deze groep, ieder
met hun eigen perspectief, te reflecteren op het onderzoeksproces. Bij deze wil
ik naast Jos ook Swier Garst, Theo van den Bogaart, Peter Kop, Rijk Verkerk en
Karma  Dajani  heel  harteliik  bedanken @ voor de  prettige
klankbordgroepbijeenkomsten waarbij verschillende perspectieven op mijn
onderzoek verdiept en bediscussicerd werden. Ook een woord van dank aan
Walter Stevenhagen voor zijn gedreven inzet en constructieve bijdrage aan het
ontwerp en de implementatie van de pre- en posttests in onderzoekcyclus 3. Met
betrekking tot internationale contacten wil ik met name Rolf Biehler, Katie
Makar en Dani Ben-Zvi bedanken voor de fijne en leerzame samenwerking, die
mij geholpen heeft om dit onderzoek in een breder internationaal perspectief te
plaatsen.

De directie van de CSG Prins Maurits ben ik ontzettend dankbaar voor
hun flexibiliteit, steun en meeleven bij het uitvoeren van dit onderzoekstraject.
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Dankwoord

In goed overleg was het steeds mogelijk om een werkbare balans te vinden
tussen docenttaken en onderzoekstaken. Ook bij het integreren van beide,
tijdens het uitvoeren van interventies stonden jullie open voor vernieuwing. Bij
deze wil ik ook mijn wiskundecollega’s bedanken, met name Arjan van Wijk,
Rijk Verkerk en Ellis Peekstok, die direct betrokken waren bij het onderzoek.
Bedankt voor jullie inzet, praktische aanvullingen en inhoudelijke ideeén.
Hierbij wil ik ook Swier Garst nogmaals noemen, die als wiskundecollega ‘van
de overkant’ meerdere keren als interventiedocent heeft meegewerkt. Ook een
woord van dank aan de interventiedocenten in de laatste onderzoekcyclus voor
hun inzet en deelname aan het onderzoekproject. Mijn teamleider, Andre
Knulst, wil ik persoonlijk bedanken voor zijn interesse en stimulans. Met name
wil ik hierbij de waardevolle gesprekken benoemen over de balans tussen
wetenschappelijk onderzoek en de onderwijspraktijk, en over mogelijke
onderwijsvernieuwingen binnen de school en daarbuiten.

Dan een woord van dank aan mijn kamergenoten en collega’s op het
Freudenthal Instituut, met name Lonneke Boels en Annemiek van Leendert,
voor hun steun en toeverlaat. Lonneke, jij was gedurende het hele traject mijn
voorbeeld en houvast. Je maakte me wegwijs in het gebouw, introduceerde me
bij personen en deelde handige tips en inhoudelijke ideeén over onderzoek
doen. Je oprechte belangstelling, en de tijd die je nam om je te verdiepen in
mijn onderzoek, zorgde voor waardevolle positief-kritische feedback. Ook was
jij degene met wie ik de soms lastige balans tussen onderzoek, onderwijs en
gezin kon delen en bespreken. Je nam altijd de tijd voor overleg. Tijdens onze
gezamenlijke conferenties, met name ICOTS in Japan en de pre-SRTL in De
Bilt, heb ik veel van je geleerd en genoten van de gezellige momenten.
Annemiek, ook jou wil ik bedanken voor je interesse, de openhartige
gesprekken en je gezelligheid. Tevens dank aan alle collega’s op het FI voor de
fijne gesprekken in de wandelgangen, bij de koffieautomaat, tijdens de
lunchmeetings en de NWD. Tot slot wil ik Nathalie Kuijpers bedanken voor
haar onmisbare hulp bij het zetten van de ‘puntjes op de i’, qua taalcheck en lay-
out, in de manuscripten van deze thesis.

Mijn mede-Dudoc-ers wil ik bedanken voor hun openheid in het delen
van onderzoek ervaringen, de waardevolle inhoudelijke feedback en de
gezelligheid tijdens de Dudoc-bijeenkomsten. Marie-Jetta, Sathyam, Gerben,
Tim B., Melde, Tore, Tim van D., Farran, Jacqueline, Koen, Stefan, Pier en
Kirsten, het was fijn om met ‘lotgenoten’ te kunnen sparren. Ook een woord
van dank aan de Dudoc-programmaraad, Erik Barendsen, Wouter van
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Joolingen, Martin Goedhart, Birgit Pepin en Marc de Vries, voor jullie
openheid, interesse en inhoudelijke expertise.

Naast de onderwijs- en onderzoekwereld waren vriendinnen van
onschatbare waarde om te ontspannen en te relativeren. Marian, met jou kon ik
alle mooie en moeilijke momenten delen. Bedankt voor je grenzeloze
vertrouwen en onvoorwaardelijke liefdevolle steun: je schouder om op te huilen
en je gezelligheid om van te genieten. Bianca, en ook Robert-Jan, bedankt voor
je hartelijke meeleven en de plezierige activiteiten met onze gezinnen. Marleen,
Marjan R. en Sonja bedankt voor jullie warme vriendschap, en Christa, Tabitha
en Annette, bedankt voor de mooie muzikale momenten.

Dan wil ik mijn lieve moeder bedanken die altijd voor me klaarstond. De
aangename thee-momentjes waarin we allerlei zaken bespraken, je heerlijke
appeltaart bij verjaardagen, je interesse en betrokkenheid bij alle activiteiten
rondom ons gezin. Je liefdevolle adviezen en ook de zorgen die je deelde
rondom mijn onderzoek en welzijn, waren waardevol om de juiste keuzes te
maken. Ook mijn schoonouders wil ik bedanken voor hun steun op allerlei
manieren, zoals de ontspannen koffie-uurtjes op de zondagmorgen, de zelf
geteelde groente en fruit, en de praktische klusjes in en om het huis.

Tot slot, mijn man en kinderen. Mark, bedankt dat je er altijd voor me
was. Joerie, Bas en Jesse, wat ben ik trots op wie jullie (geworden) zijn.
Bedankt voor al het moois dat jullie toevoeg(d)en aan ons gezin: voor jullie
humor, verhalen en eigen kijk op de (onderwijs)wereld, die gedurende het
onderzoektraject—maar hopelijk ook nog heel lang daarna—zorg(d)en voor
ontspanning en liefdevolle momenten van geluk.
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